1
|
Nudler E. Transcription-coupled global genomic repair in E. coli. Trends Biochem Sci 2023; 48:873-882. [PMID: 37558547 DOI: 10.1016/j.tibs.2023.07.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/17/2023] [Accepted: 07/17/2023] [Indexed: 08/11/2023]
Abstract
The nucleotide excision repair (NER) pathway removes helix-distorting lesions from DNA in all organisms. Escherichia coli has long been a model for understanding NER, which is traditionally divided into major and minor subpathways known as global genome repair (GGR) and transcription-coupled repair (TCR), respectively. TCR has been assumed to be mediated exclusively by Mfd, a DNA translocase of minimal NER phenotype. This review summarizes the evidence that shaped the traditional view of NER in bacteria, and reviews data supporting a new model in which GGR and TCR are inseparable. In this new model, RNA polymerase serves both as the essential primary sensor of bulky DNA lesions genome-wide and as the delivery platform for the assembly of functional NER complexes in living cells.
Collapse
Affiliation(s)
- Evgeny Nudler
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA; Howard Hughes Medical Institute, New York University Grossman School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
2
|
Martinez B, Bharati BK, Epshtein V, Nudler E. Pervasive Transcription-coupled DNA repair in E. coli. Nat Commun 2022; 13:1702. [PMID: 35354807 PMCID: PMC8967931 DOI: 10.1038/s41467-022-28871-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 02/14/2022] [Indexed: 11/18/2022] Open
Abstract
Global Genomic Repair (GGR) and Transcription-Coupled Repair (TCR) have been viewed, respectively, as major and minor sub-pathways of the nucleotide excision repair (NER) process that removes bulky lesions from the genome. Here we applied a next generation sequencing assay, CPD-seq, in E. coli to measure the levels of cyclobutane pyrimidine dimer (CPD) lesions before, during, and after UV-induced genotoxic stress, and, therefore, to determine the rate of genomic recovery by NER at a single nucleotide resolution. We find that active transcription is necessary for the repair of not only the template strand (TS), but also the non-template strand (NTS), and that the bulk of TCR is independent of Mfd - a DNA translocase that is thought to be necessary and sufficient for TCR in bacteria. We further show that repair of both TS and NTS is enhanced by increased readthrough past Rho-dependent terminators. We demonstrate that UV-induced genotoxic stress promotes global antitermination so that TCR is more accessible to the antisense, intergenic, and other low transcribed regions. Overall, our data suggest that GGR and TCR are essentially the same process required for complete repair of the bacterial genome.
Collapse
Affiliation(s)
- Britney Martinez
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY, 10016, USA
| | - Binod K Bharati
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY, 10016, USA
- Howard Hughes Medical Institute, NYU Grossman School of Medicine, New York, New York, 10016, USA
| | - Vitaly Epshtein
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY, 10016, USA
| | - Evgeny Nudler
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY, 10016, USA.
- Howard Hughes Medical Institute, NYU Grossman School of Medicine, New York, New York, 10016, USA.
| |
Collapse
|
3
|
van Toorn M, Turkyilmaz Y, Han S, Zhou D, Kim HS, Salas-Armenteros I, Kim M, Akita M, Wienholz F, Raams A, Ryu E, Kang S, Theil AF, Bezstarosti K, Tresini M, Giglia-Mari G, Demmers JA, Schärer OD, Choi JH, Vermeulen W, Marteijn JA. Active DNA damage eviction by HLTF stimulates nucleotide excision repair. Mol Cell 2022; 82:1343-1358.e8. [PMID: 35271816 PMCID: PMC9473497 DOI: 10.1016/j.molcel.2022.02.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/15/2021] [Accepted: 02/10/2022] [Indexed: 10/18/2022]
Abstract
Nucleotide excision repair (NER) counteracts the onset of cancer and aging by removing helix-distorting DNA lesions via a "cut-and-patch"-type reaction. The regulatory mechanisms that drive NER through its successive damage recognition, verification, incision, and gap restoration reaction steps remain elusive. Here, we show that the RAD5-related translocase HLTF facilitates repair through active eviction of incised damaged DNA together with associated repair proteins. Our data show a dual-incision-dependent recruitment of HLTF to the NER incision complex, which is mediated by HLTF's HIRAN domain that binds 3'-OH single-stranded DNA ends. HLTF's translocase motor subsequently promotes the dissociation of the stably damage-bound incision complex together with the incised oligonucleotide, allowing for an efficient PCNA loading and initiation of repair synthesis. Our findings uncover HLTF as an important NER factor that actively evicts DNA damage, thereby providing additional quality control by coordinating the transition between the excision and DNA synthesis steps to safeguard genome integrity.
Collapse
Affiliation(s)
- Marvin van Toorn
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Centre, Rotterdam, the Netherlands
| | - Yasemin Turkyilmaz
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Centre, Rotterdam, the Netherlands
| | - Sueji Han
- Center for Bioanalysis, Korea Research Institute of Standards and Science, Daejeon 305-340, Republic of Korea; Department of Bio-Analytical Science, University of Science & Technology, Daejeon 305-350, Republic of Korea
| | - Di Zhou
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Centre, Rotterdam, the Netherlands
| | - Hyun-Suk Kim
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Republic of Korea
| | - Irene Salas-Armenteros
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Centre, Rotterdam, the Netherlands
| | - Mihyun Kim
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Republic of Korea; Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Masaki Akita
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Centre, Rotterdam, the Netherlands
| | - Franziska Wienholz
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Centre, Rotterdam, the Netherlands
| | - Anja Raams
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Centre, Rotterdam, the Netherlands
| | - Eunjin Ryu
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Republic of Korea; Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Sukhyun Kang
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Republic of Korea
| | - Arjan F Theil
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Centre, Rotterdam, the Netherlands
| | - Karel Bezstarosti
- Proteomics Centre, Erasmus University Medical Centre, Rotterdam, the Netherlands
| | - Maria Tresini
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Centre, Rotterdam, the Netherlands
| | - Giuseppina Giglia-Mari
- Institut NeuroMyoGène (INMG), CNRS UMR 5310, INSERM U1217, Université de Lyon, Université Claude Bernard Lyon1, 16 rue Dubois, 69622 Villeurbanne Cedex, France
| | - Jeroen A Demmers
- Proteomics Centre, Erasmus University Medical Centre, Rotterdam, the Netherlands
| | - Orlando D Schärer
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Republic of Korea; Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Jun-Hyuk Choi
- Center for Bioanalysis, Korea Research Institute of Standards and Science, Daejeon 305-340, Republic of Korea; Department of Bio-Analytical Science, University of Science & Technology, Daejeon 305-350, Republic of Korea
| | - Wim Vermeulen
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Centre, Rotterdam, the Netherlands
| | - Jurgen A Marteijn
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Centre, Rotterdam, the Netherlands.
| |
Collapse
|
4
|
Kraithong T, Sucharitakul J, Buranachai C, Jeruzalmi D, Chaiyen P, Pakotiprapha D. Real-time investigation of the roles of ATP hydrolysis by UvrA and UvrB during DNA damage recognition in nucleotide excision repair. DNA Repair (Amst) 2020; 97:103024. [PMID: 33302090 DOI: 10.1016/j.dnarep.2020.103024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 08/25/2020] [Accepted: 11/09/2020] [Indexed: 10/22/2022]
Abstract
Nucleotide excision repair (NER) stands out among other DNA repair systems for its ability to process a diverse set of unrelated DNA lesions. In bacteria, NER damage detection is orchestrated by the UvrA and UvrB proteins, which form the UvrA2-UvrB2 (UvrAB) damage sensing complex. The highly versatile damage recognition is accomplished in two ATP-dependent steps. In the first step, the UvrAB complex samples the DNA in search of lesion. Subsequently, the presence of DNA damage is verified within the UvrB-DNA complex after UvrA has dissociated. Although the mechanism of bacterial NER damage detection has been extensively investigated, the role of ATP binding and hydrolysis by UvrA and UvrB during this process remains incompletely understood. Here, we report a pre-steady state kinetics Förster resonance energy transfer (FRET) study of the real-time interaction between UvrA, UvrB, and damaged DNA during lesion detection. By using UvrA and UvrB mutants harboring site-specific mutations in the ATP binding sites, we show for the first time that the dissociation of UvrA from the UvrAB-DNA complex does not require ATP hydrolysis by UvrB. We find that ATP hydrolysis by UvrA is not essential, but somehow facilitates the formation of UvrB-DNA complex, with ATP hydrolysis at the proximal site of UvrA playing a more critical role. Consistent with previous reports, our results indicated that the ATPase activity of UvrB is essential for the formation of UvrB-DNA complex but is not required for the binding of the UvrAB complex to DNA.
Collapse
Affiliation(s)
- Thanyalak Kraithong
- Doctor of Philosophy Program in Biochemistry (International Program), Faculty of Science, Mahidol University, Bangkok 10400, Thailand; Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Jeerus Sucharitakul
- Research Unit in Integrative Immuno-Microbial Biochemistry and Bioresponsive Nanomaterials, Thailand; Department of Biochemistry, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
| | - Chittanon Buranachai
- Department of Physics, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90110, Thailand; Center of Excellence for Trace Analysis and Biosensor, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90110, Thailand
| | - David Jeruzalmi
- Department of Chemistry and Biochemistry, City College of New York, New York, NY 10031, USA; Doctor of Philosophy Programs in Biochemistry, Biology, and Chemistry, The Graduate Center of the City University of New York, New York, NY 10016, USA
| | - Pimchai Chaiyen
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; School of Biomolecular Science and Engineering (BSE), Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand
| | - Danaya Pakotiprapha
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand.
| |
Collapse
|
5
|
Strand with mutagenic lesion is preferentially used as a template in the region of a bi-stranded clustered DNA damage site in Escherichia coli. Sci Rep 2020; 10:9737. [PMID: 32546758 PMCID: PMC7297740 DOI: 10.1038/s41598-020-66651-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 05/20/2020] [Indexed: 11/08/2022] Open
Abstract
The damaging potential of ionizing radiation arises largely from the generation of clustered DNA damage sites within cells. Previous studies using synthetic DNA lesions have demonstrated that models of clustered DNA damage exhibit enhanced mutagenic potential of the comprising lesions. However, little is known regarding the processes that lead to mutations in these sites, apart from the fact that base excision repair of lesions within the cluster is compromised. Unique features of the mutation frequencies within bi-stranded clusters have led researchers to speculate that the strand containing the mutagenic lesion is preferentially used as the template for DNA synthesis. To gain further insights into the processing of clustered DNA damage sites, we used a plasmid-based assay in E. coli cells. Our findings revealed that the strand containing a mutagenic lesion within a bi-stranded clustered DNA damage site is frequently used as the template. This suggests the presence of an, as yet unknown, strand synthesis process that is unrelated to base excision repair, and that this process plays an important role in mutagenesis. The length of the region of strand preference was found to be determined by DNA polymerase I.
Collapse
|
6
|
Abstract
The nucleotide excision repair (NER) system removes a variety of types of helix-distorting lesions from DNA through a dual incision mechanism, in which the damaged nucleotide bases are excised in the form of a small, excised, damage-containing single-stranded DNA oligonucleotide (sedDNA). Damage removal leaves a gap in the DNA template that must then be filled in by the action of a DNA polymerase and ligated to the downstream phosphodiester backbone in the DNA to complete the repair reaction. Defects in damage removal, sedDNA processing, or gap filling have the potential to be mutagenic and lethal to cells, and thus several human pathologies, including cancer and aging, are associated with defects in NER. This review summarizes our current understanding of NER with a focus on the enzymes that excise sedDNAs and restore the duplex DNA to its native state in human cells.
Collapse
Affiliation(s)
- Michael G Kemp
- Department of Pharmacology and Toxicology, Wright State University Boonshoft School of Medicine, Dayton, OH, United States.
| |
Collapse
|
7
|
Selby CP. Mfd Protein and Transcription-Repair Coupling in Escherichia coli. Photochem Photobiol 2017; 93:280-295. [PMID: 27864884 DOI: 10.1111/php.12675] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 10/18/2016] [Indexed: 01/30/2023]
Abstract
In 1989, transcription-repair coupling (TRC) was first described in Escherichia coli, as the transcription-dependent, preferential nucleotide excision repair (NER) of UV photoproducts located in the template DNA strand. This finding led to pioneering biochemical studies of TRC in the laboratory of Professor Aziz Sancar, where, at the time, major contributions were being made toward understanding the roles of the UvrA, UvrB and UvrC proteins in NER. When the repair studies were extended to TRC, template but not coding strand lesions were found to block RNA polymerase (RNAP) in vitro, and unexpectedly, the blocked RNAP inhibited NER. A transcription-repair coupling factor, also called Mfd protein, was found to remove the blocked RNAP, deliver the repair enzyme to the lesion and thereby mediate more rapid repair of the transcription-blocking lesion compared with lesions elsewhere. Structural and functional analyses of Mfd protein revealed helicase motifs responsible for ATP hydrolysis and DNA binding, and regions that interact with RNAP and UvrA. These and additional studies provided a basis upon which other investigators, in following decades, have characterized fascinating and unexpected structural and mechanistic features of Mfd, revealed the possible existence of additional pathways of TRC and discovered additional roles of Mfd in the cell.
Collapse
Affiliation(s)
- Christopher P Selby
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, NC
| |
Collapse
|
8
|
Kemp MG, Hu J. PostExcision Events in Human Nucleotide Excision Repair. Photochem Photobiol 2016; 93:178-191. [PMID: 27645806 DOI: 10.1111/php.12641] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 08/26/2016] [Indexed: 12/27/2022]
Abstract
The nucleotide excision repair system removes a wide variety of DNA lesions from the human genome, including photoproducts induced by ultraviolet (UV) wavelengths of sunlight. A defining feature of nucleotide excision repair is its dual incision mechanism, in which two nucleolytic incision events on the damaged strand of DNA at sites bracketing the lesion generate a damage-containing DNA oligonucleotide and a single-stranded DNA gap approximately 30 nucleotides in length. Although the early events of nucleotide excision repair, which include lesion recognition and the dual incisions, have been explored in detail and are reasonably well understood, the fate of the single-stranded DNA gaps and excised oligonucleotide products of repair have not been as extensively examined. In this review, recent findings that address these less-explored aspects of nucleotide excision repair are discussed and support the concept that postincision gap and excised oligonucleotide processing are critical steps in the cellular response to DNA damage induced by UV light and other environmental carcinogens. Defects in these latter stages of repair lead to cell death and other DNA damage signaling responses and may therefore contribute to a number of human disease states associated with exposure to UV wavelengths of sunlight, including skin cancer, aging and autoimmunity.
Collapse
Affiliation(s)
- Michael G Kemp
- Department of Pharmacology and Toxicology, Wright State University Boonshoft School of Medicine, Dayton, OH
| | - Jinchuan Hu
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, NC
| |
Collapse
|
9
|
Cho Endonuclease Functions during DNA Interstrand Cross-Link Repair in Escherichia coli. J Bacteriol 2016; 198:3099-3108. [PMID: 27573016 DOI: 10.1128/jb.00509-16] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 08/22/2016] [Indexed: 01/21/2023] Open
Abstract
DNA interstrand cross-links are complex lesions that covalently link both strands of the duplex DNA. Lesion removal is proposed to be initiated via the UvrABC nucleotide excision repair complex; however, less is known about the subsequent steps of this complex repair pathway. In this study, we characterized the contribution of nucleotide excision repair mutants to survival in the presence of psoralen-induced damage. Unexpectedly, we observed that the nucleotide excision repair mutants exhibit differential sensitivity to psoralen-induced damage, with uvrC mutants being less sensitive than either uvrA or uvrB We show that Cho, an alternative endonuclease, acts with UvrAB and is responsible for the reduced hypersensitivity of uvrC mutants. We find that Cho's contribution to survival correlates with the presence of DNA interstrand cross-links, rather than monoadducts, and operates at a step after, or independently from, the initial incision during the global repair of psoralen DNA adducts from the genome. IMPORTANCE DNA interstrand cross-links are complex lesions that covalently bind to both strands of the duplex DNA and whose mechanism of repair remains poorly understood. In this study, we show that Cho, an alternative endonuclease, acts with UvrAB and participates in the repair of DNA interstrand cross-links formed in the presence of photoactivated psoralens. Cho's contribution to survival correlates with the presence of DNA interstrand cross-links and operates at a step after, or independently from, the initial incision during the repair process.
Collapse
|
10
|
Sancar A. Mechanisms of DNA Repair by Photolyase and Excision Nuclease (Nobel Lecture). Angew Chem Int Ed Engl 2016; 55:8502-27. [PMID: 27337655 DOI: 10.1002/anie.201601524] [Citation(s) in RCA: 177] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Indexed: 01/27/2023]
Abstract
Ultraviolet light damages DNA by converting two adjacent thymines into a thymine dimer which is potentially mutagenic, carcinogenic, or lethal to the organism. This damage is repaired by photolyase and the nucleotide excision repair system in E. coli by nucleotide excision repair in humans. The work leading to these results is presented by Aziz Sancar in his Nobel Lecture.
Collapse
Affiliation(s)
- Aziz Sancar
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA.
| |
Collapse
|
11
|
Sancar A. Mechanismen der DNA-Reparatur durch Photolyasen und Exzisionsnukleasen (Nobel-Aufsatz). Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201601524] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Aziz Sancar
- Department of Biochemistry and Biophysics; University of North Carolina School of Medicine; Chapel Hill North Carolina USA
| |
Collapse
|
12
|
Van Houten B. A tale of two cities: A tribute to Aziz Sancar's Nobel Prize in Chemistry for his molecular characterization of NER. DNA Repair (Amst) 2016; 37:A3-A13. [PMID: 26861185 PMCID: PMC5068483 DOI: 10.1016/j.dnarep.2015.12.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Bennett Van Houten
- Department of Pharmacology and Chemical Biology, University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, United States.
| |
Collapse
|
13
|
Orren DK. The Nobel Prize in Chemistry 2015: Exciting discoveries in DNA repair by Aziz Sancar. SCIENCE CHINA-LIFE SCIENCES 2015; 59:97-102. [PMID: 26712032 DOI: 10.1007/s11427-015-4994-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 12/16/2015] [Indexed: 11/27/2022]
Affiliation(s)
- David K Orren
- Department of Toxicology and Cancer Biology, University of Kentucky College of Medicine and Markey Cancer Center, University of Kentucky, Lexington, KY, 40536-0305, USA.
| |
Collapse
|
14
|
Ghosh S, Greenberg MM. Nucleotide excision repair of chemically stabilized analogues of DNA interstrand cross-links produced from oxidized abasic sites. Biochemistry 2014; 53:5958-65. [PMID: 25208227 PMCID: PMC4172206 DOI: 10.1021/bi500914d] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Nucleotide excision repair is a primary pathway in cells for coping with DNA interstrand cross-links (ICLs). Recently, C4'-oxidized (C4-AP) and C5'-oxidized abasic sites (DOB) that are produced following hydrogen atom abstraction from the DNA backbone were found to produce ICLs. Because some of the ICLs derived from C4-AP and DOB are too unstable to characterize in biochemical processes, chemically stable analogues were synthesized [Ghosh, S., and Greenberg, M. M. (2014) J. Org. Chem. 79, 5948-5957]. UvrABC incision of DNA substrates containing stabilized analogues of the ICLs derived from C4-AP and DOB was examined. The incision pattern for the ICL related to the C4'-oxidized abasic site was typical for UvrABC substrates. UvrABC cleaved both strands of the substrate containing the C4-AP ICL analogue, but it was a poor substrate. UvrABC incised <30% of the C4-AP ICL analogue over an 8 h period, raising the possibility that this cross-link will be inefficiently repaired in cells. Furthermore, double-strand breaks were not detected upon incision of an internally labeled hairpin substrate containing the C4-AP ICL analogue. UvrABC incised the stabilized analogue of the DOB ICL more efficiently (~20% in 1 h). Furthermore, the incision pattern was unique, and the cross-linked substrate was converted into a single product, a double-strand break. The template strand was exclusively incised on the template strand on the 3'-side of the cross-linked dA. Although the outcomes of the interaction between UvrABC and these two cross-linked substrates are different from one another, they provide additional examples of how seemingly simple lesions (C4-AP and DOB) can potentially exert significant deleterious effects on biochemical processes.
Collapse
Affiliation(s)
- Souradyuti Ghosh
- Department of Chemistry, Johns Hopkins University , 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | | |
Collapse
|
15
|
Dynamics of lesion processing by bacterial nucleotide excision repair proteins. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2012; 110:1-24. [PMID: 22749140 DOI: 10.1016/b978-0-12-387665-2.00001-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Single-molecule approaches permit an unrivalled view of how complex systems operate and have recently been used to understand DNA-protein interactions. These tools have enabled advances in a particularly challenging problem, the search for damaged sites on DNA. DNA repair proteins are present at the level of just a few hundred copies in bacterial cells to just a few thousand in human cells, and they scan the entire genome in search of their specific substrates. How do these proteins achieve this herculean task when their targets may differ from undamaged DNA by only a single hydrogen bond? Here we examine, using single-molecule approaches, how the prokaryotic nucleotide excision repair system balances the necessity for speed against specificity. We discuss issues at a theoretical, biological, and technical level and finally pose questions for future research.
Collapse
|
16
|
Wagner K, Moolenaar GF, Goosen N. Role of the insertion domain and the zinc-finger motif of Escherichia coli UvrA in damage recognition and ATP hydrolysis. DNA Repair (Amst) 2011; 10:483-96. [PMID: 21393072 DOI: 10.1016/j.dnarep.2011.02.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Revised: 02/14/2011] [Accepted: 02/16/2011] [Indexed: 11/25/2022]
Abstract
UvrA is the initial DNA damage-sensing protein in bacterial nucleotide excision repair. Each protomer of the UvrA dimer contains two ATPase domains, that belong to the family of ATP-binding cassette domains. Three structural domains are inserted in these ATPase domains: the insertion domain (ID) and UvrB binding domain (in ATP domain I) and the zinc-finger motif (in ATP domain II). In this paper we analyze the function of the ID and the zinc finger motif in damage specific binding of Escherichia coli UvrA. We show that the ID is not essential for damage discrimination, but it does stabilize UvrA on the DNA, most likely by forming a clamp around the DNA helix. We present evidence that two conserved arginine residues in the ID contact the phosphate backbone of the DNA, leading to strand separation after the ATPase-driven movement of the ID's. Remarkably, deletion of the ID generated a phenotype in which UV-survival strongly depends on the presence of photolyase, indicating that UvrA and photolyase form a ternary complex on a CPD-lesion. The zinc-finger motif is shown to be important for the transfer of the damage recognition signal to the ATPase of UvrA. In the absence of this domain the coupling between DNA binding and ATP hydrolysis is completely lost. Mutation of the phenylalanine residue in the tip of the zinc-finger domain resulted in a protein in which the ATPase was already triggered when binding to an undamaged site. As the zinc-finger motif is connected to the DNA binding regions on the surface of UvrA, this strongly suggests that damage-specific binding to these regions results in a rearrangement of the zinc-finger motif, which in its turn activates the ATPase. We present a model how damage recognition is transmitted to activate ATP hydrolysis in ATP binding domain I of the protein.
Collapse
Affiliation(s)
- Koen Wagner
- Laboratory of Molecular Genetics, Leiden Institute of Chemistry, Leiden University, The Netherlands
| | | | | |
Collapse
|
17
|
Jaciuk M, Nowak E, Skowronek K, Tańska A, Nowotny M. Structure of UvrA nucleotide excision repair protein in complex with modified DNA. Nat Struct Mol Biol 2011; 18:191-7. [PMID: 21240268 PMCID: PMC3428727 DOI: 10.1038/nsmb.1973] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Accepted: 11/09/2010] [Indexed: 12/31/2022]
Abstract
One of the primary pathways for removal of DNA damage is nucleotide excision repair (NER). In bacteria, the UvrA protein is the component of NER that locates the lesion. A notable feature of NER is its ability to act on many DNA modifications that vary in chemical structure. So far, the mechanism underlying this broad specificity has been unclear. Here, we report the first crystal structure of a UvrA protein in complex with a chemically modified oligonucleotide. The structure shows that the UvrA dimer does not contact the site of lesion directly, but rather binds the DNA regions on both sides of the modification. The DNA region harboring the modification is deformed, with the double helix bent and unwound. UvrA uses damage-induced deformations of the DNA and a less rigid structure of the modified double helix for indirect readout of the lesion.
Collapse
Affiliation(s)
- Marcin Jaciuk
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Elżbieta Nowak
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Krzysztof Skowronek
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology, Warsaw, Poland. Correspondence should be addressed to M.N. ()
| | - Anna Tańska
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Marcin Nowotny
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology, Warsaw, Poland
| |
Collapse
|
18
|
Wang LC, Gautier J. The Fanconi anemia pathway and ICL repair: implications for cancer therapy. Crit Rev Biochem Mol Biol 2011; 45:424-39. [PMID: 20807115 DOI: 10.3109/10409238.2010.502166] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Fanconi anemia (FA) is an inherited disease caused by mutations in at least 13 genes and characterized by genomic instability. In addition to displaying strikingly heterogenous clinical phenotypes, FA patients are exquisitely sensitive to treatments with crosslinking agents that create interstrand crosslinks (ICL). In contrast to bacteria and yeast, in which ICLs are repaired through replication-dependent and -independent mechanisms, it is thought that ICLs are repaired primarily during DNA replication in vertebrates. However, recent data indicate that replication-independent ICL repair also operates in vertebrates. While the precise role of the FA pathway in ICL repair remains elusive, increasing evidence suggests that FA proteins function at different steps in the sensing, recognition and processing of ICLs, as well as in signaling from these very toxic lesions, which can be generated by a wide variety of cancer chemotherapeutic drugs. Here, we discuss some of the recent findings that have shed light on the role of the FA pathway in ICL repair, with special emphasis on the implications of these findings for cancer therapy since disruption of FA genes have been associated with cancer predisposition.
Collapse
Affiliation(s)
- Lily C Wang
- Institute for Cancer Genetics, Columbia University, New York, NY 10032, USA
| | | |
Collapse
|
19
|
Kumari A, Minko IG, Smith RL, Lloyd RS, McCullough AK. Modulation of UvrD helicase activity by covalent DNA-protein cross-links. J Biol Chem 2010; 285:21313-22. [PMID: 20444702 DOI: 10.1074/jbc.m109.078964] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
UvrD (DNA helicase II) has been implicated in DNA replication, DNA recombination, nucleotide excision repair, and methyl-directed mismatch repair. The enzymatic function of UvrD is to translocate along a DNA strand in a 3' to 5' direction and unwind duplex DNA utilizing a DNA-dependent ATPase activity. In addition, UvrD interacts with many other proteins involved in the above processes and is hypothesized to facilitate protein turnover, thus promoting further DNA processing. Although UvrD interactions with proteins bound to DNA have significant biological implications, the effects of covalent DNA-protein cross-links on UvrD helicase activity have not been characterized. Herein, we demonstrate that UvrD-catalyzed strand separation was inhibited on a DNA strand to which a 16-kDa protein was covalently bound. Our sequestration studies suggest that the inhibition of UvrD activity is most likely due to a translocation block and not helicase sequestration on the cross-link-containing DNA substrate. In contrast, no inhibition of UvrD-catalyzed strand separation was apparent when the protein was linked to the complementary strand. The latter result is surprising given the earlier observations that the DNA in this covalent complex is severely bent ( approximately 70 degrees ), with both DNA strands making multiple contacts with the cross-linked protein. In addition, UvrD was shown to be required for replication of plasmid DNAs containing covalent DNA-protein complexes. Combined, these data suggest a critical role for UvrD in the processing of DNA-protein cross-links.
Collapse
Affiliation(s)
- Anuradha Kumari
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Center for Research on Occupational and Environmental Toxicology, Portland, Oregon 97239, USA
| | | | | | | | | |
Collapse
|
20
|
Peng X, Ghosh AK, Van Houten B, Greenberg MM. Nucleotide excision repair of a DNA interstrand cross-link produces single- and double-strand breaks. Biochemistry 2010; 49:11-9. [PMID: 20000382 DOI: 10.1021/bi901603h] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The DNA radical resulting from formal abstraction of a hydrogen atom from the thymidine methyl group, 5-(2'-deoxyuridinyl)methyl radical, forms interstrand cross-links with the opposing 2'-deoxyadenosine. This is the first chemically characterized, radical-mediated cross-link between two opposing nucleotides. In addition, cross-linking between opposing bases in the duplex is less common than between those separated by one or two nucleotides. The first step in cross-link repair was investigated using the UvrABC bacterial nucleotide excision repair system. UvrABC incised both strands of the cross-linked DNA, although the strand containing the cross-linked purine was preferred by the enzyme in two different duplexes. The incision sites in one strand were spaced 11-14 nucleotides apart, as is typical for UvrABC incision. The majority of incisions occur at the third phosphate from the 3'-side of the cross-link and eighth or ninth phosphate on the 5'-side. In addition, cleavage was found to occur on both strands, producing double-strand breaks in approximately 25-29% of the incision events. This is the first example of double-strand cleavage during nucleotide excision repair of cross-linked DNA that does not already contain a strand break in the vicinity of the cross-link.
Collapse
Affiliation(s)
- Xiaohua Peng
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, USA
| | | | | | | |
Collapse
|
21
|
Differential survival of Escherichia coli uvrA, uvrB, and uvrC mutants to psoralen plus UV-A (PUVA): Evidence for uncoupled action of nucleotide excision repair to process DNA adducts. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2009; 98:40-7. [PMID: 20004108 DOI: 10.1016/j.jphotobiol.2009.11.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Revised: 10/28/2009] [Accepted: 11/03/2009] [Indexed: 11/23/2022]
Abstract
The nucleotide excision repair mechanism (NER) of Escherichia coli is responsible for the recognition and elimination of more than twenty different DNA lesions. Herein, we evaluated the in vivo role of NER in the repair of DNA adducts generated by psoralens (mono- or bi-functional) and UV-A light (PUVA) in E. coli. Cultures of wild-type E. coli K12 and mutants for uvrA, uvrB, uvrC or uvrAC genes were treated with PUVA and cell survival was determined. In parallel, kinetics of DNA repair was also evaluated by the comparison of DNA sedimentation profiles in all the strains after PUVA treatment. The uvrB mutant was more sensitive to PUVA treatment than all the other uvr mutant strains. Wild-type strain, and uvrA and uvrC mutants were able to repair PUVA-induced lesions, as seen by DNA sedimentation profiles, while the uvrB mutant was unable to repair the lesions. In addition, a quadruple fpg nth xth nfo mutant was unable to nick PUVA-treated DNA when the crude cell-free extract was used to perform plasmid nicking. These data suggest that DNA repair of PUVA-induced lesions may require base excision repair functions, despite proficient UvrABC activity. These results point to a specific role for UvrB protein in the repair of psoralen adducts, which appear to be independent of UvrA or UvrC proteins, as described for the classical UvrABC endonuclease mechanism.
Collapse
|
22
|
DNA wrapping is required for DNA damage recognition in the Escherichia coli DNA nucleotide excision repair pathway. Proc Natl Acad Sci U S A 2009; 106:12849-54. [PMID: 19549864 DOI: 10.1073/pnas.0902281106] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Localized DNA melting may provide a general strategy for recognition of the wide array of chemically and structurally diverse DNA lesions repaired by the nucleotide excision repair (NER) pathway. However, it is not clear what causes such DNA melting and how it is driven. Here, we show a DNA wrapping-melting model supported by results from dynamic monitoring of the key DNA-protein and protein-protein interactions involved in the early stages of the Escherichia coli NER process. Using an analytical technique involving capillary electrophoresis coupled with laser-induced fluorescence polarization, which combines a mobility shift assay with conformational analysis, we demonstrate that DNA wrapping around UvrB, mediated by UvrA, is an early event in the damage-recognition process during E. coli NER. DNA wrapping of UvrB was confirmed by Förster resonance energy transfer and fluorescence lifetime measurements. This wrapping did not occur with readily denaturable damaged DNA substrates ("bubble" DNA), suggesting that DNA wrapping of UvrB plays an important role in the induction of DNA melting around the damage site. Analysis of DNA wrapping of mutant UvrB Y96A further suggests that a cooperative interaction between DNA wrapping of UvrA(2)B and contact of the beta-hairpin of UvrB with the bulky damage moiety may be involved in the local DNA melting at the damage site.
Collapse
|
23
|
Wagner K, Moolenaar G, van Noort J, Goosen N. Single-molecule analysis reveals two separate DNA-binding domains in the Escherichia coli UvrA dimer. Nucleic Acids Res 2009; 37:1962-72. [PMID: 19208636 PMCID: PMC2665241 DOI: 10.1093/nar/gkp071] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The UvrA protein is the initial damage-recognizing factor in bacterial nucleotide excision repair. Each monomer of the UvrA dimer contains two ATPase sites. Using single-molecule analysis we show that dimerization of UvrA in the presence of ATP is significantly higher than with ADP or nonhydrolyzable ATPγS, suggesting that the active UvrA dimer contains a mixture of ADP and ATP. We also show that the UvrA dimer has a high preference of binding the end of a linear DNA fragment, independent on the presence or type of cofactor. Apparently ATP binding or hydrolysis is not needed to discriminate between DNA ends and internal sites. A significant number of complexes could be detected where one UvrA dimer bridges two DNA ends implying the presence of two separate DNA-binding domains, most likely present in each monomer. On DNA containing a site-specific lesion the damage-specific binding is much higher than DNA-end binding, but only in the absence of cofactor or with ATP. With ATPγS no discrimination between a DNA end and a DNA damage could be observed. We present a model where damage recognition of UvrA depends on the ability of both UvrA monomers to interact with the DNA flanking the lesion.
Collapse
Affiliation(s)
- Koen Wagner
- Laboratory of Molecular Genetics, Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands
| | | | | | | |
Collapse
|
24
|
Matson SW, Robertson AB. The UvrD helicase and its modulation by the mismatch repair protein MutL. Nucleic Acids Res 2006; 34:4089-97. [PMID: 16935885 PMCID: PMC1616947 DOI: 10.1093/nar/gkl450] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
UvrD is a superfamily I DNA helicase with well documented roles in excision repair and methyl-directed mismatch repair (MMR) in addition to poorly understood roles in replication and recombination. The MutL protein is a homodimeric DNA-stimulated ATPase that plays a central role in MMR in Escherichia coli. This protein has been characterized as the master regulator of mismatch repair since it interacts with and modulates the activity of several other proteins involved in the mismatch repair pathway including MutS, MutH and UvrD. Here we present a brief summary of recent studies directed toward arriving at a better understanding of the interaction between MutL and UvrD, and the impact of this interaction on the activity of UvrD and its role in mismatch repair.
Collapse
Affiliation(s)
- Steven W Matson
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | | |
Collapse
|
25
|
Truglio JJ, Croteau DL, Van Houten B, Kisker C. Prokaryotic nucleotide excision repair: the UvrABC system. Chem Rev 2006; 106:233-52. [PMID: 16464004 DOI: 10.1021/cr040471u] [Citation(s) in RCA: 242] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- James J Truglio
- Department of Pharmacological Sciences, State University of New York at Stony Brook, 11794-5115, USA
| | | | | | | |
Collapse
|
26
|
Lage C, de Pádula M, de Alencar TAM, da Fonseca Gonçalves SR, da Silva Vidal L, Cabral-Neto J, Leitão AC. New insights on how nucleotide excision repair could remove DNA adducts induced by chemotherapeutic agents and psoralens plus UV-A (PUVA) in Escherichia coli cells. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2003; 544:143-57. [PMID: 14644316 DOI: 10.1016/j.mrrev.2003.06.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Chemotherapeutic agents such as mitomycin C or nitrogen mustards induce DNA inter-strand cross-links (ICL) and are highly toxic, thus constituting an useful tool to treat some human degenerative diseases, such as cancer. Additionally, psoralens plus UV-A (PUVA), which also induce ICL, find use in treatment of patients afflicted with psoriasis and vitiligo. The repair of DNA ICL generated by different molecules involves a number of multi-step DNA repair pathways. In bacteria, as in eukaryotic cells, if DNA ICL are not tolerated or repaired via nucleotide excision repair (NER), homologous recombination or translesion synthesis pathways, these DNA lesions may lead to mutations and cell death. Herein, we bring new insights to the role of Escherichia coli nucleotide excision repair genes uvrA, uvrB and uvrC in the repair of DNA damage induced by some chemotherapeutic agents and psoralen derivatives plus UV-A. These new observations point to a novel role for the UvrB protein, independent of its previously described role in the Uvr(A)BC complex, which could be specific for repair of monoadducts, intra-strand biadducts and/or ICL.
Collapse
Affiliation(s)
- Claudia Lage
- Laboratório de Radiobiologia Molecular, Instituto de Biofísica Carlos Chagas Filho, Bloco G, Centro de Ciencias da Saude, Universidade de Federal do Rio de Janeiro, 21949-900 Rio de Janeiro, RJ, Brazil
| | | | | | | | | | | | | |
Collapse
|
27
|
Marini F, Kim N, Schuffert A, Wood RD. POLN, a nuclear PolA family DNA polymerase homologous to the DNA cross-link sensitivity protein Mus308. J Biol Chem 2003; 278:32014-9. [PMID: 12794064 DOI: 10.1074/jbc.m305646200] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Drosophila Mus308 gene is unusual in encoding both a family A DNA polymerase domain and a DNA/RNA helicase domain. A mus308 mutation was shown to result in increased sensitivity to DNA cross-linking agents, leading to the hypothesis that Mus308 functions in the repair of DNA interstrand cross-links. Recently a mammalian ortholog of Mus308, POLQ, has been identified. We report here the identification, cloning, and characterization of POLN and its gene product, a new mammalian DNA polymerase also related to Mus308. The human cDNA encodes a protein of 900 amino acid residues. The region starting from residue 419 shares 33% identity (48% similarity) with the equivalent region of Escherichia coli DNA polymerase I. POLN is expressed in human cell lines with numerous alternatively spliced transcripts, and a full-length human coding region that comprises 24 exons within 160 kilobases of genomic DNA. Expression analysis by northern blotting and in situ hybridization showed highest expression of full-length POLN in human and mouse testis. POLN localized to the nucleus when expressed as a enhanced green fluorescent protein (GFP)-tagged protein in human fibroblasts. GFP-tagged recombinant POLN had DNA polymerase activity on activated calf thymus DNA and on a singly primed template.
Collapse
Affiliation(s)
- Federica Marini
- University of Pittsburgh Cancer Institute, Hillman Cancer Center, Research Pavilion, Pittsburgh, Pennsylvania 15213, USA
| | | | | | | |
Collapse
|
28
|
Nazimiec M, Lee CS, Tang YL, Ye X, Case R, Tang M. Sequence-dependent interactions of two forms of UvrC with DNA helix-stabilizing CC-1065-N3-adenine adducts. Biochemistry 2001; 40:11073-81. [PMID: 11551204 DOI: 10.1021/bi010953p] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The uvrA, uvrB, and uvrC genes of Escherichia coli control the initial steps of nucleotide excision repair. The uvrC gene product is involved in at least one of the dual incisions produced by the UvrABC complex. Using single-stranded (ss) DNA affinity chromatography, we have separated two forms of UvrC from both wild-type E. coli cells and overproducing cells. UvrCI elutes at 0.4 M KCl, and UvrCII elutes at 0.6 M KCl. In general, both forms, in the presence of UvrA and UvrB, actively incise UV-irradiated and CC-1065-modified DNA in the same fashion; i.e., they incise six to eight nucleotides 5' to and three to five nucleotides 3' to a photoproduct or a CC-1065-N3-adenine adduct. They produce different incisions, however, at a CC-1065-N3-adenine adduct in the sequence 5'-GATTACG- present in the MspI-BstNI 117 bp fragment of M13mp1. UvrABCI incises at both the 5' and 3' sides of the adduct (UvrABCI cut), while UvrABCII incises only at the 5' side (UvrABCII cut). Mixing UvrCI and UvrCII results in both UvrABCI and UvrABCII cuts, and the levels of these two types of cutting are proportional to the amount of UvrCI and UvrCII. DNase I footprints of the MspI-BstNI 117 bp DNA fragment containing a site-directed CC-1065-adenine adduct at the 5'-GATTACG- site show that UvrCII, but not UvrCI, binds to the adduct site. Furthermore, the pattern of DNase I footprints induced by UvrCII binding differs from the pattern of the footprints induced by UvrA, UvrAB, and UvrABCI binding. Interestingly, while the presence of unirradiated DNA enhances the efficiency of UvrABCII in incising UV-irradiated DNA, it does not enhance UvrABCII incision of the CC-1065-N3-adenine adduct formed at 5'-GATTACG-. These results show that two different forms of UvrC differ in DNA binding properties as well as incision modes at some kinds of DNA damage.
Collapse
Affiliation(s)
- M Nazimiec
- University of Texas M. D. Anderson Cancer Center, Science Park, Smithville, Texas 78957, USA
| | | | | | | | | | | |
Collapse
|
29
|
Zou Y, Luo C, Geacintov NE. Hierarchy of DNA damage recognition in Escherichia coli nucleotide excision repair. Biochemistry 2001; 40:2923-31. [PMID: 11258904 DOI: 10.1021/bi001504c] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
DNA damage recognition plays a central role in nucleotide excision repair (NER). Here we present evidence that in Escherichia coli NER, DNA damage is recognized through at least two separate but successive steps, with the first focused on distortions from the normal structure of the DNA double helix (initial recognition) and the second specifically recognizing the type of DNA base modifications (second recognition), after an initial local separation of the DNA strands. DNA substrates containing stereoisomeric (+)- or (-)-trans- or (+)- or (-)-cis-BPDE-N(2)-dG lesions in DNA duplexes of known conformations were incised by UvrABC nuclease with efficiencies varying by up to 3-fold. However, these stereoisomeric adducts, when positioned in an opened, single-stranded DNA region, were all incised with similar efficiencies and with enhanced rates (by factors of 1.4-6). These bubble substrates were also equally and efficiently incised by UvrBC nuclease without UvrA. Furthermore, removal of the Watson-Crick partner cytosine residue (leaving an abasic site) in the complementary strand opposite a (+)-cis-BPDE-N(2)-dG lesion led to a significant reduction in both the binding of UvrA and the incision efficiency of UvrABC by a factor of 5. These data suggest that E. coli NER features a dynamic two-stage recognition mechanism.
Collapse
Affiliation(s)
- Y Zou
- Sealy Center for Molecular Science and Department of Human Biological Chemistry & Genetics, University of Texas Medical Branch, Galveston, Texas 77555, USA.
| | | | | |
Collapse
|
30
|
Faruqi AF, Datta HJ, Carroll D, Seidman MM, Glazer PM. Triple-helix formation induces recombination in mammalian cells via a nucleotide excision repair-dependent pathway. Mol Cell Biol 2000; 20:990-1000. [PMID: 10629056 PMCID: PMC85216 DOI: 10.1128/mcb.20.3.990-1000.2000] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The ability to stimulate recombination in a site-specific manner in mammalian cells may provide a useful tool for gene knockout and a valuable strategy for gene therapy. We previously demonstrated that psoralen adducts targeted by triple-helix-forming oligonucleotides (TFOs) could induce recombination between tandem repeats of a supF reporter gene in a simian virus 40 vector in monkey COS cells. Based on work showing that triple helices, even in the absence of associated psoralen adducts, are able to provoke DNA repair and cause mutations, we asked whether intermolecular triplexes could stimulate recombination. Here, we report that triple-helix formation itself is capable of promoting recombination and that this effect is dependent on a functional nucleotide excision repair (NER) pathway. Transfection of COS cells carrying the dual supF vector with a purine-rich TFO, AG30, designed to bind as a third strand to a region between the two mutant supF genes yielded recombinants at a frequency of 0.37%, fivefold above background, whereas a scrambled sequence control oligomer was ineffective. In human cells deficient in the NER factor XPA, the ability of AG30 to induce recombination was eliminated, but it was restored in a corrected subline expressing the XPA cDNA. In comparison, the ability of triplex-directed psoralen cross-links to induce recombination was only partially reduced in XPA-deficient cells, suggesting that NER is not the only pathway that can metabolize targeted psoralen photoadducts into recombinagenic intermediates. Interestingly, the triplex-induced recombination was unaffected in cells deficient in DNA mismatch repair, challenging our previous model of a heteroduplex intermediate and supporting a model based on end joining. This work demonstrates that oligonucleotide-mediated triplex formation can be recombinagenic, providing the basis for a potential strategy to direct genome modification by using high-affinity DNA binding ligands.
Collapse
Affiliation(s)
- A F Faruqi
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, Connecticut 06520-8040, USA
| | | | | | | | | |
Collapse
|
31
|
Spielmann HP. Dynamics in psoralen-damaged DNA by 1H-detected natural abundance 13C NMR spectroscopy. Biochemistry 1998; 37:5426-38. [PMID: 9548924 DOI: 10.1021/bi972536b] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The dynamics of the DNA oligomer d(GCGTACGC)2 and the 4'-(hydroxymethyl)-4,5',8-trimethylpsoralen-DNA furanside monoadduct (MAf) of this oligomer have been determined from NMR relaxation parameters. Longitudinal and transverse 13C relaxation rates and heteronuclear NOE relaxation data have been measured at natural abundance and have been analyzed in the context of the Lipari and Szabo model-free formalism. The generalized order parameters for methine carbons in the octamer sequence d(GCGTACGC)2 (UM) are relatively and uniformly high for the entire molecule. The generalized order parameters for methine carbons in the MAf are significantly lower for the deoxyribose bearing the damaged thymidine base and for the bases flanking the lesion on the undamaged strand, indicating additional conformational flexibility due to the lesion. The order parameters for the bases on the damaged strand flanking the lesion remain high. Analysis of the relaxation data indicates substantial chemical exchange for the adenosine residues in the UM TpA site, and this chemical exchange is quenched upon MAf formation. These data are discussed in terms of a model for DNA damage recognition by the nucleotide excision repair system.
Collapse
Affiliation(s)
- H P Spielmann
- Department of Biochemistry, University of Kentucky, Lexington 40536-0084, USA.
| |
Collapse
|
32
|
Zhang G, Deng E, Baugh L, Kushner SR. Identification and characterization of Escherichia coli DNA helicase II mutants that exhibit increased unwinding efficiency. J Bacteriol 1998; 180:377-87. [PMID: 9440527 PMCID: PMC106893 DOI: 10.1128/jb.180.2.377-387.1998] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Using a combination of both ethyl methanesulfonate and site-directed mutagenesis, we have identified a region in DNA helicase II (UvrD) from Escherichia coli that is required for biological function but lies outside of any of the seven conserved motifs (T. C. Hodgman, Nature 333:22-23, 1988) associated with the superfamily of proteins of which it is a member. Located between amino acids 403 and 409, alterations in the amino acid sequence DDAAFER lead to both temperature-sensitive and dominant uvrD mutations. The uvrD300 (A406T) and uvrD301 (A406V) alleles produce UV sensitivity at 44 degrees C but do not affect sensitivity to methyl methanesulfonate (MMS). In contrast, the uvrD303 mutation (D403AD404A) causes increased sensitivity to both UV and MMS and is dominant to uvrD+ when present at six to eight copies per cell. Several of the alleles demonstrated a strong antimutator phenotype. In addition, conjugal recombination is reduced 10-fold in uvrD303 strains. Of all of the amino acid substitutions tested, only an alanine-to-serine change at position 406 (uvrD302) was neutral. To determine the biochemical basis for the observed phenotypes, we overexpressed and purified the UvrD303 protein from a uvrD delta294 deletion background and characterized its enzymatic activities. The highly unusual UvrD303 protein exhibits a higher specific activity for ATP hydrolysis than the wild-type control, while its Km for ATP binding remains unchanged. More importantly, the UvrD303 protein unwinds partial duplex DNA up to 10 times more efficiently than wild-type UvrD. The DNA binding affinities of the two proteins appear comparable. Based on these results, we propose that the region located between amino acids 403 and 409 serves to regulate the unwinding activity of DNA helicase II to provide the proper balance between speed and overall effectiveness in the various DNA repair systems in which the protein participates.
Collapse
Affiliation(s)
- G Zhang
- Department of Genetics, University of Georgia, Athens 30602, USA
| | | | | | | |
Collapse
|
33
|
Chen ZP, Malapetsa A, McQuillan A, Marcantonio D, Bello V, Mohr G, Remack J, Brent TP, Panasci LC. Evidence for nucleotide excision repair as a modifying factor of O6-methylguanine-DNA methyltransferase-mediated innate chloroethylnitrosourea resistance in human tumor cell lines. Mol Pharmacol 1997; 52:815-20. [PMID: 9351972 DOI: 10.1124/mol.52.5.815] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We examined the O6-methylguanine-DNA methyltransferase (MGMT) protein as well as MGMT activity levels and the excision repair cross-complementing rodent repair deficiency gene, ERCC2 (XPD), protein levels in 14 human tumor cell lines not selected for chloroethylnitrosourea (CENU) resistance. These results were compared with 1,3-bis-(2-chloroethyl)-1-nitrosourea (BCNU) cytotoxicity and UV light sensitivity. MGMT protein correlated significantly with MGMT activity (r = 0.9497, p = 0.0001). There was no significant linear correlation between BCNU cytotoxicity and MGMT content as determined by both Western analysis (r = 0.139, p = 0. 6348) and activity assay (r = 0.131, p = 0.6515). However, MGMT-rich cell lines were found to be more resistant than MGMT-poor cell lines to BCNU (t = 2.2375, p = 0.0225) but not to UV (t = 1.1734, p = 0.1317). Furthermore, the most BCNU-sensitive cell lines were all MGMT-poor. UV sensitivity was significantly correlated to BCNU cytotoxicity (r = 0.858, p = 0.0001). Significant correlations were found between ERCC2 protein levels and BCNU cytotoxicity (r = 0.786, p = 0.0009) or UV sensitivity (r = 0.874, p = 0.0001). Our results confirm that MGMT plays an important role in CENU resistance, but not in UV resistance. The correlation of UV sensitivity with BCNU cytotoxicity suggests that nucleotide excision repair is an important modifying factor of MGMT-mediated innate CENU resistance in human tumor cell lines, especially in highly resistant cell lines. ERCC2 may be implicated in this process.
Collapse
Affiliation(s)
- Z P Chen
- Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital, 3755 Côte Ste. Catherine, Montreal, Quebec, Canada H3T 1E2
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Calsou P, Sage E, Moustacchi E, Salles B. Preferential repair incision of cross-links versus monoadducts in psoralen-damaged plasmid DNA by human cell-free extracts. Biochemistry 1996; 35:14963-9. [PMID: 8942662 DOI: 10.1021/bi9607261] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Upon UVA irradiation psoralens covalently bind to DNA as monoadduct and interstrand crosslink. Psoralen photoadducts are processed via an excision repair reaction that has been reproduced in vitro with transcriptionnally active cell-free extracts. A derived in vitro assay that allows direct quantification of the incised sites has been set up and used to compare the efficiency of the incision reaction on monoadducts and interstrand cross-links. The incision reaction was performed with HeLa cell-free extracts on angelicin or 8-methoxypsoralen (8-MOP)-modified plasmid DNA substrates carrying known amounts of mono- and biadducts, within various relative ratios. In the case of 8-MOP modified plasmids consisting in a mixture of mono- and biadducts on the same DNA molecule, the incision signal was mainly due to the presence of interstrand cross-links. The extent of incision was linear with the number of cross-links up to about 4 cross-links per plasmid and then reached a plateau. The sensitivity of incision defined as the increase of incision by 2-fold over the background level corresponded to about 1 cross-link per plasmid molecule, and about 7% of the total cross-links were repaired under our assay conditions. The incision activity on angelicin monoadducts yielded only 27% when compared to that on 8-MOP cross-links. Furthermore, 8-MOP cross-links lowered the incision extent of angelicin monoadducts when the two photoadducts were present on distinct plasmid DNA molecules. These data are in line with the more rapid excision of psoralen interstrand cross-links vs monoadducts observed in vivo.
Collapse
Affiliation(s)
- P Calsou
- Institut de Pharmacologie et Biologie Structurale, UPR 9062 CNRS, Toulouse, France
| | | | | | | |
Collapse
|
35
|
Kato R, Yamamoto N, Kito K, Kuramitsu S. ATPase activity of UvrB protein form Thermus thermophilus HB8 and its interaction with DNA. J Biol Chem 1996; 271:9612-8. [PMID: 8621636 DOI: 10.1074/jbc.271.16.9612] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Many living organisms remove wide range of DNA lesions from their genomes by the nucleotide excision repair system. The uvrB gene, which plays an essential role in the prokaryotic excision repair, was cloned from an extremely thermophilic bacterium, Thermus thermophilus HB8. Its nucleotide sequence was determined, and the deduced amino acid sequence showed it possessed a helicase motif, including a nucleotide-binding consensus sequence (Walker's A-type motif), which was also conserved in other UvrB proteins. The prokaryotic UvrB proteins and eukaryotic DNA repair helicases (Rad3 and XP-D) were classified into different groups by molecular phylogenetic analysis. The T. thermophilus uvrB gene product was overproduced in Escherichia coli and purified to apparent homogeneity. The purified T. thermophilus UvrB protein was stable up to 80 degrees C at neutral pH. T. thermophilus UvrB protein showed ATPase activity at its physiological temperature, whereas the E. coli UvrB protein alone has not been shown to exhibit detectable ATPase activity. The values of K(m) and k(cat) for the ATPase activity were 4.2 mM and 0.32 s-1 without DNA, and 4.0 mM and 0.46 s-1 with single-stranded DNA, respectively. This suggests that T. thermophilus UvrB protein could interact with single-stranded DNA in the absence of UvrA protein.
Collapse
Affiliation(s)
- R Kato
- Department of Biology, Faculty of Science, Osaka University, Osaka, Japan
| | | | | | | |
Collapse
|
36
|
Comparative analysis of binding of human damaged DNA-binding protein (XPE) and Escherichia coli damage recognition protein (UvrA) to the major ultraviolet photoproducts: T[c,s]T, T[t,s]T, T[6-4]T, and T[Dewar]T. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(19)36924-8] [Citation(s) in RCA: 168] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
37
|
Washburn BK, Kushner SR. Characterization of DNA helicase II from a uvrD252 mutant of Escherichia coli. J Bacteriol 1993; 175:341-50. [PMID: 8419285 PMCID: PMC196147 DOI: 10.1128/jb.175.2.341-350.1993] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The loss of DNA helicase II (UvrD) in Escherichia coli results in sensitivity to UV light and increased levels of spontaneous mutagenesis. While the effects of various uvrD alleles have been analyzed in vivo, the proteins produced by these alleles have not been examined in any detail. We have cloned one of these alleles, uvrD252, and determined the site of the mutation conferring the phenotype. In addition, the protein it encodes has been purified to homogeneity and characterized in vitro. The mutation responsible for the phenotype was identified as a glycine-to-aspartic-acid change in the putative ATP-binding domain. In comparison to wild-type DNA helicase II, the UvrD252 enzyme exhibited reduced levels of ATPase activity and a large increase in the Km for ATP. The ability of UvrD252 to unwind DNA containing single-stranded regions, as well as DNA containing only nicks, was reduced in comparison to that of the wild-type enzyme. Possible interpretations of these results in relation to the phenotypes of the uvrD252 mutant are discussed. This represents the first detailed analysis of the biochemical properties of a mutant DNA helicase II protein.
Collapse
Affiliation(s)
- B K Washburn
- Department of Genetics, University of Georgia, Athens 30602
| | | |
Collapse
|
38
|
A comparison of the rates of reaction and function of UVRB in UVRABC- and UVRAB-mediated anthramycin-N2-guanine-DNA repair. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)35823-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
39
|
Lin J, Phillips A, Hearst J, Sancar A. Active site of (A)BC excinuclease. II. Binding, bending, and catalysis mutants of UvrB reveal a direct role in 3‘ and an indirect role in 5‘ incision. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)37098-x] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
40
|
Shi Q, Thresher R, Sancar A, Griffith J. Electron microscopic study of (A)BC excinuclease. DNA is sharply bent in the UvrB-DNA complex. J Mol Biol 1992; 226:425-32. [PMID: 1386387 DOI: 10.1016/0022-2836(92)90957-l] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Nucleotide excision repair in Escherichia coli is initiated by the UvrA, UvrB and UvrC proteins. UvrA is the damage recognition subunit, makes an A2B1 complex with the targeting subunit UvrB, and the complex binds to the lesion site; UvrA dissociates leaving behind a very stable UvrB-DNA complex that is recognized by the trigger subunit, UvrC, and the ensuing UvrB-UvrC heterodimer makes two incisions, one on either side of the lesion. Using electron microscopy, we investigated the structures of these early A, A-B intermediates on DNA containing ultraviolet light photoproducts. UvrA, which is known to bind to DNA as a dimer and produce a DNase I footprint of 33 base-pairs does not change the trajectory of DNA appreciably. The A2B1 complex clearly shows a bipartite structure and its effect on the trajectory of the DNA was not consistently straight or kinked. In contrast, the DNA in the preincision UvrB-DNA complex appears to be severely kinked; 43% of the molecules are bent by 80 degrees or more, with an average bending angle of 127 degrees. It appears that protein-induced bending is an important step on the pathway leading to excision of the damaged nucleotide by (A)BC excinuclease.
Collapse
Affiliation(s)
- Q Shi
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill 27599
| | | | | | | |
Collapse
|
41
|
Orren DK, Selby CP, Hearst JE, Sancar A. Post-incision steps of nucleotide excision repair in Escherichia coli. Disassembly of the UvrBC-DNA complex by helicase II and DNA polymerase I. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)48352-4] [Citation(s) in RCA: 108] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
42
|
Munn M, Rupp W. Interaction of the UvrABC endonuclease with DNA containing a psoralen monoadduct or cross-link. Differential effects of superhelical density and comparison of preincision complexes. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)54293-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
43
|
Myles GM, Hearst JE, Sancar A. Site-specific mutagenesis of conserved residues within Walker A and B sequences of Escherichia coli UvrA protein. Biochemistry 1991; 30:3824-34. [PMID: 1826850 DOI: 10.1021/bi00230a004] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
UvrA is the ATPase subunit of the DNA repair enzyme (A)BC excinuclease. The amino acid sequence of this protein has revealed, in addition to two zinc fingers, three pairs of nucleotide binding motifs each consisting of a Walker A and B sequence. We have conducted site-specific mutagenesis, ATPase kinetic analyses, and nucleotide binding equilibrium measurements to correlate these sequence motifs with activity. Replacement of the invariant Lys by Ala in the putative A sequences indicated that K37 and K646 but not K353 are involved in ATP hydrolysis. In contrast, substitution of the invariant Asp by Asn in the B sequences at positions D238, D513, or D857 had little effect on the in vivo activity of the protein. Nucleotide binding studies revealed a stoichiometry of 0.5 ADP/UvrA monomer while kinetic measurements on wild-type and mutant proteins showed that the active form of UvrA is a dimer with 2 catalytic sites which interact in a positive cooperative manner in the presence of ADP; mutagenesis of K37 but not of K646 attenuated this cooperativity. Loss of ATPase activity was about 75% in the K37A, 86% in the K646A mutant, and 95% in the K37A-K646A double mutant. These amino acid substitutions had only a marginal effect on the specific binding of UvrA to damaged DNA but drastically reduced its ability to deliver UvrB to the damage site. We find that the deficient UvrB loading activity of these mutant UvrA proteins results from their inability to associate with UvrB in the form of (UvrA)2(UvrB)1 complexes. We conclude that UvrA forms a dimer with two ATPase domains involving K37 and K646 and that the work performed by ATP hydrolysis is the delivery of UvrB to the damage site on DNA.
Collapse
Affiliation(s)
- G M Myles
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill 27599-7260
| | | | | |
Collapse
|
44
|
Uvr excision repair protein complex of Escherichia coli binds to the convex side of a cisplatin-induced kink in the DNA. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(20)89491-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
45
|
|
46
|
Hoeijmakers JH, Eker AP, Wood RD, Robins P. Use of in vivo and in vitro assays for the characterization of mammalian excision repair and isolation of repair proteins. Mutat Res 1990; 236:223-38. [PMID: 2204826 DOI: 10.1016/0921-8777(90)90007-r] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Elucidation of the molecular mechanism of mammalian nucleotide excision repair requires the availability of purified proteins, DNA substrates with defined lesions and suitable repair assays. Repair assays introduced in recent years vary from testing individual steps and successions of steps in vitro to systems that closely reflect the entire process in vivo. In the first part of this review, an in vivo microinjection system is discussed. The second part of the article reviews an in vitro system for study of repair synthesis promoted by cell extracts. Both systems can be utilized as assays during the purification of protein factors that complement repair-defective xeroderma pigmentosum cells. The effect of purified repair proteins from other organisms on mammalian repair is also considered.
Collapse
Affiliation(s)
- J H Hoeijmakers
- Department of Cell Biology and Genetics, Erasmus University, Rotterdam, The Netherlands
| | | | | | | |
Collapse
|
47
|
Abstract
(A)BC excinuclease is the enzymatic activity resulting from the mixture of E. coli UvrA, UvrB and UvrC proteins with damaged DNA. This is a functional definition as new evidence suggests that the three proteins never associate in a ternary complex. The UvrA subunit associates with the UvrB subunit in the form of an A2B1 complex which, guided by UvrA's affinity for damaged DNA binds to a lesion in DNA and delivers the UvrB subunit to the damaged site. The UvrB-damaged DNA complex is extremely stable (t1/2 congruent to 100 min). The UvrC subunit, which has no specific affinity for damaged DNA, recognizes the UvrB-DNA complex with high specificity and the protein complex consisting of UvrB and UvrC proteins makes two incisions, the 8th phosphodiester bond 5' and the 5th phosphodiester bond 3' to the damaged nucleotide. (A)BC excinuclease recognizes DNA damage ranging from AP sites and thymine glycols to pyrimidine dimers, and the adducts of psoralen, cisplatinum, mitomycin C, 4-nitroquinoline oxide and interstrand crosslinks.
Collapse
Affiliation(s)
- C P Selby
- University of North Carolina, School of Medicine, Department of Biochemistry, Chapel Hill 27599
| | | |
Collapse
|
48
|
Sibghat-Ullah, Sancar A. Substrate overlap and functional competition between human nucleotide excision repair and Escherichia coli photolyase and (a)BC excision nuclease. Biochemistry 1990; 29:5711-8. [PMID: 2200513 DOI: 10.1021/bi00476a011] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Human cell free extract prepared by the method of Manley et al. (1980) carries out repair synthesis on UV-irradiated DNA. Removal of pyrimidine dimers by photoreactivation with DNA photolyase reduces repair synthesis by about 50%. With excess enzyme in the reaction mixture photolyase reduced the repair signal by the same amount even in the absence of photoreactivating light, presumably by binding to pyrimidine dimers and interfering with the binding of human damage recognition protein. Similarly, the UvrB subunit of Escherichia coli (A)BC excinuclease when loaded onto UV-irradiated or psoralen-adducted DNA inhibited repair synthesis by cell-free extract by 75-80%. The opposite was true also as HeLa cell free extract specifically inhibited the photorepair of a thymine dimer by DNA photolyase and its removal by (A)BC excinuclease. Cell-free extracts from xeroderma pigmentosum (XP) complementation groups A and C were equally effective in blocking the E. coli repair proteins, while extracts from complementation groups D and E were ineffective in blocking the E. coli enzyme. These results suggest that XP-D and XP-E cells are defective in the damage recognition subunit(s) of human excision nuclease.
Collapse
Affiliation(s)
- Sibghat-Ullah
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill 27599
| | | |
Collapse
|
49
|
Pu W, Kahn R, Munn M, Rupp W. UvrABC incision of N-methylmitomycin A-DNA monoadducts and cross-links. J Biol Chem 1989. [DOI: 10.1016/s0021-9258(19)47119-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
50
|
|