1
|
Abstract
Natural metalloproteins perform many functions - ranging from sensing to electron transfer and catalysis - in which the position and property of each ligand and metal, is dictated by protein structure. De novo protein design aims to define an amino acid sequence that encodes a specific structure and function, providing a critical test of the hypothetical inner workings of (metallo)proteins. To date, de novo metalloproteins have used simple, symmetric tertiary structures - uncomplicated by the large size and evolutionary marks of natural proteins - to interrogate structure-function hypotheses. In this Review, we discuss de novo design applications, such as proteins that induce complex, increasingly asymmetric ligand geometries to achieve function, as well as the use of more canonical ligand geometries to achieve stability. De novo design has been used to explore how proteins fine-tune redox potentials and catalyse both oxidative and hydrolytic reactions. With an increased understanding of structure-function relationships, functional proteins including O2-dependent oxidases, fast hydrolases, and multi-proton/multi-electron reductases, have been created. In addition, proteins can now be designed using xeno-biological metals or cofactors and principles from inorganic chemistry to derive new-to-nature functions. These results and the advances in computational protein design suggest a bright future for the de novo design of diverse, functional metalloproteins.
Collapse
Affiliation(s)
- Matthew J. Chalkley
- Department of Pharmaceutical Chemistry and the Cardiovascular Research Institute, University of California at San Francisco, San Francisco, (CA), USA
| | - Samuel I. Mann
- Department of Pharmaceutical Chemistry and the Cardiovascular Research Institute, University of California at San Francisco, San Francisco, (CA), USA
| | - William F. DeGrado
- Department of Pharmaceutical Chemistry and the Cardiovascular Research Institute, University of California at San Francisco, San Francisco, (CA), USA
| |
Collapse
|
2
|
Huang LS, Lümmen P, Berry EA. Crystallographic investigation of the ubiquinone binding site of respiratory Complex II and its inhibitors. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2021; 1869:140679. [PMID: 34089891 PMCID: PMC8516616 DOI: 10.1016/j.bbapap.2021.140679] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 05/15/2021] [Accepted: 05/24/2021] [Indexed: 01/01/2023]
Abstract
The quinone binding site (Q-site) of Mitochondrial Complex II (succinate-ubiquinone oxidoreductase) is the target for a number of inhibitors useful for elucidating the mechanism of the enzyme. Some of these have been developed as fungicides or pesticides, and species-specific Q-site inhibitors may be useful against human pathogens. We report structures of chicken Complex II with six different Q-site inhibitors bound, at resolutions 2.0-2.4 Å. These structures show the common interactions between the inhibitors and their binding site. In every case a carbonyl or hydroxyl oxygen of the inhibitor is H-bonded to Tyr58 in subunit SdhD and Trp173 in subunit SdhB. Two of the inhibitors H-bond Ser39 in subunit SdhC directly, while two others do so via a water molecule. There is a distinct cavity that accepts the 2-substituent of the carboxylate ring in flutolanil and related inhibitors. A hydrophobic "tail pocket" opens to receive a side-chain of intermediate-length inhibitors. Shorter inhibitors fit entirely within the main binding cleft, while the long hydrophobic side chains of ferulenol and atpenin A5 protrude out of the cleft into the bulk lipid region, as presumably does that of ubiquinone. Comparison of mitochondrial and Escherichia coli Complex II shows a rotation of the membrane-anchor subunits by 7° relative to the iron‑sulfur protein. This rotation alters the geometry of the Q-site and the H-bonding pattern of SdhB:His216 and SdhD:Asp57. This conformational difference, rather than any active-site mutation, may be responsible for the different inhibitor sensitivity of the bacterial enzyme.
Collapse
Affiliation(s)
- Li-Shar Huang
- Biochemistry and Molecular Biology, SUNY Upstate Medical University, 750 E. Adams Street, Syracuse, N.Y 13210, USA
| | - Peter Lümmen
- Bayer AG, Crop Science Division, Industrial Park Höchst, Frankfurt/Main, Germany
| | - Edward A Berry
- Biochemistry and Molecular Biology, SUNY Upstate Medical University, 750 E. Adams Street, Syracuse, N.Y 13210, USA.
| |
Collapse
|
3
|
Hydrogen bonding rearrangement by a mitochondrial disease mutation in cytochrome bc 1 perturbs heme b H redox potential and spin state. Proc Natl Acad Sci U S A 2021; 118:2026169118. [PMID: 34389670 PMCID: PMC8379992 DOI: 10.1073/pnas.2026169118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
To perform their specific electron-transfer relay functions, hemes commonly adopt low spin states with fine-tuned redox potentials. Understanding molecular elements controlling these properties is crucial for the description of natural proteins and engineering redox-active systems. We describe unusual effects of mitochondrial disease-related mutation in cytochrome bc1, based on which we identify a dual role of hydrogen bonding to the propionate group of heme bH. We observe that stabilization of the hydrogen bond in mutant enhances the redox potential but destabilizes the low spin state of oxidized heme. This demonstrates a critical role of the hydrogen bonding, and heme-protein interactions in general, to secure a suitable redox potential and spin state, a notion that might be universal for other heme proteins. Hemes are common elements of biological redox cofactor chains involved in rapid electron transfer. While the redox properties of hemes and the stability of the spin state are recognized as key determinants of their function, understanding the molecular basis of control of these properties is challenging. Here, benefiting from the effects of one mitochondrial disease–related point mutation in cytochrome b, we identify a dual role of hydrogen bonding (H-bond) to the propionate group of heme bH of cytochrome bc1, a common component of energy-conserving systems. We found that replacing conserved glycine with serine in the vicinity of heme bH caused stabilization of this bond, which not only increased the redox potential of the heme but also induced structural and energetic changes in interactions between Fe ion and axial histidine ligands. The latter led to a reversible spin conversion of the oxidized Fe from 1/2 to 5/2, an effect that potentially reduces the electron transfer rate between the heme and its redox partners. We thus propose that H-bond to the propionate group and heme-protein packing contribute to the fine-tuning of the redox potential of heme and maintaining its proper spin state. A subtle balance is needed between these two contributions: While increasing the H-bond stability raises the heme potential, the extent of increase must be limited to maintain the low spin and diamagnetic form of heme. This principle might apply to other native heme proteins and can be exploited in engineering of artificial heme-containing protein maquettes.
Collapse
|
4
|
Crofts AR. The modified Q-cycle: A look back at its development and forward to a functional model. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2021; 1862:148417. [PMID: 33745972 DOI: 10.1016/j.bbabio.2021.148417] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/28/2021] [Accepted: 03/11/2021] [Indexed: 11/25/2022]
Abstract
On looking back at a lifetime of research, it is interesting to see, in the light of current progress, how things came to be, and to speculate on how things might be. I am delighted in the context of the Mitchell prize to have that excuse to present this necessarily personal view of developments in areas of my interests. I have focused on the Q-cycle and a few examples showing wider ramifications, since that had been the main interest of the lab in the 20 years since structures became available, - a watershed event in determining our molecular perspective. I have reviewed the evidence for our model for the mechanism of the first electron transfer of the bifurcated reaction at the Qo-site, which I think is compelling. In reviewing progress in understanding the second electron transfer, I have revisited some controversies to justify important conclusions which appear, from the literature, not to have been taken seriously. I hope this does not come over as nitpicking. The conclusions are important to the final section in which I develop an internally consistent mechanism for turnovers of the complex leading to a state similar to that observed in recent rapid-mix/freeze-quench experiments, reported three years ago. The final model is necessarily speculative but is open to test.
Collapse
Affiliation(s)
- Antony R Crofts
- Department of Biochemistry, 417 Roger Adams Laboratory, 600 South Mathews Avenue, Urbana, IL 61801, United States of America
| |
Collapse
|
5
|
Pal A, Pal A, Banerjee S, Batabyal S, Chatterjee PN. Mutation in Cytochrome B gene causes debility and adverse effects on health of sheep. Mitochondrion 2019; 46:393-404. [PMID: 30660753 DOI: 10.1016/j.mito.2018.10.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 09/02/2018] [Accepted: 10/24/2018] [Indexed: 12/14/2022]
Abstract
Cytochrome B is the mitochondrial protein, which functions as part of the electron transport chain and is the main subunit of transmembrane cytochrome bc1 and b6f complexes affecting energy metabolism through oxidative phosphorylation. The present study was conducted to study the effect of mutation of Cytochrome B gene on the health condition of sheep, which the first report of association of mitochondrial gene with disease traits in livestock species. Non-synonymous substitutions (F33 L and D171N) and Indel mutations were observed for Cytochrome B gene, leading to a truncated protein, where anemia, malfunctioning of most of the vital organs as liver, kidney and mineral status was observed and debility with exercise intolerance and cardiomyopathy in extreme cases were depicted. These findings were confirmed by bioinformatics analysis, haematological and biochemical data analysis, and other phenotypical physiological data pertaining to different vital organs. The molecular mechanism of cytochrome B mutation was that the mutant variant interferes with the site of heme binding (iron containing) domain and calcium binding essential for electron transport chain. Mutation at amino acid site 33 is located within transmembrane helix A, a hydrophobic environment at the Qi site and close to heme binding domain, and mutation effects these domain and diseases occur. Thermodynamic stability was also observed to decrease in mutant variant. Sheep Cytochrome B being genetically more similar to the human, it may be used as a model for studying human diseases related to cytochrome B defects. Future prospect of the study includes the therapeutic application of recombinant protein, gene therapy and marker-assisted selection of disease-resistant livestock.
Collapse
Affiliation(s)
- Aruna Pal
- West Bengal University of Animal and Fishery Sciences, 37, K.B.Sarani, Kolkata-37, West Bengal, India.
| | - Abantika Pal
- Indian Institute of Technology, Kharagpur, Paschim Medinipur, West Bengal, India
| | - Samiddha Banerjee
- West Bengal University of Animal and Fishery Sciences, 37, K.B.Sarani, Kolkata-37, West Bengal, India
| | - S Batabyal
- West Bengal University of Animal and Fishery Sciences, 37, K.B.Sarani, Kolkata-37, West Bengal, India
| | - P N Chatterjee
- West Bengal University of Animal and Fishery Sciences, 37, K.B.Sarani, Kolkata-37, West Bengal, India
| |
Collapse
|
6
|
Dibrova DV, Shalaeva DN, Galperin MY, Mulkidjanian AY. Emergence of cytochrome bc complexes in the context of photosynthesis. PHYSIOLOGIA PLANTARUM 2017; 161:150-170. [PMID: 28493482 PMCID: PMC5600118 DOI: 10.1111/ppl.12586] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 04/22/2017] [Accepted: 05/04/2017] [Indexed: 05/18/2023]
Abstract
The cytochrome bc (cyt bc) complexes are involved in Q-cycling; they oxidize membrane quinols by high-potential electron acceptors, such as cytochromes or plastocyanin, and generate transmembrane proton gradient. In several prokaryotic lineages, and also in plant chloroplasts, the catalytic core of the cyt bc complexes is built of a four-helical cytochrome b (cyt b) that contains three hemes, a three-helical subunit IV, and an iron-sulfur Rieske protein (cytochrome b6 f-type complexes). In other prokaryotic lineages, and also in mitochondria, the cyt b subunit is fused with subunit IV, yielding a seven- or eight-helical cyt b with only two hemes (cyt bc1 -type complexes). Here we present an updated phylogenomic analysis of the cyt b subunits of cyt bc complexes. This analysis provides further support to our earlier suggestion that (1) the ancestral version of cyt bc complex contained a small four-helical cyt b with three hemes similar to the plant cytochrome b6 and (2) independent fusion events led to the formation of large cyts b in several lineages. In the search for a primordial function for the ancestral cyt bc complex, we address the intimate connection between the cyt bc complexes and photosynthesis. Indeed, the Q-cycle turnover in the cyt bc complexes demands high-potential electron acceptors. Before the Great Oxygenation Event, the biosphere had been highly reduced, so high-potential electron acceptors could only be generated upon light-driven charge separation. It appears that an ancestral cyt bc complex capable of Q-cycling has emerged in conjunction with the (bacterio)chlorophyll-based photosynthetic systems that continuously generated electron vacancies at the oxidized (bacterio)chlorophyll molecules.
Collapse
Affiliation(s)
- Daria V. Dibrova
- A.N. Belozersky Institute of Physico‐Chemical BiologyLomonosov Moscow State UniversityMoscow119991Russia
| | - Daria N. Shalaeva
- School of Bioengineering and BioinformaticsLomonosov Moscow State UniversityMoscow119991Russia
- School of PhysicsUniversity of OsnabrueckOsnabrueckD‐49069Germany
| | - Michael Y. Galperin
- National Center for Biotechnology Information, National Library of MedicineNational Institutes of HealthBethesdaMD20894USA
| | - Armen Y. Mulkidjanian
- A.N. Belozersky Institute of Physico‐Chemical BiologyLomonosov Moscow State UniversityMoscow119991Russia
- School of Bioengineering and BioinformaticsLomonosov Moscow State UniversityMoscow119991Russia
- School of PhysicsUniversity of OsnabrueckOsnabrueckD‐49069Germany
| |
Collapse
|
7
|
Crofts AR, Rose SW, Burton RL, Desai AV, Kenis PJA, Dikanov SA. The Q-Cycle Mechanism of the bc1 Complex: A Biologist’s Perspective on Atomistic Studies. J Phys Chem B 2017; 121:3701-3717. [DOI: 10.1021/acs.jpcb.6b10524] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Antony R. Crofts
- Department
of Biochemistry, University of Illinois at Urbana−Champaign, 419 Roger Adams Lab, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
- Center
for Biophysics and Quantitative Biology, University of Illinois at Urbana−Champaign, 179 Loomis, 1110 West Green Street, Urbana, Illinois 61801, United States
| | - Stuart W. Rose
- Center
for Biophysics and Quantitative Biology, University of Illinois at Urbana−Champaign, 179 Loomis, 1110 West Green Street, Urbana, Illinois 61801, United States
| | - Rodney L. Burton
- Department
of Biochemistry, University of Illinois at Urbana−Champaign, 419 Roger Adams Lab, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Amit V. Desai
- Department of Chemical & Biomolecular Engineering, University of Illinois at Urbana−Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Paul J. A. Kenis
- Department of Chemical & Biomolecular Engineering, University of Illinois at Urbana−Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Sergei A. Dikanov
- Department
of Veterinary Clinical Medicine, University of Illinois at Urbana−Champaign, 1008 West Hazelwood Drive, Urbana, Illinois 61801, United States
| |
Collapse
|
8
|
Hagras MA, Stuchebrukhov AA. Internal switches modulating electron tunneling currents in respiratory complex III. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:749-58. [DOI: 10.1016/j.bbabio.2016.02.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 02/02/2016] [Accepted: 02/08/2016] [Indexed: 10/22/2022]
|
9
|
Reprint of: Biogenesis of the cytochrome bc(1) complex and role of assembly factors. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1817:872-82. [PMID: 22564912 DOI: 10.1016/j.bbabio.2012.03.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Revised: 11/10/2011] [Accepted: 11/11/2011] [Indexed: 11/24/2022]
Abstract
The cytochrome bc(1) complex is an essential component of the electron transport chain in most prokaryotes and in eukaryotic mitochondria. The catalytic subunits of the complex that are responsible for its redox functions are largely conserved across kingdoms. In eukarya, the bc(1) complex contains supernumerary subunits in addition to the catalytic core, and the biogenesis of the functional bc(1) complex occurs as a modular assembly pathway. Individual steps of this biogenesis have been recently investigated and are discussed in this review with an emphasis on the assembly of the bc(1) complex in the model eukaryote Saccharomyces cerevisiae. Additionally, a number of assembly factors have been recently identified. Their roles in bc(1) complex biogenesis are described, with special emphasis on the maturation and topogenesis of the yeast Rieske iron-sulfur protein and its role in completing the assembly of functional bc(1) complex. This article is part of a Special Issue entitled: Biogenesis/Assembly of Respiratory Enzyme Complexes.
Collapse
|
10
|
Dikanov SA. Resolving protein-semiquinone interactions by two-dimensional ESEEM spectroscopy. ELECTRON PARAMAGNETIC RESONANCE 2012. [DOI: 10.1039/9781849734837-00103] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- S. A. Dikanov
- University of Illinois at Urbana-Champaign, Department of Veterinary Clinical Medicine 190 MSB, 506 S. Mathews Ave., Urbana IL 61801 USA
| |
Collapse
|
11
|
Smith PM, Fox JL, Winge DR. Biogenesis of the cytochrome bc(1) complex and role of assembly factors. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1817:276-86. [PMID: 22138626 DOI: 10.1016/j.bbabio.2011.11.009] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Revised: 11/10/2011] [Accepted: 11/11/2011] [Indexed: 11/28/2022]
Abstract
The cytochrome bc(1) complex is an essential component of the electron transport chain in most prokaryotes and in eukaryotic mitochondria. The catalytic subunits of the complex that are responsible for its redox functions are largely conserved across kingdoms. In eukarya, the bc(1) complex contains supernumerary subunits in addition to the catalytic core, and the biogenesis of the functional bc(1) complex occurs as a modular assembly pathway. Individual steps of this biogenesis have been recently investigated and are discussed in this review with an emphasis on the assembly of the bc(1) complex in the model eukaryote Saccharomyces cerevisiae. Additionally, a number of assembly factors have been recently identified. Their roles in bc(1) complex biogenesis are described, with special emphasis on the maturation and topogenesis of the yeast Rieske iron-sulfur protein and its role in completing the assembly of functional bc(1) complex. This article is part of a Special Issue entitled: Biogenesis/Assembly of Respiratory Enzyme Complexes.
Collapse
Affiliation(s)
- Pamela M Smith
- Department of Biochemistry, University of Utah Health Sciences Center, Salt Lake City, UT, USA
| | | | | |
Collapse
|
12
|
Marsico A, Scheubert K, Tuukkanen A, Henschel A, Winter C, Winnenburg R, Schroeder M. MeMotif: a database of linear motifs in alpha-helical transmembrane proteins. Nucleic Acids Res 2009; 38:D181-9. [PMID: 19910368 PMCID: PMC2808916 DOI: 10.1093/nar/gkp1042] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Membrane proteins are important for many processes in the cell and used as main drug targets. The increasing number of high-resolution structures available makes for the first time a characterization of local structural and functional motifs in α-helical transmembrane proteins possible. MeMotif (http://projects.biotec.tu-dresden.de/memotif) is a database and wiki which collects more than 2000 known and novel computationally predicted linear motifs in α-helical transmembrane proteins. Motifs are fully described in terms of several structural and functional features and editable. Motifs contained in MeMotif can be used in different biological applications, from the identification of biochemically important functional residues which are candidates for mutagenesis experiments to the improvement of tools for transmembrane protein modeling.
Collapse
Affiliation(s)
- Annalisa Marsico
- Bioinformatics Department, Biotechnology Center, TU Dresden, Tatzberg 47/49, 01307 Dresden, Germany.
| | | | | | | | | | | | | |
Collapse
|
13
|
Bis-histidine-coordinated hemes in four-helix bundles: how the geometry of the bundle controls the axial imidazole plane orientations in transmembrane cytochromes of mitochondrial complexes II and III and related proteins. J Biol Inorg Chem 2008; 13:481-98. [PMID: 18418633 DOI: 10.1007/s00775-008-0372-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2008] [Accepted: 03/27/2008] [Indexed: 10/22/2022]
Abstract
Early investigation of the electron paramagnetic resonance spectra of bis-histidine-coordinated membrane-bound ferriheme proteins led to the description of a spectral signal that had only one resolved feature. These became known as "highly anisotropic low-spin" or "large g(max)" ferriheme centers. Extensive work with small-molecule model heme complexes showed that this spectroscopic signature occurs in bis-imidazole ferrihemes in which the planes of the imidazole ligands are nearly perpendicular, deltaphi = 57-90 degrees. In the last decade protein crystallographic studies have revealed the atomic structures of a number of examples of bis-histidine heme proteins. A frequent characteristic of these large g(max) ferrihemes in membrane-bound proteins is the occurrence of the heme within a four-helix bundle with a left-handed twist. The histidine ligands occur at the same level on two diametrically opposed helices of the bundle. These ligands have the same side-chain conformation and ligate heme iron on the bundle axis, resulting in a quasi-twofold symmetric structure. The two non-ligand-bearing helices also obey this symmetry, and have a conserved small residue, usually glycine, where the edge of the heme ring makes contact with the helix backbones. In many cases this small residue is preceded by a threonine or serine residue whose side-chain hydroxyl oxygen acts as a hydrogen-bond acceptor from the N(delta1) atom of the heme-ligating histidine. The deltaphi angle is thus determined by the common histidine side-chain conformation and the crossing angle of the ligand-bearing helices, in some cases constrained by hydrogen bonds to the serine/threonine residues on the non-ligand-bearing helices.
Collapse
|
14
|
Brasseur G, Di Rago JP, Slonimski PP, Lemesle-Meunier D. Analysis of suppressor mutation reveals long distance interactions in the bc(1) complex of Saccharomyces cerevisiae. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1506:89-102. [PMID: 11522251 DOI: 10.1016/s0005-2728(01)00186-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Four totally conserved glycines are involved in the packing of the two cytochrome b hemes, b(L) and b(H), of the bc(1) complex. The conserved glycine 131 is involved in the packing of heme b(L) and is separated by only 3 A from this heme in the bc(1) complex structure. The cytochrome b respiratory deficient mutant G131S is affected in the assembly of the bc(1) complex. An intragenic suppressor mutation was obtained at position 260, in the ef loop, where a glycine was replaced by an alanine. This respiratory competent revertant exhibited a low bc(1) complex activity and was affected in the electron transfer at the Q(P) site. The k(min) for the substrate DBH(2) was diminished by an order of magnitude and EPR spectra showed a partially empty Q(P) site. However, the binding of the Q(P) site inhibitors stigmatellin and myxothiazol remained unchanged in the suppressor strain. Optical spectroscopy revealed that heme b(L) is red shifted by 0.8 nm and that the E(m) of heme b(L) was slightly increased (+20 mV) in the revertant strain as compared to wild type strain values. Addition of a methyl group at position 260 is thus sufficient to allow the assembly of the bc(1) complex and the insertion of heme b(L) despite the presence of the serine at position 131. Surprisingly, reversion at position 260 was located 13 A away from the original mutation and revealed a long distance interaction in the yeast bc(1) complex.
Collapse
Affiliation(s)
- G Brasseur
- Laboratoire de Bioénergétique et Ingénierie des Protéines, CNRS, Marseilles, France.
| | | | | | | |
Collapse
|
15
|
Crofts AR, Hong S, Ugulava N, Barquera B, Gennis R, Guergova-Kuras M, Berry EA. Pathways for proton release during ubihydroquinone oxidation by the bc(1) complex. Proc Natl Acad Sci U S A 1999; 96:10021-6. [PMID: 10468555 PMCID: PMC17835 DOI: 10.1073/pnas.96.18.10021] [Citation(s) in RCA: 122] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Quinol oxidation by the bc(1) complex of Rhodobacter sphaeroides occurs from an enzyme-substrate complex formed between quinol bound at the Q(o) site and the iron-sulfur protein (ISP) docked at an interface on cytochrome b. From the structure of the stigmatellin-containing mitochondrial complex, we suggest that hydrogen bonds to the two quinol hydroxyl groups, from Glu-272 of cytochrome b and His-161 of the ISP, help to stabilize the enzyme-substrate complex and aid proton release. Reduction of the oxidized ISP involves H transfer from quinol. Release of the proton occurs when the acceptor chain reoxidizes the reduced ISP, after domain movement to an interface on cytochrome c(1). Effects of mutations to the ISP that change the redox potential and/or the pK on the oxidized form support this mechanism. Structures for the complex in the presence of inhibitors show two different orientations of Glu-272. In stigmatellin-containing crystals, the side chain points into the site, to hydrogen bond with a ring hydroxyl, while His-161 hydrogen bonds to the carbonyl group. In the native structure, or crystals containing myxothiazol or beta-methoxyacrylate-type inhibitors, the Glu-272 side chain is rotated to point out of the site, to the surface of an external aqueous channel. Effects of mutation at this residue suggest that this group is involved in ligation of stigmatellin and quinol, but not quinone, and that the carboxylate function is essential for rapid turnover. H(+) transfer from semiquinone to the carboxylate side chain and rotation to the position found in the myxothiazol structure provide a pathway for release of the second proton.
Collapse
Affiliation(s)
- A R Crofts
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | | | | | | | | | | | | |
Collapse
|
16
|
Saribaş AS, Ding H, Dutton PL, Daldal F. Substitutions at position 146 of cytochrome b affect drastically the properties of heme bL and the Qo site of Rhodobacter capsulatus cytochrome bc1 complex. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1319:99-108. [PMID: 9107318 DOI: 10.1016/s0005-2728(96)00120-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The cytochrome (cyt) b subunit of ubihydroquinone: cytochrome c oxidoreductase (bc1 complex) contains four invariant glycine (G) residues proposed to be essential for proper packing of the high and low potential (bH and bL) hemes of the bc1 complex. One of these residues, G146 located in the transmembrane helix C of cyt b of Rhodobacter capsulatus, was substituted with A and V using site-directed mutagenesis, and the effects of these substitutions on the properties of the ubiquinone oxidation (Qo) site and heme bL of the bc1 complex were analyzed. The mutants G146A and V produced properly assembled but catalytically defective bc1 complexes that are unable to support photosynthetic growth. The steady-state ubihydroquinone: cytochrome c reductase activities of the mutant complexes were about one-tenth of that of a parental strain overproducing the wild-type enzyme. Similarly, their light-activated single turnover rates were significantly lower than those of a wild-type complex. The dark potentiometric titrations revealed no significant changes in the redox midpoint potentials (Em.7) of the high (bH) and low (bL) potential hemes of cyt b in both G146A and V mutants. However, EPR spectroscopy of the [2Fe-2S] cluster of the bc1 complex indicated that the Qo site of the mutant enzymes were unoccupied. Moreover, the gz signal of heme bL, but not that of heme bH, was modified both in G146A and V, suggesting that the geometry of its ligands has been distorted. These findings indicate that this region of cyt b must be well packed around heme bL since even a slight increase in the size of the amino acid side chain at position 146 (such as G to A) greatly perturbs the spatial conformation of heme bL, alters substrate accessibility and binding to the Qo site, and renders the bc1 complex inactive.
Collapse
Affiliation(s)
- A S Saribaş
- Department of Biology, University of Pennsylvania, Philadelphia 19104, USA
| | | | | | | |
Collapse
|
17
|
Brasseur G, Coppée JY, Colson AM, Brivet-Chevillotte P. Structure-function relationships of the mitochondrial bc1 complex in temperature-sensitive mutants of the cytochrome b gene, impaired in the catalytic center N. J Biol Chem 1995; 270:29356-64. [PMID: 7493970 DOI: 10.1074/jbc.270.49.29356] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Seven new structures of cytochrome b have been recently identified by isolating and sequencing revertants from cytochrome b respiratory deficient mutants (Coppée, J. Y., Brasseur, G., Brivet-Chevillotte, P., and Colson, A. M. (1994) J. Biol. Chem. 269, 4221-4226). These mutations are located in the center N domain (QN). All the revertants exhibited a modified heme b562 maximum, confirming that part of the NH2-terminal region is in the vicinity of the extramembranous loop between helices IV-V and heme b562. Based on measurements performed on the maximal activities occurring in each segment of the respiratory chain, the decrease observed in the NADH oxidase activities of several revertants was correlated with some bc1 complex activity impairments; this may also explain why a moderate decrease in bc1 complex activity does not limit the succinate oxidase activity. The decrease in the rate of reduction of cytochrome b via the center N pathway is responsible for the impairment of the bc1 complex activity of these revertants. The three double-mutated revertants (S206L/N208K or -Y; S206L/W30C) are temperature-sensitive in vivo, and their mitochondria like that of the original mutant S206L are thermosensitive in vitro. Isolating the W30C mutation does not yield a thermosensitive phenotype: the replacement of serine 206 by leucine is therefore responsible for the thermoinstability of these strains; this temperature sensitivity is reinforced by additional mutations N208K or N208Y, and not by W30C. These data suggest that serine 206 and asparagine 208 are involved in the thermostability of the protein. When bc1 complex activity is lost after incubating mitochondria at a nonpermissive temperature (37 degrees C), heme b is still present, but can no longer be reduced by physiological substrate. The progressive loss of bc1 complex activity seems to be initially linked to a change in the tertiary structure of cytochrome b, which occurs drastically at center N and much more slowly at center P, as shown by kinetic study on the two cytochrome b redox pathways.
Collapse
Affiliation(s)
- G Brasseur
- Laboratoire de Bioénergétique et Ingéniérie des protéines, CNRS, Marseille, France
| | | | | | | |
Collapse
|
18
|
Bruel C, Manon S, Guérin M, Lemesle-Meunier D. Decoupling of the bc1 complex in S. cerevisiae; point mutations affecting the cytochrome b gene bring new information about the structural aspect of the proton translocation. J Bioenerg Biomembr 1995; 27:527-39. [PMID: 8718457 DOI: 10.1007/bf02110192] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Four mutations in the mitochondrial cytochrome b of S. cerevisiae have been characterized with respect to growth capacities, catalytic properties, ATP/2e- ratio, and transmembrane potential. The respiratory-deficient mutant G137E and the three pseudo-wild type revertants E137 + I147F, E137 + C133S, and E137 + N256K were described previously (Tron and Lemesle-Meunier, 1990; Di Rago et al., 1990a). The mutant G137E is unable to grow on respiratory substrates but its electron transfer activity is partly conserved and totally inhibited by antimycin A. The secondary mutations restore the respiratory growth at variable degree, with a phosphorylation efficiency of 12-42% as regards the parental wild type strain, and result in a slight increase in the various electron transfer activities at the level of the whole respiratory chain. The catalytic efficiency for ubiquinol was slightly (G137E) or not affected (E137 + I147F, E137 + C133S, and E137 + N256K) in these mutants. Mutation G137E induces a decrease in the ATP/2e- ratio (50% of the W.T. value) and transmembrane potential (60% of the W.T. value) at the bc1 level, whereas the energetic capacity of the cytochrome oxidase is conserved. Secondary mutations I147F, C133S, and N256K partly restore the ATP/2e- ratio and the transmembrane potential at the bc1 complex level. The results suggest that a partial decoupling of the bc1 complex is induced by the cytochrome b point mutation G137E. In the framework of the protonmotive Q cycle, this decoupling can be explained by the existence of a proton wire connecting centers P and N in the wild type bc1 complex which may be amplified or uncovered by the G137E mutation when the bc1 complex is functioning.
Collapse
Affiliation(s)
- C Bruel
- Laboratoire de Bioénergétique et Ingénierie des Protéines, C.N.R.S., Marseille, France
| | | | | | | |
Collapse
|
19
|
Bruel C, di Rago JP, Slonimski PP, Lemesle-Meunier D. Role of the evolutionarily conserved cytochrome b tryptophan 142 in the ubiquinol oxidation catalyzed by the bc1 complex in the yeast Saccharomyces cerevisiae. J Biol Chem 1995; 270:22321-8. [PMID: 7673215 DOI: 10.1074/jbc.270.38.22321] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Trp-142 is a highly conserved residue of the cytochrome b subunit in the bc1 complexes. To study the importance of this residue in the quinol oxidation catalyzed by the bc1 complex, we characterized four yeast mutants with arginine, lysine, threonine, and serine at position 142. The mutant W142R was isolated previously as a respiration-deficient mutant unable to grow on non-fermentable carbon sources (Lemesle-Meunier, D., Brivet-Chevillotte, P., di Rago, J.-P, Slonimski, P.P., Bruel, C., Tron, T., and Forget, N. (1993) J. Biol. Chem. 268, 15626-15632). The mutants W142K, W142T, and W142S were obtained here as respiration-sufficient revertants from mutant W142R. Mutant W142R exhibited a decreased complex II turnover both in the presence and absence of antimycin A; this suggests that the structural effect of W142R in the bc1 complex probably interferes with the correct assembly of the succinate-ubiquinone reductase complex. The mutations resulted in a parallel decrease in turnover number and apparent Km, with the result that there was no significant change in the second-order rate constant for ubiquinol oxidation. Mutants W142K and W142T exhibited some resistance toward myxothiazol, whereas mutant W142R showed increased sensitivity. The cytochrome cc1 reduction kinetics were found to be severely affected in mutants W142R, W142K, and W142T. The respiratory activities and the amounts of reduced cytochrome b measured during steady state suggest that the W142S mutation also modified the quinol-cytochrome c1 electron transfer pathway. The cytochrome b reduction kinetics through center P were affected when Trp-142 was replaced with arginine or lysine, but not when it was replaced with threonine or serine. Of the four amino acids tested at position 142, only arginine resulted in a decrease in cytochrome b reduction through center N. These findings are discussed in terms of the structure and function of the quinol oxidation site and seem to indicate that Trp-142 is not critical to the kinetic interaction of ubiquinol with the reductase, but plays an important role in the electron transfer reactions that intervene between ubiquinol oxidation and cytochrome c1 reduction.
Collapse
Affiliation(s)
- C Bruel
- Laboratoire de Bioénergétique et Ingénierie des Protéines, CNRS, Marseille, France
| | | | | | | |
Collapse
|
20
|
Brasseur G, Brivet-Chevillotte P. Characterization of mutations in the mitochondrial cytochrome b gene of Saccharomyces cerevisiae affecting the quinone reductase site (QN). EUROPEAN JOURNAL OF BIOCHEMISTRY 1995; 230:1118-24. [PMID: 7601143 DOI: 10.1111/j.1432-1033.1995.tb20663.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The revertant [G33A]cytochrome b recently isolated from the [G33D]cytochrome b mutant [Coppée, J. Y., Tokutake, N., Marc, D., di Rago, J.-P., Miyoshi, H. & Colson, A.-M. (1994) FEBS Lett. 339, 1-6] exhibits cross resistance to center-N inhibitors 2-heptyl-4-hydroxyquinoline N-oxide (HQNO) and funiculosin and a spectral shift in the cytochrome b562 heme. This indicates that the conserved G33 residue is in the vicinity of this heme, and thus agrees with the previous suggestion that glycine may play a role in the helix packing around the hemes. The [S206L]cytochrome b and [M221K]cytochrome b respiratory-growth-deficient mutants [Lemesle-Meunier, D., Brivet-Chevillotte, P., di Rago, J. P., Slonimski, P. P., Bruel, C., Tron, T. & Forget, N. (1993) J. Biol. Chem. 268, 15,626-15,632], which synthesize cytochrome b and retain little or no bc1 complex activity, show no change in the reduction kinetics of cytochrome b via center P, which suggests that the oxidizing site is functional. Impairment of both the reduction and oxidation of heme b562 at the ubiquinone reduction center of the mitochondrial ubiquinone-cytochrome-c oxidoreductase site is, therefore, responsible for the deficient catalytic activity and respiratory growth in these strains.
Collapse
Affiliation(s)
- G Brasseur
- Bioénergétique et Ingéniérie des protéines, CNRS, Marseille, France
| | | |
Collapse
|
21
|
Abstract
The cytochrome bc1 complex is an oligomeric electron transfer enzyme located in the inner membrane of mitochondria and the plasma membrane of bacteria. The cytochrome bc1 complex participates in respiration in eukaryotic cells and also participates in respiration, cyclic photosynthetic electron transfer, denitrification, and nitrogen fixation in a phylogenetically diverse collection of bacteria. In all of these organisms, the cytochrome bc1 complex transfers electrons from ubiquinol to cytochrome c and links this electron transfer to translocation of protons across the membrane in which it resides, thus converting the available free energy of the oxidation-reduction reaction into an electrochemical proton gradient. The mechanism by which the cytochrome bc1 complex achieves this energy transduction is the protonmotive Q cycle. The Q cycle mechanism has been documented by extensive experimentation, and recent investigations have focused on structural features of the three redox subunits of the bc1 complex essential to the protonmotive and electrogenic activities of this membranous enzyme.
Collapse
Affiliation(s)
- U Brandt
- Department of Biochemistry, Dartmouth Medical School, Hanover, NH 03755
| | | |
Collapse
|
22
|
Howell N, Robertson DE. Electrochemical and spectral analysis of the long-range interactions between the Qo and Qi sites and the heme prosthetic groups in ubiquinol-cytochrome c oxidoreductase. Biochemistry 1993; 32:11162-72. [PMID: 8218179 DOI: 10.1021/bi00092a028] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The results are presented of an electrochemical and high-resolution spectral analysis of the heme prosthetic groups in the bc1 complex from mouse cells. To study the long-range interactions between the Qo and Qi quinone redox sites and the b heme groups, we analyzed the effects on the proximal and distal b heme groups, and the c1 heme, of inhibitors that tightly and specifically bind to the Qi or Qo redox site. A number of results emerged from these studies. (1) There is inhomogeneous broadening of the b heme alpha band absorption spectra. Furthermore, contrary to the conclusion from low-resolution spectral analysis, the higher energy transition in the split-alpha band spectrum of the bL heme is more intense than the lower energy transition. (2) Inhibitors that bind at the Qi site have significant effects upon the electronic environment of the distal bL heme. Conversely, Qo site inhibitors induced changes in the electronic environment of the distal bH heme. (3) In contrast, inhibitor binding at either site has little effect upon the midpoint potential of the distal heme. (4) Experiments in which both a Qi and a Qo inhibitor are bound at the redox sites indicate that the long-range effects of one inhibitor are not blocked by the second inhibitor; enhanced effects are often observed. (5) In the double-inhibitor titrations involving the Qo inhibitor myxothiazol, there is evidence for two electrochemically and spectrally distinct species of the bL heme group, a phenomenon not observed previously. (6) The high-resolution deconvolutions of alpha band absorption spectra allow an interpretation of these inhibitor-induced changes in terms of homogeneous broadening, inhomogeneous broadening, and changes in x-y degeneracy. The general conclusion from these experiments is that when an inhibitor binds to a quinone redox site of the cytochrome b protein, it produces local conformational changes that, in turn, are transmitted to distal regions of the protein. The ligation of the bH and bL hemes between two parallel transmembrane helices provides a mechanism by which long-distance interactions can be propagated. The lack of long-range effects upon the midpoint potentials of the heme groups suggests, however, that protein conformational changes are unlikely to be a major control mechanism for the transmembrane electron- and proton-transfer steps of the Q cycle.
Collapse
Affiliation(s)
- N Howell
- Department of Radiation Therapy, University of Texas Medical Branch, Galveston 77550
| | | |
Collapse
|
23
|
Esposti MD, De Vries S, Crimi M, Ghelli A, Patarnello T, Meyer A. Mitochondrial cytochrome b: evolution and structure of the protein. BIOCHIMICA ET BIOPHYSICA ACTA 1993; 1143:243-71. [PMID: 8329437 DOI: 10.1016/0005-2728(93)90197-n] [Citation(s) in RCA: 245] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Cytochrome b is the central redox catalytic subunit of the quinol: cytochrome c or plastocyanin oxidoreductases. It is involved in the binding of the quinone substrate and it is responsible for the transmembrane electron transfer by which redox energy is converted into a protonmotive force. Cytochrome b also contains the sites to which various inhibitors and quinone antagonists bind and, consequently, inhibit the oxidoreductase. Ten partial primary sequences of cytochrome b are presented here and they are compared with sequence data from over 800 species for a detailed analysis of the natural variation in the protein. This sequence information has been used to predict some aspects of the structure of the protein, in particular the folding of the transmembrane helices and the location of the quinone- and heme-binding pockets. We have observed that inhibitor sensitivity varies greatly among species. The comparison of inhibition titrations in combination with the analysis of the primary structures has enabled us to identify amino acid residues in cytochrome b that may be involved in the binding of the inhibitors and, by extrapolation, quinone/quinol. The information on the quinone-binding sites obtained in this way is expected to be both complementary and supplementary to that which will be obtained in the future by mutagenesis and X-ray crystallography.
Collapse
Affiliation(s)
- M D Esposti
- Department of Biology, University of Bologna, Italy
| | | | | | | | | | | |
Collapse
|
24
|
Lemesle-Meunier D, Brivet-Chevillotte P, di Rago J, Slonimski P, Bruel C, Tron T, Forget N. Cytochrome b-deficient mutants of the ubiquinol-cytochrome c oxidoreductase in Saccharomyces cerevisiae. Consequence for the functional and structural characteristics of the complex. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)82302-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
25
|
Hope AB. The chloroplast cytochrome bf complex: a critical focus on function. BIOCHIMICA ET BIOPHYSICA ACTA 1993; 1143:1-22. [PMID: 8388722 DOI: 10.1016/0005-2728(93)90210-7] [Citation(s) in RCA: 117] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- A B Hope
- School of Biological Sciences, Flinders University, Adelaide, Australia
| |
Collapse
|
26
|
Miyoshi H, Saitoh I, Iwamura H. Quantitative analysis of electron transport inhibition of rat-liver mitochondrial cytochrome bc1 complex by nitrophenols. BIOCHIMICA ET BIOPHYSICA ACTA 1993; 1143:23-8. [PMID: 8388723 DOI: 10.1016/0005-2728(93)90211-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
A series of nitrophenolic electron transport inhibitors (2-sec-butyl-4-nitro-6-substituted phenols and 2-sec-butyl-4-substituted-6-nitrophenols) of rat-liver mitochondrial cytochrome bc1 complex (cyt. bc1 complex) was synthesized. To obtain information on the three-dimensional structure of the ubiquinone redox site of cyt. bc1 complex, the structure-inhibitory activity relationship was examined by regression analysis using physiocochemical substituent parameters. The inhibitory activity increased as the hydrophobicity and the electron-withdrawing ability of the 4- and 6-substituents increased. These results indicated that hydrophobic interaction between the inhibitor molecule and the binding domain should be important and that an anionic form of nitrophenols may be the active form at the binding domain. Hydrogen-bond-acceptable 4-substituents such as methoxy and nitro groups, but not cyano group, were favorable to the inhibitory activity. This result, along with the fact that phenolic OH group was essential for the activity, suggested that nitrophenols occupy the ubiquinone redox site by forming two hydrogen-bond bridges as proposed for natural ubiquinone binding. Although a cyano group is hydrogen-bond-acceptable, hydrogen-bond formation between the 4-cyano group and the binding domain was not suggested. This result and molecular orbital calculation studies on electrostatic potential of the inhibitors suggested that hydrogen-bond donating residue may not be located in the region where the rod-like cyano (C identical to N) bond directs.
Collapse
Affiliation(s)
- H Miyoshi
- Department of Agricultural Chemistry, Kyoto University, Japan
| | | | | |
Collapse
|
27
|
Knaff DB. The cytochrome bc 1 complexes of photosynthetic purple bacteria. PHOTOSYNTHESIS RESEARCH 1993; 35:117-133. [PMID: 24318679 DOI: 10.1007/bf00014743] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/1992] [Accepted: 07/13/1992] [Indexed: 06/02/2023]
Abstract
Complete nucleotide sequences are now available for the pet (fbc) operons coding for the three electron carrying protein subunits of the cytochrome bc 1 complexes of four photosynthetic purple non-sulfur bacteria. It has been demonstrated that, although the complex from one of these bacteria may contain a fourth subunit, three subunit complexes appear to be fully functional. The ligands to the three hemes and the one [2Fe-2S] cluster in the complex have been identified and considerable progress has been made in mapping the two quinone-binding sites present in the complex, as well as the binding sites for quinone analog inhibitors. Hydropathy analyses and alkaline phosphatase fusion experiments have provided considerable insight into the likely folding pattern of the cytochrome b peptide of the complex and identification of the electrogenic steps associated with electron transport through the complex has allowed the orientation within the membrane of the electron-carrying groups of the complex to be modeled.
Collapse
Affiliation(s)
- D B Knaff
- Department of Chemistry and Biochemistry, Texas Tech University, 79409-1061, Lubbock, Texas, USA
| |
Collapse
|