1
|
Galambos N, Vincent-Monegat C, Vallier A, Parisot N, Heddi A, Zaidman-Rémy A. Cereal weevils' antimicrobial peptides: at the crosstalk between development, endosymbiosis and immune response. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230062. [PMID: 38497254 PMCID: PMC10945404 DOI: 10.1098/rstb.2023.0062] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/12/2023] [Indexed: 03/19/2024] Open
Abstract
Interactions between animals and microbes are ubiquitous in nature and strongly impact animal physiology. These interactions are shaped by the host immune system, which responds to infections and contributes to tailor the associations with beneficial microorganisms. In many insects, beneficial symbiotic associations not only include gut commensals, but also intracellular bacteria, or endosymbionts. Endosymbionts are housed within specialized host cells, the bacteriocytes, and are transmitted vertically across host generations. Host-endosymbiont co-evolution shapes the endosymbiont genome and host immune system, which not only fights against microbial intruders, but also ensures the preservation of endosymbionts and the control of their load and location. The cereal weevil Sitophilus spp. is a remarkable model in which to study the evolutionary adaptation of the immune system to endosymbiosis owing to its binary association with a unique, relatively recently acquired nutritional endosymbiont, Sodalis pierantonius. This Gram-negative bacterium has not experienced the genome size shrinkage observed in long-term endosymbioses and has retained immunogenicity. We focus here on the sixteen antimicrobial peptides (AMPs) identified in the Sitophilus oryzae genome and their expression patterns in different tissues, along host development or upon immune challenges, to address their potential functions in the defensive response and endosymbiosis homeostasis along the insect life cycle. This article is part of the theme issue 'Sculpting the microbiome: how host factors determine and respond to microbial colonization'.
Collapse
Affiliation(s)
- N. Galambos
- INSA Lyon, INRAE, BF2I, UMR203, 69621 Villeurbanne, France
| | | | - A. Vallier
- INRAE, INSA Lyon, BF2I, UMR203, 69621 Villeurbanne, France
| | - N. Parisot
- INSA Lyon, INRAE, BF2I, UMR203, 69621 Villeurbanne, France
| | - A. Heddi
- INSA Lyon, INRAE, BF2I, UMR203, 69621 Villeurbanne, France
| | - A. Zaidman-Rémy
- INSA Lyon, INRAE, BF2I, UMR203, 69621 Villeurbanne, France
- Institut universitaire de France (IUF), 75005 Paris, France
| |
Collapse
|
2
|
Wang B, Wei PW, Yao Y, Song CR, Wang X, Yang YX, Long YH, Yang SW, Hu Y, Gai ZC, Wu JW, Liu HM. Functional and expression characteristics identification of Phormicins, novel AMPs from Musca domestica with anti-MRSA biofilm activity, in response to different stimuli. Int J Biol Macromol 2022; 209:299-314. [PMID: 35381282 DOI: 10.1016/j.ijbiomac.2022.03.204] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 12/26/2022]
Abstract
Antibiotic-resistant bacteria (including MRSA) in the clinic pose a growing threat to public health, and antimicrobial peptides (AMPs) have great potential as efficient treatment alternatives. Houseflies have evolved over long periods in complex, dirty environments, developing a special immune system to overcome challenges in harmful environments. AMPs are key innate immune molecules. Herein, two differentially expressed AMPs, Phormicins A and B, were identified by screening transcriptomic changes in response to microbial stimulation. Structural mimic assays indicated that these AMPs exhibited functional divergence due to their C-terminal features. Expression analysis showed that they had different expression patterns. Phormicin B had higher constitutive expression than Phormicin A. However, Phormicin B was sharply downregulated, whereas Phormicin A was highly upregulated, after microbial stimulation. The MIC, MBC and time-growth curves showed the antibacterial spectrum of these peptides. Crystal violet staining and SEM showed that Phormicin D inhibited MRSA biofilm formation. TEM suggested that Phormicin D disrupted the MRSA cell membrane. Furthermore, Phormicin D inhibited biofilm formation by downregulating the expression of biofilm-related genes, including altE and embp. Therefore, housefly Phormicins were functionally characterized as having differential expression patterns and antibacterial & antibiofilm activities. This study provides a new potential peptide for clinical MRSA therapy.
Collapse
Affiliation(s)
- Bing Wang
- Engineering Research Center of Medical Biotechnology, Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Immune Cells and Antibody Engineering Research Center of Guizhou Province, Guizhou Medical University, Guiyang 550025, Guizhou, China; School of Biology and Engineering, Guizhou Medical University, Guiyang, 550025, Guizhou, China; Key Laboratory of Microbiology and Parasitology of Education Department of Guizhou, Guizhou Medical University, Guiyang 550025, Guizhou, China; Key Laboratory of Environmental Pollution Monitoring and Disease Control, China Ministry of Education (Guizhou Medical University), Guiyang 550025, Guizhou, China.
| | - Peng-Wei Wei
- Engineering Research Center of Medical Biotechnology, Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Immune Cells and Antibody Engineering Research Center of Guizhou Province, Guizhou Medical University, Guiyang 550025, Guizhou, China
| | - Yang Yao
- Engineering Research Center of Medical Biotechnology, Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Immune Cells and Antibody Engineering Research Center of Guizhou Province, Guizhou Medical University, Guiyang 550025, Guizhou, China
| | - Chao-Rong Song
- Engineering Research Center of Medical Biotechnology, Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Immune Cells and Antibody Engineering Research Center of Guizhou Province, Guizhou Medical University, Guiyang 550025, Guizhou, China; School of Basic Medical Sciences, Guizhou Medical University, Guiyang 550025, Guizhou, China
| | - Xu Wang
- Engineering Research Center of Medical Biotechnology, Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Immune Cells and Antibody Engineering Research Center of Guizhou Province, Guizhou Medical University, Guiyang 550025, Guizhou, China; School of Biology and Engineering, Guizhou Medical University, Guiyang, 550025, Guizhou, China
| | - Yong-Xin Yang
- Engineering Research Center of Medical Biotechnology, Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Immune Cells and Antibody Engineering Research Center of Guizhou Province, Guizhou Medical University, Guiyang 550025, Guizhou, China; School of Biology and Engineering, Guizhou Medical University, Guiyang, 550025, Guizhou, China
| | - Yao-Hang Long
- Engineering Research Center of Medical Biotechnology, Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Immune Cells and Antibody Engineering Research Center of Guizhou Province, Guizhou Medical University, Guiyang 550025, Guizhou, China; School of Biology and Engineering, Guizhou Medical University, Guiyang, 550025, Guizhou, China
| | - Su-Wen Yang
- Engineering Research Center of Medical Biotechnology, Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Immune Cells and Antibody Engineering Research Center of Guizhou Province, Guizhou Medical University, Guiyang 550025, Guizhou, China
| | - Yong Hu
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, China Ministry of Education (Guizhou Medical University), Guiyang 550025, Guizhou, China
| | - Zhong-Chao Gai
- Shaanxi University of Science and Technology, Xiaan, Shaanxi 710021, China.
| | - Jian-Wei Wu
- School of Basic Medical Sciences, Guizhou Medical University, Guiyang 550025, Guizhou, China.
| | - Hong-Mei Liu
- Engineering Research Center of Medical Biotechnology, Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Immune Cells and Antibody Engineering Research Center of Guizhou Province, Guizhou Medical University, Guiyang 550025, Guizhou, China; School of Biology and Engineering, Guizhou Medical University, Guiyang, 550025, Guizhou, China; School of Basic Medical Sciences, Guizhou Medical University, Guiyang 550025, Guizhou, China.
| |
Collapse
|
3
|
Identification and Functional Analysis of a Defensin CcDef2 from Coridius chinensis. Int J Mol Sci 2022; 23:ijms23052789. [PMID: 35269935 PMCID: PMC8911331 DOI: 10.3390/ijms23052789] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/23/2022] [Accepted: 02/27/2022] [Indexed: 02/05/2023] Open
Abstract
Coridius chinensis belongs to Dinidoridae, Hemiptera. Previous studies have indicated that C. chinensis contains abundant polypeptides with antibacterial and anticancer activities. Antimicrobial peptides (AMPs), as endogenous peptides with immune function, play an indispensable role in the process of biological development and immunity. AMPs have become one of the most potential substitutes for antibiotics due to their small molecular weight and broad-spectrum antimicrobial activity. In this study, a defensin CcDef2 from C. chinensis was characterized based on bioinformatics and functional analyses. The mature peptide of CcDef2 is a typical cationic peptide composed of 43 amino acid residues with five cations, and contains three intramolecular disulfide bonds and a typical cysteine-stabilized αβ motif in defensins. Phylogenetic analysis showed that CcDef2 belongs to the insect defensin family. Analysis of gene expression patterns showed that CcDef2 was expressed throughout developmental stages of C. chinensis with high levels at the nymphal stage and in adult tissues tested with the highest level in the fat body. In addition, the CcDef2 expression was significantly upregulated in adults infected by bacteria. After expressed in Escherichia coli BL21(DE3) and renatured, the recombinant CcDef2 showed a significant antibacterial effect on three kinds of Gram-positive bacteria. These results indicate that CcDef2 is an excellent antibacterial peptide and a highly effective immune effector in the innate immunity of C. chinensis. This study provides a foundation for further understanding the function of CcDef2 and developing new antimicrobial drugs.
Collapse
|
4
|
Liu SH, Li HF, Yang Y, Wei D, Jiang HB, Dou W, Yuan GR, Wang JJ. Antimicrobial peptide gene BdPho responds to peptidoglycan infection and mating stimulation in oriental fruit fly, Bactrocera dorsalis (Hendel). AMB Express 2018; 8:5. [PMID: 29327267 PMCID: PMC5764898 DOI: 10.1186/s13568-017-0533-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 12/29/2017] [Indexed: 11/10/2022] Open
Abstract
Phormicins belong to defensin family, which are important antimicrobial peptides (AMPs) in insects. These AMPs are inducible upon challenging by immune triggers. In the present study, we identified the cDNA of a phormicin gene (BdPho) in the oriental fruit fly, Bactrocera dorsalis (Hendel), a ruinous agricultural pest causing great economic losses to fruits and vegetables. The cDNA of BdPho contains a 282 bp open reading frame encoding 93 amino acid residues, and the predicted molecular weight and isoelectric point of BdPho peptide were 9.83 kDa and 7.54, respectively. Quantitative real-time PCR analyses showed that the transcription level of BdPho was the highest in adult during different developmental stages and was the highest in abdomen among adult tagmata. Moreover, BdPho was highly expressed in fat body among different tissues, both in female and male adult. The mRNA level of BdPho was significantly up-regulated to 7.46- and 14.53-fold at 3 and 6 h after the insects were challenged with peptidoglycans from Escherichia coli (PGN-EB), respectively, suggesting its antimicrobial activity against Gram-negative microorganisms. Furthermore, the expression level of BdPho was significantly up-regulated to 3.83-fold after mating, suggesting that female adults might enhance their immunity by up-regulating the expression level of BdPho during mating. These results firstly describe the basic properties of the phormicin gene from B. dorsalis, and lay the foundation for investigating functional properties of AMPs and exploring the molecular mechanisms in the immune system.
Collapse
|
5
|
Koehbach J. Structure-Activity Relationships of Insect Defensins. Front Chem 2017; 5:45. [PMID: 28748179 PMCID: PMC5506212 DOI: 10.3389/fchem.2017.00045] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 06/12/2017] [Indexed: 11/13/2022] Open
Abstract
Insects make up the largest and most diverse group of organisms on earth with several million species to exist in total. Considering the sheer number of insect species and the vast variety of ways they interact with their environment through chemistry, it is clear that they have significant potential as a source of new lead molecules. They have adapted to a range of ecological habitats and exhibit a symbiotic lifestyle with various microbes such as bacteria and fungi. Accordingly, numerous antimicrobial compounds have been identified including for example defensin peptides. Insect defensins were found to have broad-spectrum activity against various gram-positive/negative bacteria as well as fungi. They exhibit a unique structural topology involving the complex arrangement of three disulfide bonds as well as an alpha helix and beta sheets, which is known as cysteine-stabilized αβ motif. Their stability and amenability to peptide engineering make them promising candidates for the development of novel antibiotics lead molecules. This review highlights the current knowledge regarding the structure-activity relationships of insect defensin peptides and provides basis for future studies focusing on the rational design of novel cysteine-rich antimicrobial peptides.
Collapse
Affiliation(s)
- Johannes Koehbach
- School of Biomedical Sciences, University of QueenslandSt. Lucia, QLD, Australia
| |
Collapse
|
6
|
Liu SH, Wei D, Yuan GR, Jiang HB, Dou W, Wang JJ. Antimicrobial peptide gene cecropin-2 and defensin respond to peptidoglycan infection in the female adult of oriental fruit fly, Bactrocera dorsalis (Hendel). Comp Biochem Physiol B Biochem Mol Biol 2017; 206:1-7. [DOI: 10.1016/j.cbpb.2017.01.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 01/06/2017] [Accepted: 01/10/2017] [Indexed: 12/31/2022]
|
7
|
Manabe T, Kawasaki K. D-form KLKLLLLLKLK-NH 2 peptide exerts higher antimicrobial properties than its L-form counterpart via an association with bacterial cell wall components. Sci Rep 2017; 7:43384. [PMID: 28262682 PMCID: PMC5338256 DOI: 10.1038/srep43384] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 01/20/2017] [Indexed: 11/10/2022] Open
Abstract
The antimicrobial peptide KLKLLLLLKLK-NH2 was developed based on sapesin B, and synthesized using D-amino acids. Biochemical properties of the D-form and L-form KLKLLLLLKLK-NH2 peptides were compared. In order to limit the effects due to bacterial resistance to proteolysis, antimicrobial activities of the peptides were evaluated after short-term exposure to bacteria. D-form KLKLLLLLKLK-NH2 exhibited higher antimicrobial activities than L-form KLKLLLLLKLK-NH2 against bacteria, including Staphylococcus aureus and Escherichia coli. In contrast, both the D-form and L-form of other antimicrobial peptides, including Mastoparan M and Temporin A, exhibited similar antimicrobial activities. Both the D-form KLKLLLLLKLK-NH2 and L-form KLKLLLLLKLK-NH2 peptides preferentially disrupted S. aureus-mimetic liposomes over mammalian-mimetic liposomes. Furthermore, the D-form KLKLLLLLKLK-NH2 increased the membrane permeability of S. aureus more than the L-form KLKLLLLLKLK-NH2. Thus suggesting that the enhanced antimicrobial activity of the D-form was likely due to its interaction with bacterial cell wall components. S. aureus peptidoglycan preferentially inhibited the antimicrobial activity of the D-form KLKLLLLLKLK-NH2 relative to the L-form. Furthermore, the D-form KLKLLLLLKLK-NH2 showed higher affinity for S. aureus peptidoglycan than the L-form. Taken together, these results indicate that the D-form KLKLLLLLKLK-NH2 peptide has higher antimicrobial activity than the L-form via a specific association with bacterial cell wall components, including peptidoglycan.
Collapse
Affiliation(s)
- Takayuki Manabe
- Faculty of Pharmaceutical Sciences, Doshisha Women's College, Kyotanabe, Kyoto 610-0395, Japan
| | - Kiyoshi Kawasaki
- Faculty of Pharmaceutical Sciences, Doshisha Women's College, Kyotanabe, Kyoto 610-0395, Japan
| |
Collapse
|
8
|
Tarr DEK. Establishing a reference array for the CS-αβ superfamily of defensive peptides. BMC Res Notes 2016; 9:490. [PMID: 27863510 PMCID: PMC5116183 DOI: 10.1186/s13104-016-2291-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 11/09/2016] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND "Invertebrate defensins" belong to the cysteine-stabilized alpha-beta (CS-αβ), also known as the scorpion toxin-like, superfamily. Some other peptides belonging to this superfamily of defensive peptides are indistinguishable from "defensins," but have been assigned other names, making it unclear what, if any, criteria must be met to qualify as an "invertebrate defensin." In addition, there are other groups of defensins in invertebrates and vertebrates that are considered to be evolutionarily unrelated to those in the CS-αβ superfamily. This complicates analyses and discussions of this peptide group. This paper investigates the criteria for classifying a peptide as an invertebrate defensin, suggests a reference cysteine array that may be helpful in discussing peptides in this superfamily, and proposes that the superfamily (rather than the name "defensin") is the appropriate context for studying the evolution of invertebrate defensins with the CS-αβ fold. METHODS CS-αβ superfamily sequences were identified from previous literature and BLAST searches of public databases. Sequences were retrieved from databases, and the relevant motifs were identified and used to create a conceptual alignment to a ten-cysteine reference array. Amino acid sequences were aligned in MEGA6 with manual adjustments to ensure accurate alignment of cysteines. Phylogenetic analyses were performed in MEGA6 (maximum likelihood) and MrBayes (Bayesian). RESULTS Across invertebrate taxa, the term "defensin" is not consistently applied based on number of cysteines, cysteine spacing pattern, spectrum of antimicrobial activity, or phylogenetic relationship. The analyses failed to reveal any criteria that unify "invertebrate defensins" and differentiate them from other defensive peptides in the CS-αβ superfamily. Sequences from various groups within the CS-αβ superfamily of defensive peptides can be described by a ten-cysteine reference array that aligns their defining structural motifs. CONCLUSIONS The proposed ten-cysteine reference array can be used in addition to current nomenclature to compare sequences in the CS-αβ superfamily and clarify their features relative to one another. This will facilitate analysis and discussion of "invertebrate defensins" in an appropriate evolutionary context, rather than relying on nomenclature.
Collapse
Affiliation(s)
- D Ellen K Tarr
- Department of Microbiology and Immunology, Arizona College of Osteopathic Medicine, Midwestern University, Glendale, AZ, USA.
| |
Collapse
|
9
|
Faye I, Lindberg BG. Towards a paradigm shift in innate immunity-seminal work by Hans G. Boman and co-workers. Philos Trans R Soc Lond B Biol Sci 2016; 371:20150303. [PMID: 27160604 PMCID: PMC4874399 DOI: 10.1098/rstb.2015.0303] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2016] [Indexed: 11/12/2022] Open
Abstract
Four decades ago, immunological research was dominated by the field of lymphoid biology. It was commonly accepted that multicellular eukaryotes defend themselves through phagocytosis. The lack of lymphoid cells in insects and other simpler animals, however, led to the common notion that they might simply lack the capacity defend themselves with humoral factors. This view was challenged by microbiologist Hans G. Boman and co-workers in a series of publications that led to the advent of antimicrobial peptides as a universal arm of the immune system. Besides ingenious research, Boman ignited his work by posing the right questions. He started off by asking himself a simple question: 'Antibodies take weeks to produce while many microbes divide hourly; so how come we stay healthy?'. This led to two key findings in the field: the discovery of an inducible and highly potent antimicrobial immune response in Drosophila in 1972, followed by the characterization of cecropin in 1981. Despite broadly being considered an insect-specific response at first, the work of Boman and co-workers eventually created a bandwagon effect that unravelled various aspects of innate immunity.This article is part of the themed issue 'Evolutionary ecology of arthropod antimicrobial peptides'.
Collapse
Affiliation(s)
- Ingrid Faye
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm 106 91, Sweden
| | - Bo G Lindberg
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Faculty of Natural Sciences, Imperial College, London SW7 2AZ, UK
| |
Collapse
|
10
|
Rodríguez-García MJ, García-Reina A, Machado V, Galián J. Identification, structural characterisation and expression analysis of a defensin gene from the tiger beetle Calomera littoralis (Coleoptera: Cicindelidae). Gene 2016; 589:56-62. [PMID: 27210512 DOI: 10.1016/j.gene.2016.05.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 04/22/2016] [Accepted: 05/18/2016] [Indexed: 12/22/2022]
Abstract
In this study, a defensin gene (Clit-Def) has been characterised in the tiger beetle Calomera littoralis for the first time. Bioinformatic analysis showed that the gene has an open reading frame of 246bp that contains a 46 amino acid mature peptide. The phylogenetic analysis showed a high variability in the coleopteran defensins analysed. The Clit-Def mature peptide has the features to be involved in the antimicrobial function: a predicted cationic isoelectric point of 8.94, six cysteine residues that form three disulfide bonds, and the typical cysteine-stabilized α-helix β-sheet (CSαβ) structural fold. Real time quantitative PCR analysis showed that Clit-Def was upregulated in the different body parts analysed after infection with lipopolysaccharides of Escherichia coli, and also indicated that has an expression peak at 12h post infection. The expression patterns of Clit-Def suggest that this gene plays important roles in the humoral system in the adephagan beetle Calomera littoralis.
Collapse
Affiliation(s)
- María Juliana Rodríguez-García
- University of Murcia, Department of Zoology and Physical Anthropology, Faculty of Veterinary, Campus Mare Nostrum, E-30100 Murcia, Spain.
| | - Andrés García-Reina
- University of Murcia, Department of Zoology and Physical Anthropology, Faculty of Veterinary, Campus Mare Nostrum, E-30100 Murcia, Spain
| | - Vilmar Machado
- University of Murcia, Department of Zoology and Physical Anthropology, Faculty of Veterinary, Campus Mare Nostrum, E-30100 Murcia, Spain
| | - José Galián
- University of Murcia, Department of Zoology and Physical Anthropology, Faculty of Veterinary, Campus Mare Nostrum, E-30100 Murcia, Spain
| |
Collapse
|
11
|
Bombyx mori cecropin A has a high antifungal activity to entomopathogenic fungus Beauveria bassiana. Gene 2016; 583:29-35. [DOI: 10.1016/j.gene.2016.02.045] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 02/26/2016] [Accepted: 02/28/2016] [Indexed: 11/18/2022]
|
12
|
Wu S, Zhu X, Liu Z, Shao E, Rebeca CL, Guo Y, Xiong Y, Mou Y, Xu R, Hu X, Liang G, Zou S, Guan X, Zhang F. Identification of Genes Relevant to Pesticides and Biology from Global Transcriptome Data of Monochamus alternatus Hope (Coleoptera: Cerambycidae) Larvae. PLoS One 2016; 11:e0147855. [PMID: 26815657 PMCID: PMC4729689 DOI: 10.1371/journal.pone.0147855] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Accepted: 01/08/2016] [Indexed: 12/13/2022] Open
Abstract
Monochamus alternatus Hope is the main vector in China of the Pine Wilt Disease caused by the pine wood nematode Bursaphelenchus xylophilus. Although chemical control is traditionally used to prevent pine wilt disease, new strategies based in biological control are promising ways for the management of the disease. However, there is no deep sequence analysis of Monochamus alternatus Hope that describes the transcriptome and no information is available about gene function of this insect vector. We used next generation sequencing technology to sequence the whole fourth instar larva transcriptome of Monochamus alternatus Hope and successfully built a Monochamus alternatus Hope transcriptome database. In total, 105,612 unigenes were assigned for Gene Ontology (GO) terms, information for 16,730 classified unigenes was obtained in the Clusters of Orthologous Groups (COGs) database, and 13,024 unigenes matched with 224 predicted pathways in the Kyoto Encyclopedia of Genes and Genome (KEGG). In addition, genes related to putative insecticide resistance-related genes, RNAi, the Bt receptor, intestinal digestive enzymes, possible future insect control targets and immune-related molecules are described. This study provides valuable basic information that can be used as a gateway to develop new molecular tools for Monochamus alternatus Hope control strategies.
Collapse
Affiliation(s)
- Songqing Wu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, People’s Republic of China
- Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, 350002, People’s Republic of China
- Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, People’s Republic of China
| | - Xiaoli Zhu
- Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, 350002, People’s Republic of China
- Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, People’s Republic of China
| | - Zhaoxia Liu
- Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, 350002, People’s Republic of China
- Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, People’s Republic of China
| | - Ensi Shao
- Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, 350002, People’s Republic of China
- Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, People’s Republic of China
| | - Carballar-Lejarazú Rebeca
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA, 92697, United States of America
| | - Yajie Guo
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, People’s Republic of China
| | - Yueting Xiong
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, People’s Republic of China
- Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, 350002, People’s Republic of China
| | - Yani Mou
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, People’s Republic of China
- Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, 350002, People’s Republic of China
| | - Runxue Xu
- Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, 350002, People’s Republic of China
| | - Xia Hu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, People’s Republic of China
| | - Guanghong Liang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, People’s Republic of China
| | - Shuangquan Zou
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, People’s Republic of China
| | - Xiong Guan
- Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, 350002, People’s Republic of China
- Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, People’s Republic of China
- * E-mail: (FPZ); (XG)
| | - Feiping Zhang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, People’s Republic of China
- * E-mail: (FPZ); (XG)
| |
Collapse
|
13
|
Gene Expression of a Novel Defensin Antimicrobial Peptide in the Silkworm,Bombyx mori. Biosci Biotechnol Biochem 2014; 72:2353-61. [DOI: 10.1271/bbb.80263] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
14
|
Yi HY, Chowdhury M, Huang YD, Yu XQ. Insect antimicrobial peptides and their applications. Appl Microbiol Biotechnol 2014; 98:5807-22. [PMID: 24811407 DOI: 10.1007/s00253-014-5792-6] [Citation(s) in RCA: 383] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 04/21/2014] [Accepted: 04/23/2014] [Indexed: 10/25/2022]
Abstract
Insects are one of the major sources of antimicrobial peptides/proteins (AMPs). Since observation of antimicrobial activity in the hemolymph of pupae from the giant silk moths Samia Cynthia and Hyalophora cecropia in 1974 and purification of first insect AMP (cecropin) from H. cecropia pupae in 1980, over 150 insect AMPs have been purified or identified. Most insect AMPs are small and cationic, and they show activities against bacteria and/or fungi, as well as some parasites and viruses. Insect AMPs can be classified into four families based on their structures or unique sequences: the α-helical peptides (cecropin and moricin), cysteine-rich peptides (insect defensin and drosomycin), proline-rich peptides (apidaecin, drosocin, and lebocin), and glycine-rich peptides/proteins (attacin and gloverin). Among insect AMPs, defensins, cecropins, proline-rich peptides, and attacins are common, while gloverins and moricins have been identified only in Lepidoptera. Most active AMPs are small peptides of 20-50 residues, which are generated from larger inactive precursor proteins or pro-proteins, but gloverins (~14 kDa) and attacins (~20 kDa) are large antimicrobial proteins. In this mini-review, we will discuss current knowledge and recent progress in several classes of insect AMPs, including insect defensins, cecropins, attacins, lebocins and other proline-rich peptides, gloverins, and moricins, with a focus on structural-functional relationships and their potential applications.
Collapse
Affiliation(s)
- Hui-Yu Yi
- College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | | | | | | |
Collapse
|
15
|
Imler JL. WITHDRAWN: Overview of Drosophila immunity: A historical perspective. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2013:S0145-305X(13)00128-6. [PMID: 23665509 DOI: 10.1016/j.dci.2013.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 05/01/2013] [Accepted: 05/01/2013] [Indexed: 06/02/2023]
Abstract
This article has been withdrawn at the request of the author. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at http://www.elsevier.com/locate/withdrawalpolicy.
Collapse
Affiliation(s)
- Jean-Luc Imler
- Faculté des Sciences de la Vie, Université de Strasbourg, Strasbourg, France; UPR9022 du CNRS, Institut de Biologie Moléculaire et Cellulaire, Strasbourg, France.
| |
Collapse
|
16
|
Ren Q, Li M, Zhang CY, Chen KP. Six defensins from the triangle-shell pearl mussel Hyriopsis cumingii. FISH & SHELLFISH IMMUNOLOGY 2011; 31:1232-1238. [PMID: 21839173 DOI: 10.1016/j.fsi.2011.07.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Revised: 07/10/2011] [Accepted: 07/14/2011] [Indexed: 05/31/2023]
Abstract
Antimicrobial peptides (AMPs) are the first line of defense of invertebrates against invading pathogens. Defensins, unique AMPs, have a cysteine-stabilized α-helix and β-sheet (CSαβ) motif. In invertebrates, defensins have been reported in arthropods and mussels. Recently, six defensins were identified from Hyriopsis cumingii for the first time, and were designated as HcDef1, HcDef2, HcDef3, HcDef4, HcDef5, and HcDef6. HcDef1 and HcDef2 encode a protein containing 61 and 60 amino acids, respectively. HcDef3, HcDef4, and HcDef6 have 65 amino acids each. HcDef5 is longer than the other five defensins, comprising 83 amino acids. HcDef3 and HcDef4 have three pairs of disulfide bonds. HcDef1, HcDef5, and HcDef6 are exceptions; each has four pairs of disulfide bonds. Evolutionary analysis revealed that only purifying selection and no positive selection could be detected in defensin genes; purifying selection might be the major evolutionary driving force in the evolution of defensin genes. The present study reveals for the first time that the defensins from H. cumingii are diverse and phylogenetic analysis showed that these 6 defensins from H. cumingii were clustered into one group. Reverse transcriptase polymerase chain reaction (RT-PCR) analysis showed that HcDef1-HcDef4 could be detected in the hepatopancreas and gills whereas HcDef5-HcDef6 could only be detected in gills. In addition, the expression levels of HcDef2, HcDef3, and HcDef5 in H. cumingii with pearls were higher than that in H. cumingii without pearls. Quantitative RT-PCR analysis showed that HcDef1, HcDef2, HcDef3, and HcDef5 were downregulated by Vibrio anguillarum challenge whereas HcDef4 and HcDef6 were upregulated under Vibrio challenge. Our results suggest the roles of defensins in the innate immunity of H. cumingii.
Collapse
Affiliation(s)
- Qian Ren
- Institute of Life Sciences, Jiangsu University, 27 Xuefu Road, Zhenjiang, Jiangsu, China.
| | | | | | | |
Collapse
|
17
|
Kurata S. Fly immunity: recognition of pathogens and induction of immune responses. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 708:205-17. [PMID: 21528700 DOI: 10.1007/978-1-4419-8059-5_11] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Despite the lack of adaptive immunity based on gene rearrangement such as that in higher vertebrates, flies are able to defend themselves from a wide array of pathogens using multiple innate immune responses whose molecular mechanisms are strikingly similar to those of the innate immune responses of other multicellular organisms, including humans. Invading pathogens passing through the epithelial barriers, the first line of self-defense, are detected by pattern recognition receptors that identify pathogen-associated molecular patterns in the hemolymph or on the immune cell surface and are eliminated by humoral and cellular responses. Some pathogens escape recognition and elimination in the hemolymphby invading the host cell cytoplasm. Some of these intracellular pathogens, however, such as Listeria monocytogenes, are identified by pattern recognition receptors in the cytoplasm and are eliminated by intracellular responses, including autophagy, an intracellular degradation system. Although some of these pattern recognition receptors are encoded in the germ-line as protein families, another type of receptor in the immunoglobulin-superfamily is extensively diversified by alternative splicing in somatic immune cells in Drosophila.
Collapse
Affiliation(s)
- Shoichiro Kurata
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan.
| |
Collapse
|
18
|
Vogel H, Heidel AJ, Heckel DG, Groot AT. Transcriptome analysis of the sex pheromone gland of the noctuid moth Heliothis virescens. BMC Genomics 2010; 11:29. [PMID: 20074338 PMCID: PMC2820457 DOI: 10.1186/1471-2164-11-29] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2009] [Accepted: 01/14/2010] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND The chemical components of sex pheromones have been determined for more than a thousand moth species, but so far only a handful of genes encoding enzymes responsible for the biosynthesis of these compounds have been identified. For understanding the evolution of moth sexual communication, it is essential to know which genes are involved in the production of specific pheromone components and what controls the variation in their relative frequencies in the pheromone blend. We used a transcriptomic approach to characterize the pheromone gland of the Noctuid moth Heliothis virescens, an important agricultural pest, in order to obtain substantial general sequence information and to identify a range of candidate genes involved in the pheromone biosynthetic pathway. RESULTS To facilitate identifying sets of genes involved in a broad range of processes and to capture rare transcripts, we developed our majority of ESTs from a normalized cDNA library of Heliothis virescens pheromone glands (PG). Combining these with a non-normalized library yielded a total of 17,233 ESTs, which assembled into 2,082 contigs and 6,228 singletons. Using BLAST searches of the NR and Swissprot databases we were able to identify a large number of putative unique gene elements (unigenes), which we compared to those derived from previous transcriptomic surveys of the larval stage of Heliothis virescens. The distribution of unigenes among GO Biological Process functional groups shows an overall similarity between PG and larval transcriptomes, but with distinct enrichment of specific pathways in the PG. In addition, we identified a large number of candidate genes in the pheromone biosynthetic pathways. CONCLUSION These data constitute one of the first large-scale EST-projects for Noctuidae, a much-needed resource for exploring these pest species. Our analysis shows a surprisingly complex transcriptome and we identified a large number of potential pheromone biosynthetic pathway and immune-related genes that can be applied to population and systematic studies of Heliothis virescens and other Noctuidae.
Collapse
Affiliation(s)
- Heiko Vogel
- Max Planck Institute for Chemical Ecology, Department of Entomology, Hans Knoell Strasse 8, 07745 Jena, Germany
| | - Andrew J Heidel
- Leibniz Institute for Age Research, Fritz Lipmann Institute (FLI), Beutenbergstraße 11, 07745 Jena, Germany
| | - David G Heckel
- Max Planck Institute for Chemical Ecology, Department of Entomology, Hans Knoell Strasse 8, 07745 Jena, Germany
| | - Astrid T Groot
- Max Planck Institute for Chemical Ecology, Department of Entomology, Hans Knoell Strasse 8, 07745 Jena, Germany
| |
Collapse
|
19
|
Natori S. Molecules participating in insect immunity of Sarcophaga peregrina. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2010; 86:927-38. [PMID: 21157125 PMCID: PMC3035055 DOI: 10.2183/pjab.86.927] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Accepted: 10/25/2010] [Indexed: 05/24/2023]
Abstract
Pricking the body wall of Sarcophaga peregrina (flesh fly) larvae with a needle activated the immune system of this insect and induced various immune molecules, including antibacterial proteins, in the hemolymph. In this review, I summarize and discuss the functions of these immune molecules, with particular emphasis on the dual roles of some of these molecules in defense and development.
Collapse
Affiliation(s)
- Shunji Natori
- National Institute of Agrobiological Sciences, Tsukuba, Ibaraki 305-8602, Japan.
| |
Collapse
|
20
|
Holz CM, Stahl U. Ribosomally synthesized antimicrobial peptides in prokaryotic and eukaryotic organisms. FOOD BIOTECHNOL 2009. [DOI: 10.1080/08905439509549888] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
21
|
Isolation and Characterization of a Defensin-Like Peptide (Coprisin) from the Dung Beetle, Copris tripartitus. INTERNATIONAL JOURNAL OF PEPTIDES 2009; 2009. [PMID: 20721297 PMCID: PMC2915626 DOI: 10.1155/2009/136284] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2009] [Revised: 07/03/2009] [Accepted: 08/13/2009] [Indexed: 11/17/2022]
Abstract
The antibacterial activity of immune-related peptides, identified by a differential gene expression analysis, was investigated to suggest novel antibacterial peptides. A cDNA encoding a defensin-like peptide, Coprisin, was isolated from bacteria-immunized dung beetle, Copris tripartitus, by using differential dot blot hybridization. Northern blot analysis showed that Coprisin mRNA was up-regulated from 4 hours after bacteria injection and its expression level was reached a peak at 16 hours. The deduced amino acid sequence of Coprisin was composed of 80 amino acids with a predicted molecular weight of 8.6 kDa and a pI of 8.7. The amino acid sequence of mature Coprisin was found to be 79.1% and 67.4% identical to those of defensin-like peptides of Anomala cuprea and Allomyrina dichotoma, respectively. We also investigated active sequences of Coprisin by using amino acid modification. The result showed that the 9-mer peptide, LLCIALRKK-NH(2), exhibited potent antibacterial activities against Escherichia coli and Staphylococcus aureus.
Collapse
|
22
|
Lu W, Cui Z, Wang D, Lee KS, Park NS, Kim DH, Jin BR. Molecular cloning and characterization of a cDNA encoding a novel antibacterial peptide, defensin, from the mulberry longicorn beetle,Apriona germari. ACTA ACUST UNITED AC 2009; 18:160-4. [PMID: 17364828 DOI: 10.1080/10425170601108639] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
A full-length cDNA clone with high homology (62% mature peptide sequence identity) to an Acalolepta luxuriosa antibacterial gene, possessing a conserved cysteine-stabilized alphabeta motif, was cloned by screening an Apriona germari cDNA library. This gene (AgCRP) had a total length of 360 bp with an open reading frame of 207 bp, and encoded a predicted peptide of 69 amino acid residues. The mature AgCRP peptide was 27 amino acid residues long and had a cysteine-stabilized alphabeta motif of C...CXXXC...C...CXC consensus sequence, similar to insect defensins. Northern blot analysis revealed that the AgCRP exhibited fat body-specific expression and was up-regulated by wounding, bacterial or fungal challenge.
Collapse
Affiliation(s)
- Wei Lu
- Joint Laboratory of Shenyang Pharmaceutical University & Dong-A University, Shenyang Pharmaceutical University, Shenyang 110016, China
| | | | | | | | | | | | | |
Collapse
|
23
|
Tanji T, Shiraishi H, Natori S, Ohashi-Kobayashi A. Differential activation of the lectin and antimicrobial peptide genes in Sarcophaga peregrina (the flesh fly). ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2008; 69:189-198. [PMID: 18949806 DOI: 10.1002/arch.20280] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Sarcophaga lectin is an immune defense protein which is transcriptionally induced upon immune challenge in the flesh fly, Sarcophaga peregrina. So far, we have revealed that the Sarcophaga lectin gene has multiple NF-kappaB -binding motifs in its promoter. Here we showed that the nuclear extracts from Sarcophaga-derived culture cells, NIH-Sape-4, and larval fat bodies have binding activity to the multiple kappaB motifs in the lectin gene promoter, some of which were responsive to immune stimuli. We also compared the expression profiles of the lectin gene with those of the antibacterial peptide genes from the point of view of inducers, expression tissues and local induction in digestive tracts. In each case, the lectin gene was activated in different manners from other inducible defense genes. These results indicate the complex regulation of the lectin gene, possibly by NF-kappaB -related transcription factors.
Collapse
Affiliation(s)
- Takahiro Tanji
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | |
Collapse
|
24
|
Kwon YM, Kim HJ, Kim YI, Kang YJ, Lee IH, Jin BR, Han YS, Cheon HM, Ha NG, Seo SJ. Comparative analysis of two attacin genes from Hyphantria cunea. Comp Biochem Physiol B Biochem Mol Biol 2008; 151:213-20. [PMID: 18682300 DOI: 10.1016/j.cbpb.2008.07.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2008] [Revised: 06/30/2008] [Accepted: 07/08/2008] [Indexed: 10/21/2022]
Abstract
A full-length clone corresponding to attacin was isolated from a cDNA library made from fat body of immunized Hyphantria cunea larvae. This newly isolated attacin B shows characteristics different from those previously reported for attacin A. The two attacin cDNAs encode precursor proteins of 233 and 248 amino acid residues, respectively. The two attacins show 45.9% identity at the amino acid level, and 35.2% identity at the nucleotide level. Attacins A and B of H. cunea show significant identities with the attacins of Lepidoptera. Attacin B is a typical glycine-rich protein, while attacin A is leucine-rich. Attacin B is expressed from last instar larvae to adult, while attacin A showed stage-specific expression during the prepupal and pupal stages. Attacins A and B are predicted to have different secondary structure in that attacin A has no tendency to form helices but attacin B contains a substantial number of helices. Attacin A is induced at a trace level in infected larvae, while attacin B is strongly induced against Gram-positive and negative bacteria, fungi, and viruses. The attacin B transcripts were detected in fat body, epidermis and hemocytes after injection with Escherichia coli, Citrobacter freundii, or Candida albicans, but not in the midgut and Malpighian tubule. Recombinant attacin A showed no antibacterial activity, while recombinant attacin B showed strong antibacterial activity in proportion to the amount of the protein injected.
Collapse
Affiliation(s)
- Y M Kwon
- Division of Applied Life Science, Gyeongsang National University, Jinju, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Natori S. Function of antimicrobial proteins in insects. CIBA FOUNDATION SYMPOSIUM 2007; 186:123-32; discussion 132-4. [PMID: 7768148 DOI: 10.1002/9780470514658.ch8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
We have isolated and characterized various antimicrobial proteins from the haemolymph of Sarcophaga peregrina (flesh fly) larvae. Of these the sarcotoxin I family is a group of proteins mainly active against Gram-negative bacteria whereas sapecin is active mainly against Gram-positive bacteria. In addition to its function in defence, sapecin also plays a role in insect development. Recently, we identified a hendecapeptide of the sapecin homologue sapecin B that has the same antibacterial activity as the original sapecin B. Both sarcotoxin I and sapecin are inducible proteins synthesized de novo by the fat body and/or haemocytes and secreted into the haemolymph when the insect is in the acute phase response to bacterial infection. Antifungal protein (AFP) is constitutively present in the haemolymph and is active against certain fungi but not bacteria. These various antimicrobial proteins interact with microbial membranes. Sarcotoxin I interferes with membrane functions such as ATP synthesis and amino acid transport. The fungicidal activity of AFP is enhanced synergistically by sarcotoxin I, although sarcotoxin I alone has no appreciable antifungal activity. It is clear that the flesh fly has the ability to mount a potent defence response against microbial parasites by mobilizing several antimicrobial proteins.
Collapse
Affiliation(s)
- S Natori
- Faculty of Pharmaceutical Sciences, University of Tokyo, Japan
| |
Collapse
|
26
|
Rudenko N, Golovchenko M, Grubhoffer L. Gene organization of a novel defensin of Ixodes ricinus: first annotation of an intron/exon structure in a hard tick defensin gene and first evidence of the occurrence of two isoforms of one member of the arthropod defensin family. INSECT MOLECULAR BIOLOGY 2007; 16:501-7. [PMID: 17651239 DOI: 10.1111/j.1365-2583.2007.00745.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Antimicrobial peptides (defensins) are effectors of the immune system. Herein, we describe a novel Ixodes ricinus defensin gene(s), analyse its structure and compare it with other known antimicrobial peptides from different tick species. For the first time, an intron/exon structure is discovered in a hard-tick defensin gene. The intron/exon genomic organization of the gene is similar to the organization in Ornithodoros moubata, but not to that of the intronless defensins of Dermacentor variabilis and Ixodes scapularis. The analysis of the deduced amino acid sequences of different recombinants from the I. ricinus cDNA library reveals the presence of two defensin isoforms with three amino acid substitutions. Whether or not these substitutions affect the biological properties of the peptides is currently unknown. The expression of the defensin gene is strongly induced in the tick midgut after infection with Borrelia burgdorferi.
Collapse
Affiliation(s)
- N Rudenko
- Faculty of Biological Sciences, University of South Bohemia and Biology Centre, Institute of Parasitology AS CR, Ceské Budejovice, Czech Republic.
| | | | | |
Collapse
|
27
|
Abstract
The elimination of infectious non-self by the host defense systems of multicellular organisms requires a variety of recognition and effector molecules. The diversity is generated in somatic cells or encoded in the germ-line. In adaptive immunity in jawed vertebrates, the diversity of immunoglobulins and antigen receptors is generated by gene rearrangements in somatic cells. In innate immunity, various effector molecules and pattern recognition receptors, such as antimicrobial peptides and peptidoglycan recognition proteins, are encoded in the germ-line of multicellular organisms, including insects and jawed vertebrates. In the present review, we discuss how insect host defense systems recognize and eliminate a multitude of microbes via germ-line-encoded molecules, including recent findings that a Drosophila member of the immunoglobulin superfamily is extensively diversified by alternative splicing in somatic immune cells and participates in the elimination of bacteria.
Collapse
Affiliation(s)
- Shoichiro Kurata
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan.
| |
Collapse
|
28
|
Volkoff AN, Rocher J, d'Alençon E, Bouton M, Landais I, Quesada-Moraga E, Vey A, Fournier P, Mita K, Devauchelle G. Characterization and transcriptional profiles of three Spodoptera frugiperda genes encoding cysteine-rich peptides. A new class of defensin-like genes from lepidopteran insects? Gene 2004; 319:43-53. [PMID: 14597170 DOI: 10.1016/s0378-1119(03)00789-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The present work describes sequence and transcription of three Spodoptera frugiperda genes encoding 6-cysteine-rich peptides. Sequence alignments indicate that the predicted peptides belong to the insect defensin family, although phylogenetic analyses suggest they form a cluster distinct from that of other neopteran insect defensins. The three genes were identified in a non-immune-challenged Sf9 cells cDNA (DNA complementary to RNA) library (Landais et al., Bioinformatics, in press) and were named spodoptericin, Sf-gallerimycin and Sf-cobatoxin. Spodoptericin is a novel defensin-like gene that appears to be weakly up-regulated following injection of bacteria and fungi. Interestingly, no sequence motif clearly homologous to cis regulatory element involved in the regulation of antimicrobial genes was found. An homologue of the spodoptericin gene was identified in the SilkBase Bombyx mori cDNA library. Sf-gallerimycin is related to the Galleria mellonella gallerimycin gene and is induced after immune challenge by injection of bacteria in the larval fat body as well as in hemocytes. In silico analysis of the sequence upstream from the cDNA reveals the presence of at least one motif homologous to a nuclear factor kappaB (NF-kappaB) binding site. Finally, Sf-cobatoxin is related to the G. mellonella cobatoxin-like gene. Despite high levels of constitutive expression compared to the two previous genes, transcription of Sf-cobatoxin is increased after immune, in particular, bacterial challenge. We therefore confirm that these three genes encode potential candidate molecules involved in S. frugiperda innate humoral response.
Collapse
Affiliation(s)
- Anne Nathalie Volkoff
- Laboratoire de Pathologie Comparée, UMR 5087 INRA-CNRS/Universite Montpellier II, 30380 Saint-Christol-les-Alès, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Lowenberger CA. Form, function and phylogenetic relationships of mosquito immune peptides. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2002; 484:113-29. [PMID: 11418977 DOI: 10.1007/978-1-4615-1291-2_11] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Affiliation(s)
- C A Lowenberger
- Animal Health and Biomedical Sciences, University of Wisconsin-Madison, 1655 Linden Drive, Madison, WI 53706, USA
| |
Collapse
|
30
|
Yamauchi H. Two novel insect defensins from larvae of the cupreous chafer, Anomala cuprea: purification, amino acid sequences and antibacterial activity. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2001; 32:75-84. [PMID: 11719071 DOI: 10.1016/s0965-1748(01)00082-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
A humoral immune response in larvae of the coleopteran insect, Anomala cuprea has been examined for exploring the molecular basis of host-pathogen interactions. The antibacterial activity against the Gram-positive strain, Micrococcus luteus was detected at a low level in absence of injection. The activity increased strikingly in the hemolymph of the larvae challenged with Escherichia coli, showing the fluctuating profile through a time course, which consists of the static induction phase, the production phase rising to a maximum level, and the reduction phase extending over a long duration. Two peptides were purified and characterized by reverse-phase HPLC, Edman degradation and mass spectrometry. They were isoforms, composed of similar sequences with two amino acid substitutions in 43 residues, and novel members of the insect defensins, cysteine-rich antibacterial peptides. Anomala defensins A and B showed potent activity against Gram-positive bacteria, with slight differences in activity against a few strains of tested bacteria. Anomala defensin B was active at high concentration of 40 microM against the Gram-negative strain, Xenorhabdus japonicus, a pathogen toward the host, A. cuprea larvae.
Collapse
Affiliation(s)
- H Yamauchi
- Insect Management Laboratory, Department of Forest Entomology, Forestry and Forest Products Research Institute, P.O. Box 16, Tsukuba Norin Kenkyu Danchi-nai, 305-8687, Ibaraki, Japan.
| |
Collapse
|
31
|
Nakajima Y, van der Goes van Naters-Yasui A, Taylor D, Yamakawa M. Two isoforms of a member of the arthropod defensin family from the soft tick, Ornithodoros moubata (Acari: Argasidae). INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2001; 31:747-751. [PMID: 11378409 DOI: 10.1016/s0965-1748(01)00066-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
We previously purified and determined the partial amino acid sequence of a 4 kDa peptide having high homology with scorpion defensin from the hemolymph of adult fed female soft ticks, Ornithodoros moubata. In this study, the full length sequences of two defensin isoforms were obtained. Deduced amino acid sequences reveal a precursor protein of 73 amino acid residues with a mature portion consisting of 37 amino acid residues. This mature peptide contains six cysteine residues conserved in the same location as other invertebrate defensins. Phylogenetic analysis reveals that Ornithodoros defensin is most closely related to scorpion defensin and other more ancient arthropods. Ornithodoros defensin mRNA is constitutively expressed and up-regulated by blood-feeding and bacterial injection. Ornithodoros defensin gene expression occurs mainly in the midgut. This is the first report of the cloning and gene expression of an antibacterial peptide from the Acari.
Collapse
Affiliation(s)
- Y Nakajima
- Institute of Agriculture and Forestry, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | | | | | | |
Collapse
|
32
|
Aozasa N, Shiraishi H, Nakanishi-Matsui M, Kobayashi A, Sekimizu K, Kubo T, Natori S. Activation of the Sarcophaga lectin gene promoter by (A + T)-stretch binding protein. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:2506-11. [PMID: 11298770 DOI: 10.1046/j.1432-1327.2001.02133.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Previously, we purified and isolated a cDNA for (A + T)-stretch binding protein (ATBP) that binds to (A + T)-stretches in the 5' upstream region of the Sarcophaga lectin gene [Nakanishi-Matsui, M., Kubo, T. & Natori, S. (1995) Eur. J. Biochem. 230, 396-400]. Here, we used a luciferase reporter to examine the effect of ATBP on transcription of the Sarcophaga lectin gene. Deletion experiments revealed that ATBP activates the Sarcophaga lectin gene in a 5' upstream sequence-dependent manner, and that at least the N-terminal 25 residues, the three Zn-finger domains, an acidic domain and the third hydrophobic domain of ATBP are indispensable for its function. Furthermore, a synergistic effect was detected between ATBP and Dif, suggesting that ATBP is involved in the activation of insect immunity genes.
Collapse
Affiliation(s)
- N Aozasa
- Graduate School of Pharmaceutical Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-0033; Natori Special Laboratory, The Institute of Physical and Chemical Research, Hirosawa 2-1, Wako-shi, Saitama 351-0198, Japan
| | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
Insects are able to protect themselves from invasion by pathogens by a rapid and potent arsenal of inducible immune peptides. This fast, extremely effective response is part of the innate immunity exhibited by all insects and many invertebrates, and shows striking similarities with the innate immune response of vertebrates. In Aedes aegypti invasion of the hemocoel by bacteria elicits the production of defensins, cecropins, a peptide active only against Gram-negative bacteria, and several other peptides that we are now characterizing. However, not all insects utilize the same peptides in the same concentrations, which may reflect the pathogens to which they may have been exposed through evolutionary time. These protective measures we see in mosquitoes are the current state of the evolution of a rapid immune response that has contributed to the success of insects in inhabiting essentially every niche on earth. The molecules involved in the response of Aedes aegypti to pathogens, and the potential role of these peptides against eukaryotic parasites ingested and transmitted by mosquitoes are discussed.
Collapse
Affiliation(s)
- C Lowenberger
- Animal Health and Biomedical Sciences, University of Wisconsin-Madison, 1656 Linden Drive, , Madison, WI 53706, USA.
| |
Collapse
|
34
|
Abstract
Insects are amazingly resistant to bacterial infections. To combat pathogens, insects rely on cellular and humoral mechanisms, innate immunity being dominant in the latter category. Upon detection of bacteria, a complex genetic cascade is activated, which ultimately results in the synthesis of a battery of antibacterial peptides and their release into the haemolymph. The peptides are usually basic in character and are composed of 20-40 amino acid residues, although some smaller proteins are also included in the antimicrobial repertoire. While the proline-rich peptides and the glycine-rich peptides are predominantly active against Gram-negative strains, the defensins selectively kill Gram-positive bacteria and the cecropins are active against both types. The insect antibacterial peptides are very potent: their IC50 (50% of the bacterial growth inhibition) hovers in the submicromolar or low micromolar range. The majority of the peptides act through disintegrating the bacterial membrane or interfering with membrane assembly, with the exception of drosocin, apidaecin and pyrrhocoricin which appear to deactivate a bacterial protein in a stereospecific manner. In accordance with their biological function, the membrane-active peptides form ordered structures, e.g. alpha-helices or beta-pleated sheets and often cast permeable ion-pores. Their cytotoxic properties were exploited in in vivo studies targeting tumour progression. Although the native peptides degrade quickly in biological fluids other than insect haemolymph, structural modifications render the peptides resistant against proteases without sacrificing biological activity. Indeed, a pyrrhocoricin analogue shows lack of toxicity in vitro and in vivo and protects mice against experimental Escherichia coli infection. Careful selection of lead molecules based on the insect antibacterial peptides may extend their utility and produce viable alternatives to the conventional antimicrobial compounds for mammalian therapy.
Collapse
Affiliation(s)
- L Otvos
- The Wistar Institute, Philadelphia, PA 19104, USA.
| |
Collapse
|
35
|
Affiliation(s)
- M Meister
- Institut de Biologie Moléculaire et Cellulaire, Strasbourg, France
| | | | | |
Collapse
|
36
|
Ishibashi J, Saido-Sakanaka H, Yang J, Sagisaka A, Yamakawa M. Purification, cDNA cloning and modification of a defensin from the coconut rhinoceros beetle, Oryctes rhinoceros. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 266:616-23. [PMID: 10561605 DOI: 10.1046/j.1432-1327.1999.00906.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A novel member of the insect defensins, a family of antibacterial peptides, was purified from larvae of the coconut rhinoceros beetle, Oryctes rhinoceros, immunized with Escherichia coli. A full-size cDNA was cloned by combining reverse-transcription PCR (RT-PCR), and 5'- and 3'-rapid amplification of cDNA ends (RACE). Analysis of the O. rhinoceros defensin gene expression showed it to be expressed in the fat body and hemocyte, midgut and Malpighian tubules. O. rhinoceros defensin showed strong antibacterial activity against Staphylococcus aureus. A 9-mer peptide amidated at its C-terminus, AHCLAICRK-NH2 (Ala22-Lys30-NH2), was synthesized based on the deduced amino-acid sequence, assumed to be an active site sequence by analogy with the sequence of a defensin isolated from larvae of the beetle Allomyrina dichotoma. This peptide showed antibacterial activity against S. aureus, methicillin-resistant S. aureus, E. coli and Pseudomonas aeruginosa. We further modified this oligopeptide and synthesized five 9-mer peptides, ALRLAIRKR-NH2, ALLLAIRKR-NH2, AWLLAIRKR-NH2, ALYLAIRKR-NH2 and ALWLAIRKR-NH2. These oligopeptides showed strong antibacterial activity against Gram-negative and Gram-positive bacteria. The antibacterial effect of Ala22-Lys30-NH2 analogues was due to its interaction with bacterial membranes, judging from the leakage of liposome-entrapped glucose. These Ala22-Lys30-NH2 analogues did not show haemolytic activity and did not inhibit the growth of murine fibroblast cells or macrophages, except for AWLLAIRKR-NH2.
Collapse
Affiliation(s)
- J Ishibashi
- Laboratory of Biological Defence, National Institute of Sericultural and Entomological Science, Tsukuba, Japan
| | | | | | | | | |
Collapse
|
37
|
Natori S, Shiraishi H, Hori S, Kobayashi A. The roles of Sarcophaga defense molecules in immunity and metamorphosis. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 1999; 23:317-328. [PMID: 10426425 DOI: 10.1016/s0145-305x(99)00014-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
This article summarizes recent progress (1996 1998) in our studies on self-defense molecules in Sarcophaga peregrina. A new antibacterial substance was purified and its unique structure and function revealed a novel aspect of the Sarcophaga defense system. We found a novel lectin and cysteine protease in hemocytes which will assist in the understanding of immune response of hemocytes. There have been two major advances in research on the regulation of defense gene induction: (i) cDNA cloning of a new transcriptional factor binding to the kappaB-like promoter sequence of the Sarcophaga lectin gene, (ii) methylation of cytosolic factors essential for induction of immune genes in the fatbody. Metamorphosis is an interesting event from an immunological point of view: (i) a novel protease with antibacterial activity was discovered from metamorphosing gut, and (ii) a pupal hemocyte-specific surface antigen was purified and characterized in terms of its structure and possible function for larval tissue recognition and elimination.
Collapse
Affiliation(s)
- S Natori
- The Institute of Physical and Chemical Research Hirosawa, Saitama, Japan
| | | | | | | |
Collapse
|
38
|
Lowenberger CA, Smartt CT, Bulet P, Ferdig MT, Severson DW, Hoffmann JA, Christensen BM. Insect immunity: molecular cloning, expression, and characterization of cDNAs and genomic DNA encoding three isoforms of insect defensin in Aedes aegypti. INSECT MOLECULAR BIOLOGY 1999; 8:107-118. [PMID: 9927179 DOI: 10.1046/j.1365-2583.1999.810107.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Aedes aegypti were immune activated by injection with bacteria, and the expression of insect defensins was measured over time. Northern analyses indicated that defensin transcriptional activity continued for at least 21 days after bacterial injection, and up to 10 days after saline inoculation. Mature defensin levels in the haemolymph reached approximately 45 microM at 24 h post inoculation. cDNAs encoding the preprodefensins of three previously described mature Ae. aegypti defensins were amplified by PCR, cloned and sequenced. Genomic clones were amplified using primers designed against the cDNA sequence. Sequence comparison indicates that there is significant inter- and intra-isoform variability in the signal peptide and prodefensin sequences of defensin genes. Preprodefensin sequences of isoforms A and B are very similar, consisting of a signal peptide region of twenty amino acids, a prodefensin region of thirty-eight amino acids and a forty amino acid mature peptide domain. The sequence encoding isoform C is significantly different, comprising a signal peptide region of twenty-three amino acids, a prodefensin region of thirty-six amino acids, and the mature protein domain of forty amino acids. Analysis of the genomic clones of each isoform revealed one intron spatially conserved in the prodefensin region of all sequences. The intron in isoforms A and B is 64 nt long, and except for a 4 nt substitution in one clone, these intron sequences are identical. The intron in isoform C is 76 nt long and does not share significant identity with the intron sequences of isoforms A or B. The defensin gene mapped to chromosome 3, between two known loci, blt and LF168.
Collapse
Affiliation(s)
- C A Lowenberger
- Animal Health and Biomedical Sciences, University of Wisconsin-Madison, 53706, USA.
| | | | | | | | | | | | | |
Collapse
|
39
|
Fujita Y, Kurata S, Homma K, Natori S. A novel lectin from Sarcophaga. Its purification, characterization, and cDNA cloning. J Biol Chem 1998; 273:9667-72. [PMID: 9545300 DOI: 10.1074/jbc.273.16.9667] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A novel C-type lectin that agglutinates rabbit red cells was purified from NIH-Sape-4 cells derived from the flesh fly (Sarcophaga peregrina), and its cDNA was isolated. This lectin, named granulocytin, appeared to be a trimer of a 20-kDa subunit consisting of 151 amino acid residues. The gene for granulocytin was activated in third instar larvae, and its expression was enhanced when the larval body wall was injured. In third instar larvae, granulocytin was found to be synthesized by hemocytes and secreted into the hemolymph. The molecular mass and gene expression patterns of granulocytin were very similar to those of Drosophila lectin that we reported previously (Haq, S., Kubo, T., Kurata, S., Kobayashi, A., and Natori, S. (1996) J. Biol. Chem. 271, 20213-20218). However, these two lectins showed amino acid identities of 20% at most, and no significant hapten sugar for granulocytin was identified.
Collapse
Affiliation(s)
- Y Fujita
- Faculty of Pharmaceutical Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113, Japan
| | | | | | | |
Collapse
|
40
|
Abstract
Small, cysteine-rich, beta-sheet peptide antibiotics are found throughout the Animalia. Though broad spectrum in potential, they may exert selective antimicrobial effects under certain conditions. We have explored the antimicrobial properties of two families of beta-sheet peptide antibiotics, defensins and protegrins, against periodontopathic bacteria. The rabbit defensin NP-1 was active against facultative Gram-negative bacteria associated with early onset periodontitis, including Actinobacillus actinomycetemcomitans and the Capnocytophaga spp. Porcine protegrins showed even greater activity against those organisms, as well as against anaerobic bacteria associated with adult periodontitis, including Porphyromonas gingivalis Prevotella intermedia and Fusobacterium nucleatum. Based on these observations, we believe that protegrin-like beta-sheet peptide antibiotics may be useful dental therapeutics.
Collapse
Affiliation(s)
- K T Miyasaki
- UCLA School of Dentistry, Section of Oral Biology 90095-1668, USA.
| | | |
Collapse
|
41
|
Harshman LG, James AA. Differential gene expression in insects: transcriptional control. ANNUAL REVIEW OF ENTOMOLOGY 1998; 43:671-700. [PMID: 9444758 DOI: 10.1146/annurev.ento.43.1.671] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Studies on transcriptional control of gene expression play a pivotal role in many areas of biology. In non-Drosophilid insects, the cuticle, chorion, immune response, silk gland, storage proteins, and vitellogenin are foci for advances in basic research on promoter elements and transcription factors. Insects offer other advantages for gene regulation studies, including the availability of applied problems. In non-Drosophilid insects, the most serious problem for transcriptional control studies is the lack of homologous in vivo expression systems. Once this deficiency is addressed, the full impact of research on transcription control will be realized throughout the field of entomology.
Collapse
Affiliation(s)
- L G Harshman
- School of Biological Sciences, University of Nebraska-Lincoln 68588-0118, USA.
| | | |
Collapse
|
42
|
Abstract
Drosophila responds to a septic injury by the rapid synthesis of antimicrobial peptides. These molecules are predominantly produced by the fat body, a functional equivalent of mammalian liver, and are secreted into the hemolymph where their concentrations can reach up to 100 microM. Six distinct antibacterial peptides (plus isoforms) and one antifungal peptide have been characterized in Drosophila and their genes cloned. The induction of the gene encoding the antifungal peptide relies on the spätzle/Toll/cactus gene cassette, which is involved in the control of dorsoventral patterning in the embryo, and shows interesting structural and functional similarities with cytokine-induced activation of NF-kappa B in mammalian cells. An additional pathway, dependent on the as yet unidentified imd (for immune-deficiency) gene, is required for the full induction of the antibacterial peptide genes. Mutants deficient for the Toll and imd pathways exhibit a severely reduced survival to fungal and bacterial infections, respectively. Recent data on the molecular mechanisms underlying recognition of non-self are also discussed in this review.
Collapse
Affiliation(s)
- M Meister
- UPR 9022, Institut de Biologie Moléculaire et Cellulaire, Strasbourg, France
| | | | | |
Collapse
|
43
|
Lehane MJ, Wu D, Lehane SM. Midgut-specific immune molecules are produced by the blood-sucking insect Stomoxys calcitrans. Proc Natl Acad Sci U S A 1997; 94:11502-7. [PMID: 9326639 PMCID: PMC23519 DOI: 10.1073/pnas.94.21.11502] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We have cloned and sequenced two defensins, Smd1 and Smd2, from anterior midgut tissue of the blood-sucking fly Stomoxys calcitrans. The DNA and N-terminal protein sequences suggest both are produced as prepropeptides. Smd1 differs from the classic defensin pattern in having an unusual six-amino acid-long N-terminal sequence. Both Smd1 and Smd2 have lower pI points and charge than insect defensins derived from fat body/hemocytes. Northern analysis shows both of these defensin molecules are tissue specific; both are produced by the anterior midgut tissue and, unlike the other insect defensins reported to date, neither appears to be expressed in fat body or hemocytes. Northern analysis also shows that mRNAs for both defensins are constitutively produced in the anterior midgut tissues and that these transcripts are up-regulated in response to sterile as well as a lipopolysaccharide-containing blood meal. However, anti-Gram-negative biological activity in the midgut is substantially enhanced by lipopolysaccharide. These findings suggest that the insect midgut has its own tissue-specific immune mechanisms and that this invertebrate epithelium is, like several vertebrate epithelia, protected by specific antibacterial peptides.
Collapse
Affiliation(s)
- M J Lehane
- School of Biological Sciences, University of Wales, Bangor, LL57 2UW, United Kingdom.
| | | | | |
Collapse
|
44
|
Koyama K, Wakabayashi K, Masutani M, Koiwai K, Watanabe M, Yamazaki S, Kono T, Miki K, Sugimura T. Presence in Pieris rapae of cytotoxic activity against human carcinoma cells. Jpn J Cancer Res 1996; 87:1259-62. [PMID: 9045961 PMCID: PMC5921024 DOI: 10.1111/j.1349-7006.1996.tb03141.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Cytotoxic activity in extracts of pupae and adults of various kinds of butterflies and moths was tested in vitro against the human gastric carcinoma cell line, TMK-1, which was chosen as an example of human carcinoma cells. Among the species examined, cytotoxicity was limited to Pieris rapae, Pieris napi and Pieris brassicae. Activity was found down to a dilution of 1/10(4), while with the other butterflies and moths no activity was observed, even at 1/10(2). When the cytotoxicity of the three developmental stages, larvae, pupae and adults, of Pieris rapae was compared, the pupae showed the strongest activity, the IC50 against TMK-1 cells being at the 1/10(6) dilution. For larvae and adults, the respective IC50 values were at the 1/10(5) and 5/10(5) dilutions. The active principle in the pupae of Pieris rapae was found to be heat-labile and not extractable with organic solvents, but precipitated with ammonium sulfate and digested by proteases, suggesting that it is a protein. This cytotoxic factor was named pierisin.
Collapse
Affiliation(s)
- K Koyama
- Biochemistry Division, National Cancer Center Research Institute, Chuo-ku, Tokyo
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Hubert F, Noel T, Roch P. A member of the arthropod defensin family from edible Mediterranean mussels (Mytilus galloprovincialis). EUROPEAN JOURNAL OF BIOCHEMISTRY 1996; 240:302-6. [PMID: 8925841 DOI: 10.1111/j.1432-1033.1996.0302h.x] [Citation(s) in RCA: 150] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Plasma from the mussel Mytilus galloprovincialis previously immunized by injecting them with bacteria contains several bactericidal proteins. One protein, MGD-1, was purified by reverse-phase HPLC of supernatant from acidified cell-free hemolymph. Its biological activity is directed against both gram-positive and gram-negative bacteria but it is not cytotoxic towards human erythrocytes nor protozoa. As determined by mass spectrometry, the molecular mass of MGD-1 is 4418 Da. Primary-structure analysis revealed 38 amino acids including 8 cysteines and a modified amino acid residue in position 28. Computer searches unambiguously recognized the signature of an arthropod defensin, but the presence of two extra cysteines and of one modified amino acid suggest that it is a previously unknown member of that family.
Collapse
Affiliation(s)
- F Hubert
- Dèfense et Rèsistance chez les Invertébrés Marins (DRIM), IFREMER -CNRS, Université de Montpellier 2, France
| | | | | |
Collapse
|
46
|
Richman AM, Bulet P, Hetru C, Barillas-Mury C, Hoffmann JA, Kafalos FC. Inducible immune factors of the vector mosquito Anopheles gambiae: biochemical purification of a defensin antibacterial peptide and molecular cloning of preprodefensin cDNA. INSECT MOLECULAR BIOLOGY 1996; 5:203-210. [PMID: 8799739 DOI: 10.1111/j.1365-2583.1996.tb00055.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Larvae of the mosquito vector of human malaria, Anopheles gambiae, were inoculated with bacteria and extracts were biochemically fractionated by reverse-phase HPLC. Multiple induced polypeptides and antibacterial activities were observed following bacterial infection, including a member of the insect defensin family of antibacterial proteins. A cDNA encoding An. gambiae preprodefensin was isolated using PCR primers based on phylogenetically conserved sequences. The mature peptide is highly conserved, but the signal and propeptide segments are not, relative to corresponding defensin sequences of other insects. Defensin expression is induced in response to bacterial infection, in both adult and larval stages. In contrast, pupae express defensin mRNA constitutively. Defensin expression may prove a valuable molecular marker to monitor the An. gambiae host response to infection by parasitic protozoa of medical importance.
Collapse
Affiliation(s)
- A M Richman
- European Molecular Biology Laboratory, Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
47
|
Leem JY, Nishimura C, Kurata S, Shimada I, Kobayashi A, Natori S. Purification and characterization of N-beta-alanyl-5-S-glutathionyl-3,4-dihydroxyphenylalanine, a novel antibacterial substance of Sarcophaga peregrina (flesh fly). J Biol Chem 1996; 271:13573-7. [PMID: 8662858 DOI: 10.1074/jbc.271.23.13573] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
We purified a novel antibacterial substance from immunized adult Sarcophaga and determined its molecular structure to be N-beta-alanyl-5-S-glutathionyl-3,4-dihydroxyphenylalanine (5-S-GAD). We synthesized 5-S-GAD enzymatically from N-beta-alanyl-3, 4-dihydroxyphenylalanine (beta-Ala-Dopa) and reduced glutathione (GSH). The antibacterial activity of 5-S-GAD was found to be due to its production of H2O2. This is a novel antibacterial mechanism as it differs from the mechanisms of known antibacterial peptides. Two possible roles of 5-S-GAD in insect immunity, suppression of bacterial growth and activation of a Rel family transcription factor, are proposed.
Collapse
Affiliation(s)
- J Y Leem
- Faculty of Pharmaceutical Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113, Japan
| | | | | | | | | | | |
Collapse
|
48
|
Cho WL, Fu YC, Chen CC, Ho CM. Cloning and characterization of cDNAs encoding the antibacterial peptide, defensin A, from the mosquito, Aedes aegypti. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 1996; 26:395-402. [PMID: 8814787 DOI: 10.1016/0965-1748(95)00108-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Insect defensins are cationic, inducible antibacterial peptides. Four full-length cDNAs encoding defensin A from the mosquito Aedes aegypti were cloned using polymerase chain reaction (PCR) and sequenced. All four cDNAs are 473 base pairs long, bearing an open reading frame of 98 amino acids with a few substitutions in the signal peptide domain. The deduced amino acid sequence of Aedes aegypti defensin (AaDef) contains a signal peptide sequence of 18 amino acids followed by a 40-amino acid putative propeptide domain and a 40-amino acid mature peptide domain. The mature peptide, with a predicted M(r) of 4148, shows 80% identity and 93% similarity to Phormia defensin A, and is identical to the peptide sequencing data for mosquito defensin A of Lowenberger et al. (1995) and B of Chalk et al. (1995). There are three potential phosphorylation sites but no glycosylation sites detected in AaDef. Three putative disulfide linkages between cysteines, characteristic of insect defensins, are conserved in AaDef. Aedes aegypti defensin mRNA is produced in response to a bacterial challenge; it is dramatically enhanced 6 h after bacterial injection, continues to increase through 24 h, and is maintained at high levels until at least 30 h post-bacterial injection.
Collapse
Affiliation(s)
- W L Cho
- Department of Parasitology, National Yang-Ming University, Shih-pai, Taipei, Taiwan
| | | | | | | |
Collapse
|
49
|
Karp RD. Inducible humoral immune defense responses in insects. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 1996; 15:67-87. [PMID: 8963466 DOI: 10.1007/978-3-642-79735-4_4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- R D Karp
- Department of Biological Sciences, University of Cincinnati, Ohio, USA
| |
Collapse
|
50
|
Lee SR, Kurata S, Natori S. Molecular cloning of cDNA for sapecin B, an antibacterial protein of Sarcophaga, and its detection in larval brain. FEBS Lett 1995; 368:485-7. [PMID: 7635204 DOI: 10.1016/0014-5793(95)00717-n] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A cDNA clone for sapecin B, an antibacterial protein of Sarcophaga, was isolated. This cDNA encoded a precursor protein of sapecin B consisting of a signal sequence (24 residues), prosegment (30 residues) and mature sapecin B (34 residues). Sapecin B was synthesized almost exclusively in the fat body when the larval body wall was injured, but the brain of naive larvae was also demonstrated to contain a significant amount of sapecin B. These findings suggested that sapecin B is a bifunctional protein.
Collapse
Affiliation(s)
- S R Lee
- Faculty of Pharmaceutical Sciences, University of Tokyo, Japan
| | | | | |
Collapse
|