1
|
Bolli N, Avet-Loiseau H, Wedge DC, Van Loo P, Alexandrov LB, Martincorena I, Dawson KJ, Iorio F, Nik-Zainal S, Bignell GR, Hinton JW, Li Y, Tubio JM, McLaren S, O' Meara S, Butler AP, Teague JW, Mudie L, Anderson E, Rashid N, Tai YT, Shammas MA, Sperling AS, Fulciniti M, Richardson PG, Parmigiani G, Magrangeas F, Minvielle S, Moreau P, Attal M, Facon T, Futreal PA, Anderson KC, Campbell PJ, Munshi NC. Heterogeneity of genomic evolution and mutational profiles in multiple myeloma. Nat Commun 2014; 5:2997. [PMID: 24429703 PMCID: PMC3905727 DOI: 10.1038/ncomms3997] [Citation(s) in RCA: 693] [Impact Index Per Article: 63.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 11/25/2013] [Indexed: 12/25/2022] Open
Abstract
Multiple myeloma is an incurable plasma cell malignancy with a complex and incompletely understood molecular pathogenesis. Here we use whole-exome sequencing, copy-number profiling and cytogenetics to analyse 84 myeloma samples. Most cases have a complex subclonal structure and show clusters of subclonal variants, including subclonal driver mutations. Serial sampling reveals diverse patterns of clonal evolution, including linear evolution, differential clonal response and branching evolution. Diverse processes contribute to the mutational repertoire, including kataegis and somatic hypermutation, and their relative contribution changes over time. We find heterogeneity of mutational spectrum across samples, with few recurrent genes. We identify new candidate genes, including truncations of SP140, LTB, ROBO1 and clustered missense mutations in EGR1. The myeloma genome is heterogeneous across the cohort, and exhibits diversity in clonal admixture and in dynamics of evolution, which may impact prognostic stratification, therapeutic approaches and assessment of disease response to treatment.
Collapse
Affiliation(s)
- Niccolo Bolli
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton CB10 1SA, UK
- Department of Haematology, University of Cambridge, CIMR, Cambridge CB2 0XY, UK
| | - Hervé Avet-Loiseau
- Unité de Génomique du Myélome, CHU Rangueil, Toulouse 31059, France
- CRCT, INSERM U1037, Toulouse 31400, France
| | - David C. Wedge
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton CB10 1SA, UK
| | - Peter Van Loo
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton CB10 1SA, UK
- Department of Human Genetics, VIB and University of Leuven, Leuven 3000, Belgium
| | | | - Inigo Martincorena
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton CB10 1SA, UK
| | - Kevin J. Dawson
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton CB10 1SA, UK
| | - Francesco Iorio
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton CB10 1SA, UK
- European Molecular Biology Laboratory—European Bioinformatics Institute, Hinxton CB10 1SA, UK
| | - Serena Nik-Zainal
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton CB10 1SA, UK
- Department of Medical Genetics, Addenbrooke’s Hospital NHS Trust, Cambridge CB2 0QQ, UK
| | - Graham R. Bignell
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton CB10 1SA, UK
| | - Jonathan W. Hinton
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton CB10 1SA, UK
| | - Yilong Li
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton CB10 1SA, UK
| | - Jose M.C. Tubio
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton CB10 1SA, UK
| | - Stuart McLaren
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton CB10 1SA, UK
| | - Sarah O' Meara
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton CB10 1SA, UK
| | - Adam P. Butler
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton CB10 1SA, UK
| | - Jon W. Teague
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton CB10 1SA, UK
| | - Laura Mudie
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton CB10 1SA, UK
| | - Elizabeth Anderson
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton CB10 1SA, UK
| | - Naim Rashid
- Lebow Institute of Myeloma Therapeutics and Jerome Lipper Multiple Myeloma Center, Dana–Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Yu-Tzu Tai
- Lebow Institute of Myeloma Therapeutics and Jerome Lipper Multiple Myeloma Center, Dana–Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Masood A. Shammas
- Lebow Institute of Myeloma Therapeutics and Jerome Lipper Multiple Myeloma Center, Dana–Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
- Boston Veterans Administration Healthcare System, West Roxbury, Massachusetts 02132, USA
| | - Adam S. Sperling
- Lebow Institute of Myeloma Therapeutics and Jerome Lipper Multiple Myeloma Center, Dana–Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Mariateresa Fulciniti
- Lebow Institute of Myeloma Therapeutics and Jerome Lipper Multiple Myeloma Center, Dana–Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Paul G. Richardson
- Lebow Institute of Myeloma Therapeutics and Jerome Lipper Multiple Myeloma Center, Dana–Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Giovanni Parmigiani
- Dana–Farber Cancer Institute and Harvard School of Public Health, Boston, Massachusetts 02115, USA
| | - Florence Magrangeas
- Center for Cancer Research Nantes-Angers, UMR 892 Inserm-6299 CNRS-University of Nantes, IRS-UN, Nantes 4407, France
- UMGC, University Hospital, Nantes 44093, France
| | - Stephane Minvielle
- Center for Cancer Research Nantes-Angers, UMR 892 Inserm-6299 CNRS-University of Nantes, IRS-UN, Nantes 4407, France
- UMGC, University Hospital, Nantes 44093, France
| | - Philippe Moreau
- Department of Hematology, University Hospital, Nantes 44093, France
| | - Michel Attal
- Department of Hematology, University Hospital and CRCT, INSERM U1037, Toulouse 31400, France
| | - Thierry Facon
- Department of Hematology, University Hospital, Lille 59045, France
| | - P Andrew Futreal
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton CB10 1SA, UK
- Present address: MD Anderson Cancer Center, Houston, Texas, USA
| | - Kenneth C. Anderson
- Lebow Institute of Myeloma Therapeutics and Jerome Lipper Multiple Myeloma Center, Dana–Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Peter J. Campbell
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton CB10 1SA, UK
- Department of Haematology, University of Cambridge, CIMR, Cambridge CB2 0XY, UK
| | - Nikhil C. Munshi
- Lebow Institute of Myeloma Therapeutics and Jerome Lipper Multiple Myeloma Center, Dana–Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
- Boston Veterans Administration Healthcare System, West Roxbury, Massachusetts 02132, USA
| |
Collapse
|
2
|
Abstract
This Teaching Resource provides lecture notes, slides, and a student assignment for a lecture on strategies for the development of mathematical models. Many biological processes can be represented mathematically as systems of ordinary differential equations (ODEs). Simulations with these mathematical models can provide mechanistic insight into the underlying biology of the system. A prerequisite for running simulations, however, is the identification of kinetic parameters that correspond closely with the biological reality. This lecture presents an overview of the steps required for the development of kinetic ODE models and describes experimental methods that can yield kinetic parameters and concentrations of reactants, which are essential for the development of kinetic models. Strategies are provided to extract necessary parameters from published data. The homework assignment requires students to find parameters appropriate for a well-studied biological regulatory system, convert these parameters into appropriate units, and interpret how different values of these parameters may lead to different biological behaviors.
Collapse
Affiliation(s)
- Susana R Neves
- Department of Pharmacology and Systems Therapeutics and Systems Biology Center New York, Mount Sinai School of Medicine, New York, NY 10029, USA.
| |
Collapse
|
3
|
Walker SA, Kupzig S, Bouyoucef D, Davies LC, Tsuboi T, Bivona TG, Cozier GE, Lockyer PJ, Buckler A, Rutter GA, Allen MJ, Philips MR, Cullen PJ. Identification of a Ras GTPase-activating protein regulated by receptor-mediated Ca2+ oscillations. EMBO J 2004; 23:1749-60. [PMID: 15057271 PMCID: PMC394250 DOI: 10.1038/sj.emboj.7600197] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2004] [Accepted: 03/05/2004] [Indexed: 02/02/2023] Open
Abstract
Receptor-mediated increases in the concentration of intracellular free calcium ([Ca2+]i) are responsible for controlling a plethora of physiological processes including gene expression, secretion, contraction, proliferation, neural signalling, and learning. Increases in [Ca2+]i often occur as repetitive Ca2+ spikes or oscillations. Induced by electrical or receptor stimuli, these repetitive Ca2+ spikes increase their frequency with the amplitude of the receptor stimuli, a phenomenon that appears critical for the induction of selective cellular functions. Here we report the characterisation of RASAL, a Ras GTPase-activating protein that senses the frequency of repetitive Ca2+ spikes by undergoing synchronous oscillatory associations with the plasma membrane. Importantly, we show that only during periods of plasma membrane association does RASAL inactivate Ras signalling. Thus, RASAL senses the frequency of complex Ca2+ signals, decoding them through a regulation of the activation state of Ras. Our data provide a hitherto unrecognised link between complex Ca2+ signals and the regulation of Ras.
Collapse
Affiliation(s)
- Simon A Walker
- Inositide Group, Henry Wellcome Integrated Signalling Laboratories, Department of Biochemistry, School of Medical Sciences, University of Bristol, Bristol, UK
| | - Sabine Kupzig
- Inositide Group, Henry Wellcome Integrated Signalling Laboratories, Department of Biochemistry, School of Medical Sciences, University of Bristol, Bristol, UK
| | - Dalila Bouyoucef
- Inositide Group, Henry Wellcome Integrated Signalling Laboratories, Department of Biochemistry, School of Medical Sciences, University of Bristol, Bristol, UK
| | - Louise C Davies
- Inositide Group, Henry Wellcome Integrated Signalling Laboratories, Department of Biochemistry, School of Medical Sciences, University of Bristol, Bristol, UK
| | - Takashi Tsuboi
- Henry Wellcome Integrated Signalling Laboratories, Department of Biochemistry, School of Medical Sciences, University of Bristol, Bristol, UK
| | - Trever G Bivona
- Department of Medicine, Cell Biology and Pharmacology, New York University School of Medicine, New York, NY, USA
| | - Gyles E Cozier
- Inositide Group, Henry Wellcome Integrated Signalling Laboratories, Department of Biochemistry, School of Medical Sciences, University of Bristol, Bristol, UK
| | - Peter J Lockyer
- Signalling Programme, The Babraham Institute, Babraham, Cambridge, UK
| | - Alan Buckler
- Ardais Corporation, One Ledgemont Center, Lexington, MA, USA
| | - Guy A Rutter
- Henry Wellcome Integrated Signalling Laboratories, Department of Biochemistry, School of Medical Sciences, University of Bristol, Bristol, UK
| | | | - Mark R Philips
- Department of Medicine, Cell Biology and Pharmacology, New York University School of Medicine, New York, NY, USA
| | - Peter J Cullen
- Inositide Group, Henry Wellcome Integrated Signalling Laboratories, Department of Biochemistry, School of Medical Sciences, University of Bristol, Bristol, UK
- Inositide Group, Henry Wellcome Integrated Signalling Laboratories, Department of Biochemistry, School of Medical Sciences, University of Bristol, Bristol BS8 1TD, UK. Tel.: +44 117 954 6426; Fax: +44 117 928 8274; E-mail:
| |
Collapse
|
4
|
McNulty TJ, Letcher AJ, Dawson AP, Irvine RF. Tissue distribution of GAP1(IP4BP) and GAP1(m): two inositol 1,3,4,5-tetrakisphosphate-binding proteins. Cell Signal 2001; 13:877-86. [PMID: 11728827 DOI: 10.1016/s0898-6568(01)00197-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Two members of the GAP1 family, GAP1(IP4BP) and GAP1(m), have been shown to bind the putative second messenger Ins(1,3,4,5)P4 with high affinity and specificity, though other aspects of their behaviour suggest that in vivo, whereas GAP1(IP4BP) may function as an Ins(1,3,4,5)P4 receptor, GAP1(m) may be a receptor for the lipid second messenger PtdIns(3,4,5)P3. As a step towards clarifying their cellular roles, we describe here how we have raised and characterised antisera that are specific for the two proteins, and used these to undertake a comprehensive study of their tissue distribution. Both proteins are widely expressed, but there are several clear differences between them in the tissues that show the highest levels of expression.
Collapse
Affiliation(s)
- T J McNulty
- Department of Pharmacology, University of Cambridge, Tennis Court Road, CB2 1QJ, Cambridge, UK.
| | | | | | | |
Collapse
|
5
|
Crul M, de Klerk GJ, Beijnen JH, Schellens JH. Ras biochemistry and farnesyl transferase inhibitors: a literature survey. Anticancer Drugs 2001; 12:163-84. [PMID: 11290863 DOI: 10.1097/00001813-200103000-00001] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Over the last decades, knowledge on the genetic defects involved in tumor formation and growth has increased rapidly. This has launched the development of novel anticancer agents, interfering with the proteins encoded by the identified mutated genes. One gene of particular interest is ras, which is found mutated at high frequency in a number of malignancies. The Ras protein is involved in signal transduction: it passes on stimuli from extracellular factors to the cell nucleus, thereby changing the expression of a number of growth regulating genes. Mutated Ras proteins remain longer in their active form than normal Ras proteins, resulting in an overstimulation of the proliferative pathway. In order to function, Ras proteins must undergo a series of post-translational modifications, the most important of which is farnesylation. Inhibition of Ras can be accomplished through inhibition of farnesyl transferase, the enzyme responsible for this modification. With this aim, a number of agents, designated farnesyl transferase inhibitors (FTIs), have been developed that possess antineoplastic activity. Several of them have recently entered clinical trials. Even though clinical testing is still at an early stage, antitumor activity has been observed. At the same time, knowledge on the biochemical mechanisms through which these drugs exert their activity is expanding. Apart from Ras, they also target other cellular proteins that require farnesylation to become activated, e.g. RhoB. Inhibition of the farnesylation of RhoB results in growth blockade of the exposed tumor cells as well as an increase in the rate of apoptosis. In conclusion, FTIs present a promising class of anticancer agents, acting through biochemical modulation of the tumor cells.
Collapse
Affiliation(s)
- M Crul
- The Netherlands Cancer Institute, Amsterdam, The Netherlands.
| | | | | | | |
Collapse
|
6
|
Higashida H, Taketo M, Takahashi H, Yokoyama S, Hashii M. Potential mechanism for bradykinin-activated and inositol tetrakisphosphate-dependent Ca2+ influx by Ras and GAP1 in fibroblast cells. IMMUNOPHARMACOLOGY 1999; 45:7-11. [PMID: 10614983 DOI: 10.1016/s0162-3109(99)00051-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Here we propose a molecular model for bradykinin receptor-operated and second messenger (inositol-1,3,4,5-tetrakisphosphate)-evoked Ca2+ influx and its potentiation by oncogenic Ras, which is not store-depletion-induced, so-called capacitative, Ca2+ influx. The principal idea for this hypothesis stems from observation that two bradykinin B2 receptor-activated signal pathways, protein tyrosine phosphorylation and formation of inositol tetrakisphosphate, merge during the Ca2+ influx process and that GTPase activating-protein 1 (GAP 1) is inositol tetrakisphosphate binding protein.
Collapse
Affiliation(s)
- H Higashida
- Department of Biophysical Genetics, Kanazawa University Graduate School of Medicine, Japan.
| | | | | | | | | |
Collapse
|
7
|
Lockyer PJ, Vanlingen S, Reynolds JS, McNulty TJ, Irvine RF, Parys JB, Cullen PJ. Tissue-specific expression and endogenous subcellular distribution of the inositol 1,3,4,5-tetrakisphosphate-binding proteins GAP1(IP4BP) and GAP1(m). Biochem Biophys Res Commun 1999; 255:421-6. [PMID: 10049724 DOI: 10.1006/bbrc.1999.0217] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
GAP1(IP4BP) and GAP1(m) belong to the GAP1 family of Ras GTPase-activating proteins that are candidate InsP4 receptors. Here we show they are ubiquitously expressed in human tissues and are likely to have tissue-specific splice variants. Analysis by subcellular fractionation of RBL-2H3 rat basophilic leukemia cells confirms that endogenous GAP1(IP4BP) is primarily localised to the plasma membrane, whereas GAP1(m) appears localised to the cytoplasm (cytosol and internal membranes) but not the plasma membrane. Subcellular fractionation did not indicate a specific co-localisation between membrane-bound GAP1(m) and several Ca2+ store markers, consistent with the lack of co-localisation between GAP1(m) and SERCA1 upon co-expression in COS-7 cells. This difference suggests that GAP1(m) does not reside at a site where it could regulate the ability of InsP4 to release intracellular Ca2+. As GAP1(m) is primarily localised to the cytosol of unstimulated cells it may be spatially regulated in order to interact with Ras at the plasma membrane.
Collapse
Affiliation(s)
- P J Lockyer
- Department of Biochemistry, School of Medical Sciences, University of Bristol, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
8
|
Noto S, Maeda T, Hattori S, Inazawa J, Imamura M, Asaka M, Hatakeyama M. A novel human RasGAP-like gene that maps within the prostate cancer susceptibility locus at chromosome 1q25. FEBS Lett 1998; 441:127-31. [PMID: 9877179 DOI: 10.1016/s0014-5793(98)01530-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
We report the molecular cloning of a human cDNA that encodes a molecule having striking homology with Ras-specific GTPase-activating proteins (RasGAPs). Among previously described RasGAPs, the cDNA product is most closely related to Caenorhabditis elegans GAP-2, including a predicted coiled-coil structure near the carboxyl terminus. Expression of the cDNA in Saccharomyces cerevisiae defective in one of two RasGAPs, Ira2, complemented loss of the Ira2 function, indicating that the cDNA product functions as a RasGAP. The RasGAP-like gene is located on the human chromosome 1q25, the locus that appears to contain a hereditary prostate cancer susceptible gene, HPC1.
Collapse
Affiliation(s)
- S Noto
- Department of Viral Oncology, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo
| | | | | | | | | | | | | |
Collapse
|
9
|
Cullen PJ. Bridging the GAP in inositol 1,3,4,5-tetrakisphosphate signalling. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1436:35-47. [PMID: 9838034 DOI: 10.1016/s0005-2760(98)00149-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- P J Cullen
- Lister Institute Research Fellow, Department of Biochemistry, School of Medical Sciences, University of Bristol, Bristol BS8 1TD, UK.
| |
Collapse
|
10
|
Jiang Y, Ma W, Wan Y, Kozasa T, Hattori S, Huang XY. The G protein G alpha12 stimulates Bruton's tyrosine kinase and a rasGAP through a conserved PH/BM domain. Nature 1998; 395:808-13. [PMID: 9796816 DOI: 10.1038/27454] [Citation(s) in RCA: 148] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Heterotrimeric guanine-nucleotide-binding proteins (G proteins) are signal transducers that relay messages from many receptors on the cell surface to modulate various cellular processes. The direct downstream effectors of G proteins consist of the signalling molecules that are activated by their physical interactions with a G alpha or Gbetagamma subunit. Effectors that interact directly with G alpha12 G proteins have yet to be identified. Here we show that G alpha12 binds directly to, and stimulates the activity of, Bruton's tyrosine kinase (Btk) and a Ras GTPase-activating protein, Gap1m, in vitro and in vivo. G alpha12 interacts with a conserved domain, composed of the pleckstrin-homology domain and the adjacent Btk motif, that is present in both Btk and Gap1m. Our results are, to our knowledge, the first to identify direct effectors for G alpha12 and to show that there is a direct link between heterotrimeric and monomeric G proteins.
Collapse
Affiliation(s)
- Y Jiang
- Department of Physiology, Cornell University Medical College, New York, New York 10021, USA
| | | | | | | | | | | |
Collapse
|
11
|
Shirai T, Tanaka K, Terada Y, Sawada T, Shirai R, Hashimoto Y, Nagata S, Iwamatsu A, Okawa K, Li S, Hattori S, Mano H, Fukui Y. Specific detection of phosphatidylinositol 3,4,5-trisphosphate binding proteins by the PIP3 analogue beads: an application for rapid purification of the PIP3 binding proteins. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1402:292-302. [PMID: 9606988 DOI: 10.1016/s0167-4889(98)00014-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Phosphatidylinositol (PI) 3-kinase is known as one of the key molecules involved in the various biological events such as vesicle trafficking, cytoskeletal rearrangements and cell survival. T clarify the molecular basis underlying these events, we have tried to identify the proteins that can interact with phosphatidylinositol 3,4,5-trisphosphate (PIP3), the lipid product of PI3-kinase. Using a new PIP3 analogue, PIP3-APB, we synthesized an affinity column for PIP3 binding proteins. This enabled us to purify and identify several PIP3 binding proteins such as Tec tyrosine kinase, Gap1m, and Akt, as the candidates for the downstream molecules of PI3-kinase. All of these proteins contain PH domains, possible binding sites for phospholipids. Studies with various deletion mutants of Tec or Gap1m revealed that their PH domains are indeed the binding sites for PIP3. These results demonstrate that this PIP3-analogue binds various PIP3 binding proteins with high specificity and may be useful to elucidate the downstream mechanisms of PI3-kinases-mediated signaling pathways.
Collapse
Affiliation(s)
- T Shirai
- Department of Applied Biological Chemistry, Graduate School of Agriculture and Life Science, University of Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Lockyer PJ, Bottomley JR, Reynolds JS, McNulty TJ, Venkateswarlu K, Potter BV, Dempsey CE, Cullen PJ. Distinct subcellular localisations of the putative inositol 1,3,4,5-tetrakisphosphate receptors GAP1IP4BP and GAP1m result from the GAP1IP4BP PH domain directing plasma membrane targeting. Curr Biol 1997; 7:1007-10. [PMID: 9382842 DOI: 10.1016/s0960-9822(06)00423-4] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Inositol 1,3,4,5-tetrakisphosphate (IP4), is a ubiquitous inositol phosphate that has been suggested to function as a second messenger. Recently, we purified and cloned a putative IP4 receptor, termed GAP1(IP4BP)[1], which is also a member of the GAP1 family of GTPase-activating proteins for the Ras family of GTPases. A homologue of GAP1(IP4BP), called GAP1(m), has been identified [2] and here we describe the cloning of a GAP1(m) cDNA from a human circulating-blood cDNA library. We found that a deletion mutant of GAP1(m), in which the putative phospholipid-binding domains (C2A and C2B) have been removed, binds to IP4 with a similar affinity and specificity to that of the corresponding GAP1(IP4BP) mutant. Expression studies of the proteins in either COS-7 or HeLa cells showed that, whereas GAP1(IP4BP) is located solely at the plasma membrane, GAP1(m) seems to have a distinct perinuclear localisation. By mutational analysis, we have shown that the contrast in subcellular distribution of these two closely related proteins may be a function of their respective pleckstrin homology (PH) domains. This difference in localisation has fundamental significance for our understanding of the second messenger functions of IP4.
Collapse
Affiliation(s)
- P J Lockyer
- Laboratory of Molecular Studies on Cell Regulation, Department of Biochemistry, School of Medical Sciences, University of Bristol, Bristol BS8 1TD, UK
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Li S, Nakamura S, Hattori S. Activation of R-Ras GTPase by GTPase-activating proteins for Ras, Gap1(m), and p120GAP. J Biol Chem 1997; 272:19328-32. [PMID: 9235929 DOI: 10.1074/jbc.272.31.19328] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The enzymatic properties of Gap1(m) were characterized using three Ras and R-Ras proteins as substrates and were compared with those of p120GAP. Gap1(m) stimulated the GTPase of Ras better than that of R-Ras, in contrast to p120GAP which promoted the GTPase of R-Ras better than that of Ras. The EC50 values of Gap1(m) for Ha-Ras and R-Ras were 0.48 +/- 0.02 and 1.13 +/- 0.12 nM, respectively, whereas the EC50 values of p120GAP for Ha-Ras and R-Ras were 23.1 +/- 1.9 and 3.86 +/- 0.38 nM, respectively. The affinities of Gap1(m) and p120GAP to the substrates determined by competitive inhibition by using Ha-Ras.GTPgammaS (guanosine 5'-O-(3-thiotriphosphate)) or R-Ras.GTPgammaS as a competitor agreed well with the substrate specificities of these GTPase-activating proteins. The Km values of Gap1(m) for Ha-Ras and R-Ras were 1.53 +/- 0.27 and 3.38 +/- 0.53 microM, respectively, which were lower than that of p120GAP for Ha-Ras (145 +/- 11 microM) by almost 2 orders of magnitude. The high affinity of Gap1(m) to the substrates and its membrane localization suggest that Gap1(m) may act as a regulator of the basal activity of Ha-Ras and R-Ras.
Collapse
Affiliation(s)
- S Li
- Division of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Kodaira, Tokyo 187, Japan
| | | | | |
Collapse
|
14
|
Kobayashi M, Masui T, Kusuda J, Kameoka Y, Hashimoto K, Iwashita S. Human rasGTPase-activating protein (human counterpart of GAP1m): sequence of the cDNA, primary structure of the protein, production and chromosomal localization. Gene 1996; 175:173-7. [PMID: 8917095 DOI: 10.1016/0378-1119(96)00144-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
When cDNA encoding rat rasGTPase-activating protein (rat GAP1m) was used as a probe, two partial cDNA clones of a human counterpart of rat GAP1m were isolated from a cDNA library derived from growth-arrested normal human ectocervical epithelial cells. One clone was found to be a cDNA of premature mRNA with two introns. A complete cDNA of human GAP1m was constructed by a series of reverse transcription-polymerase chain reaction (RT-PCR) using total RNA from human epidermoid carcinoma A431 cells. Human GAP1m shows 87.7% nucleotide identity to rat GAP1m in open reading frame and encodes an 850-amino acid protein that shows 89.2% identity to rat GAP1m. A 100-kDa protein was detected in A431 cells by Western blotting with anti-rat GAP1m antibody. The human GAP1m gene was mapped to chromosome 3q24-q26.
Collapse
Affiliation(s)
- M Kobayashi
- Mitsubishi Kasei Institute of Life Sciences, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
15
|
Waldmann V, Rabes HM. What's new in ras genes? Physiological role of ras genes in signal transduction and significance of ras gene activation in tumorigenesis. Pathol Res Pract 1996; 192:883-91. [PMID: 8950754 DOI: 10.1016/s0344-0338(96)80067-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Ras gene mutations have been found with variable prevalence in different tumor types. While during the past decade a lot of information has been accumulated on the frequency of ras oncogene activation in tumors, the last two years brought considerable progress in elucidating molecular mechanisms of signal transduction for which cellular ras proteins are key elements. They transmit signals from upstream tyrosine kinases to downstream serine/threonine kinases ultimately leading to changes of gene expression cytoskeletal architecture, cell-to-cell interactions and metabolism. These signalling pathways are of interest for the physiological regulation of proliferation and differentiation in normal, as well as in cancer tissue. Mutational activation of cellular ras genes to transforming oncogenes is thought to promote cell growth even in the absence of extracellular stimuli, and may thereby contribute to the initiation and/or progression of tumors.
Collapse
Affiliation(s)
- V Waldmann
- Institute of Pathology, University of Munich, Germany
| | | |
Collapse
|
16
|
Fukuda M, Mikoshiba K. Structure-function relationships of the mouse Gap1m. Determination of the inositol 1,3,4,5-tetrakisphosphate-binding domain. J Biol Chem 1996; 271:18838-42. [PMID: 8702543 DOI: 10.1074/jbc.271.31.18838] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Gap1(IP4BP), one of a member of Ras GTPase-activating proteins, has been identified as a specific inositol 1,3,4,5-tetrakisphosphate (IP4)-binding protein (Cullen, P. J., Hsuan, J. J., Truong, O., Letcher, A. J., Jackson, T. R., Dawson, A. P., and Irvine, R. F. (1995) Nature 386, 527-530). In this paper we describe Gap1(m), which is closely related to Gap1(IP4BP), to also be an IP4-binding protein and show that the pleckstrin homology domain (PH) is the central IP4-binding domain by expressing fragments of the mouse Gap1(m) in Escherichia coli as fusion proteins and examining their activities. However, in addition to the PH domain, an adjacent GAP-related domain and carboxyl terminus are required for high affinity specific IP4 binding. The PH domain is highly conserved in the Gap1 family and also has striking homology to the amino-terminal region of Bruton's tyrosine kinase. Substitution of Cys for Arg at position 628 in the PH domain corresponding to the mutation of Bruton's tyrosine kinase observed in X-linked immunodeficiency mice results in a dramatic reduction of IP4 binding activity as well as phospholipid binding capacity of Gap1(m). This mutant also showed the GAP activity against Ha-Ras to be similar to that of the wild type Gap1(m). Our results suggest that the PH domain of Gap1(m) functions as a modulatory domain of GAP activity by binding IP4 and phospholipids.
Collapse
Affiliation(s)
- M Fukuda
- Molecular Neurobiology Laboratory, Tsukuba Life Science Center, The Institute of Physical and Chemical Research (RIKEN), 3-1-1 Koyadai, Tsukuba, Ibaraki 305, Japan
| | | |
Collapse
|
17
|
Yamamoto T, Matsui T, Nakafuku M, Iwamatsu A, Kaibuchi K. A novel GTPase-activating protein for R-Ras. J Biol Chem 1995; 270:30557-61. [PMID: 8530488 DOI: 10.1074/jbc.270.51.30557] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
R-Ras, belonging to the Ras small GTP-binding protein superfamily, has been implicated in regulation of various cell functions such as gene expression, cell proliferation, and apoptotic cell death. In the present study, we purified an R-Ras-interacting protein with molecular mass of about 98 kDa (p98) from bovine brain cytosol by glutathione S-transferase (GST)-R-Ras affinity column chromatography. This protein bound to GTP gamma S (guanosine 5'-(3-O-thio)triphosphate, a nonhydrolyzable GTP analog).R-Ras but not to GDP.R-Ras, GTP gamma S.R-Ras with a mutation in the effector domain (R-RasA64), GTP gamma S.Ha-Ras, or GTP gamma S.RalA. We obtained a cDNA encoding p98 on the basis of its partial amino acid sequences. The predicted protein consists of 834 amino acids whose calculated mass, 95,384 Da, is close to the apparent molecular mass of p98. The amino acid sequence shows a high degree of sequence similarity to the entire sequence of Gap1m, one of the GTPase-activating proteins (GAP) for Ha-Ras. A recombinant protein consisting of the GAP-related domain of p98 fused to maltose-binding protein stimulated GTPase activity of R-Ras, and showed a weak effect on that of Ha-Ras but not that of Rap1 or Rho. These results clearly indicate that p98 is a novel GAP for R-Ras. Thus, we designated this protein as R-Ras GAP.
Collapse
Affiliation(s)
- T Yamamoto
- Division of Signal Transduction, Nara Institute of Science and Technology, Ikoma, Japan
| | | | | | | | | |
Collapse
|
18
|
Baba H, Fuss B, Urano J, Poullet P, Watson JB, Tamanoi F, Macklin WB. GapIII, a new brain-enriched member of the GTPase-activating protein family. J Neurosci Res 1995; 41:846-58. [PMID: 7500386 DOI: 10.1002/jnr.490410615] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Ras GTPase-activating proteins (GAPs) are negative regulators of ras, which controls proliferation and differentiation in many cells. Ras GAPs have been found in a variety of species from yeast to mammals. We describe here a newly identified mammalian GAP, GapIII, which was obtained by differential screening of a rat oligodendrocyte cDNA library. GapIII putatively encodes a 834 amino acid protein with a predicted molecular weight of 96 kDa, which contains a consensus GAP-related domain (GRD). The protein encoded by this cDNA has high homology with Gap1m, which was recently identified as a putative mammalian homolog of Drosophila Gap1. These proteins contain three structural domains, an N-terminal calcium-dependent phospholipid binding domain, GRD, and a C-terminal PH/Btk domain. Because of the sequence homology and the structural similarities of this protein with Gap1m, we hypothesize that GapIII and Gap1m may be members of a mammalian GAP gene family, separate from p120GAP, neurofibromin (NF1), and IQGAP. To confirm the GapIII protein activity, constructs containing different GapIII-GRD domains were transformed into iral mutant yeast to determine their relative ability to replace IRA1 functionally. Constructs that contained essentially the full-length protein (all three domains), the GRD alone, or the GRD plus PH/Btk domain suppressed heat shock sensitivity of ira1, whereas constructs that contained the GRD with part of the PH/Btk domain had only a weak ability to suppress heat shock sensitivity. These results suggest that the GapIII GRD itself is sufficient to down-regulate ras proteins in yeast. Expression of GapIII mRNA (4.2 kb) was examined by Northern analysis and in situ hybridization. This mRNA was expressed at highest levels in the brain, where its expression increased with development. Lower levels of the mRNA were expressed in the spleen and lung. Among neural cells, GapIII mRNA was expressed in neurons and oligodendrocytes, but not in astrocytes. Interestingly, the expression pattern in brain is reminiscent of type 1 NF1 expression reported by Gutmann et al. (Cell Growth Differ in press, 1995). We propose that in addition to p120GAP and neurofibromin, the GapIII/Gap1m family may be important for modulating ras activity in neurons and oligodendrocytes during normal brain development and in particular in the adult brain.
Collapse
Affiliation(s)
- H Baba
- Department of Psychiatry and Biobehavioral Sciences, UCLA Medical Center, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Cullen PJ, Hsuan JJ, Truong O, Letcher AJ, Jackson TR, Dawson AP, Irvine RF. Identification of a specific Ins(1,3,4,5)P4-binding protein as a member of the GAP1 family. Nature 1995; 376:527-30. [PMID: 7637787 DOI: 10.1038/376527a0] [Citation(s) in RCA: 245] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Inositol 1,3,4,5-tetrakisphosphate (Ins(1,3,4,5)P4) is produced rapidly from inositol 1,4,5-trisphosphate (Ins(1,4,5)P3) in stimulated cells. Despite extensive experimentation, no clearly defined cellular function has yet been described for this inositol phosphate. Binding sites specific for Ins(1,3,4,5)P4 have been identified in several tissues, and we have purified one such protein to homogeneity. Its high affinity for Ins(1,3,4,5)P4, and its exquisite specificity for this isomeric configuration, suggest it may be an Ins(1,3,4,5)P4 receptor. Here we report the cloning and characterization of this protein as a GTPase-activating protein, specifically a member of the GAP1 family. In vitro it shows GAP activity against both Rap and Ras, but only the Ras GAP activity is inhibited by phospholipids and is specifically stimulated by Ins(1,3,4,5)P4.
Collapse
Affiliation(s)
- P J Cullen
- Inositide Laboratory, Babraham Institute, Cambridge, UK
| | | | | | | | | | | | | |
Collapse
|
20
|
Bernards A. Neurofibromatosis type 1 and Ras-mediated signaling: filling in the GAPs. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1242:43-59. [PMID: 7626654 DOI: 10.1016/0304-419x(95)00003-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- A Bernards
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown 02129, USA
| |
Collapse
|
21
|
Fujita-Yoshigaki J, Shirouzu M, Ito Y, Hattori S, Furuyama S, Nishimura S, Yokoyama S. A constitutive effector region on the C-terminal side of switch I of the Ras protein. J Biol Chem 1995; 270:4661-7. [PMID: 7876237 DOI: 10.1074/jbc.270.9.4661] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The "switch I" region (Asp30-Asp38) of the Ras protein takes remarkably different conformations between the GDP- and GTP-bound forms and coincides with the so-called "effector region." As for a region on the C-terminal side of switch I, the V45E and G48C mutants of Ras failed to promote neurite outgrowth of PC12 cells (Fujita-Yoshigaki, J., Shirouzu, M., Koide, H., Nishimura, S., and Yokoyama, S. (1991) FEBS Lett. 294, 187-190). In the present study, we performed alanine-scanning mutagenesis within the region Lys42-Ile55 of Ras and found that the K42A, I46A, G48A, E49A, and L53A mutations significantly reduced the neurite-inducing activity. This is an effector region by definition, but its conformation is known to be unaffected by GDP-->GTP exchange. So, this region is referred to as a "constitutive" effector (Ec) region, distinguished from switch I, a "switch" effector (Es) region. The Ec region mutants exhibiting no neurite-inducing activity were found to be correlatably unable to activate mitogen-activated protein (MAP) kinase in PC12 cells. Therefore, the Ec region is essential for the MAP kinase activation in PC12 cells, whereas mutations in this region only negligibly affect the binding of Ras to Raf-1 (Shirouzu, M., Koide, H., Fujita-Yoshigaki, J., Oshio, H., Toyama, Y., Yamasaki, K., Fuhrman, S. A., Villafranca, E., Kaziro, Y., and Yokoyama, S. (1994) Oncogene 9, 2153-2157).
Collapse
Affiliation(s)
- J Fujita-Yoshigaki
- Department of Biophysics and Biochemistry, School of Science, University of Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
The mitogenic action of cytokines such as epidermal growth factor (EGF) or platelet derived growth factor (PDGF) involves the stimulation of a signal cascade controlled by a small G protein called Ras. Mutations of Ras can cause its constitutive activation and, as a consequence, bypass the regulation of cell growth by cytokines. Both growth factor-induced and oncogenic activation of Ras involve the conversion of Ras from the GDP-bound (D-Ras) to the GTP-bound (T-Ras) forms. T-Ras activates a network of protein kinases including c-Mos, c-Raf-1 and MAP kinase. Eventually the activation of MAP kinase leads to the activation of the elongation factor 4E and several transcription factors such as c-Jun, c-Myc and c-Fos. There are several modulators of Ras activity, such as the GTPase activating proteins (GAP1 and NF1), which stimulate the conversion of T-Ras to D-Ras. A series of small NF1 fragments, which bind T-Ras, as well as truncated forms of derivatives of c-Raf-1, c-Jun and c-Myc, are capable of blocking the T-Ras-activated mitogenesis in a competitive manner. These agents offer a unique opportunity to control the proliferation of T-Ras-associated tumors, which represent more than 30% of total human carcinomas.
Collapse
Affiliation(s)
- H Maruta
- Ludwig Institute for Cancer Research, Melbourne, Australia
| | | |
Collapse
|
23
|
Randazzo P, Kahn R. GTP hydrolysis by ADP-ribosylation factor is dependent on both an ADP-ribosylation factor GTPase-activating protein and acid phospholipids. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)34124-8] [Citation(s) in RCA: 153] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|