1
|
Shibata T, Ikawa S, Iwasaki W, Sasanuma H, Masai H, Hirota K. Homology recognition without double-stranded DNA-strand separation in D-loop formation by RecA. Nucleic Acids Res 2024; 52:2565-2577. [PMID: 38214227 PMCID: PMC10954442 DOI: 10.1093/nar/gkad1260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/15/2023] [Accepted: 12/30/2023] [Indexed: 01/13/2024] Open
Abstract
RecA protein and RecA/Rad51 orthologues are required for homologous recombination and DNA repair in all living creatures. RecA/Rad51 catalyzes formation of the D-loop, an obligatory recombination intermediate, through an ATP-dependent reaction consisting of two phases: homology recognition between double-stranded (ds)DNA and single-stranded (ss)DNA to form a hybrid-duplex core of 6-8 base pairs and subsequent hybrid-duplex/D-loop processing. How dsDNA recognizes homologous ssDNA is controversial. The aromatic residue at the tip of the β-hairpin loop (L2) was shown to stabilize dsDNA-strand separation. We tested a model in which dsDNA strands were separated by the aromatic residue before homology recognition and found that the aromatic residue was not essential to homology recognition, but was required for D-loop processing. Contrary to the model, we found that the double helix was not unwound even a single turn during search for sequence homology, but rather was unwound only after the homologous sequence was recognized. These results suggest that dsDNA recognizes its homologous ssDNA before strand separation. The search for homologous sequence with homologous ssDNA without dsDNA-strand separation does not generate stress within the dsDNA; this would be an advantage for dsDNA to express homology-dependent functions in vivo and also in vitro.
Collapse
Affiliation(s)
- Takehiko Shibata
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minami Ohsawa, Hachioji, Tokyo 192-0397, Japan
- Genome Dynamics Project, Department of Basic Medical Sciences, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
- Cellular & Molecular Biology Laboratory, RIKEN, Wako-shi, Saitama 351-0198, Japan
| | - Shukuko Ikawa
- Cellular & Molecular Biology Laboratory, RIKEN, Wako-shi, Saitama 351-0198, Japan
| | - Wakana Iwasaki
- Laboratory for Translation Structural Biology, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Hiroyuki Sasanuma
- Genome Dynamics Project, Department of Basic Medical Sciences, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Hisao Masai
- Genome Dynamics Project, Department of Basic Medical Sciences, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Kouji Hirota
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minami Ohsawa, Hachioji, Tokyo 192-0397, Japan
| |
Collapse
|
2
|
Volodin AA, Bocharova TN, Smirnova EA, Camerini-Otero RD. Reversibility, equilibration, and fidelity of strand exchange reaction between short oligonucleotides promoted by RecA protein from escherichia coli and human Rad51 and Dmc1 proteins. J Biol Chem 2009; 284:1495-504. [PMID: 19004837 PMCID: PMC2615514 DOI: 10.1074/jbc.m800612200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2008] [Revised: 10/21/2008] [Indexed: 11/06/2022] Open
Abstract
We demonstrate the reversibility of RecA-promoted strand exchange reaction between short oligonucleotides in the presence of adenosine 5'-O-(thiotriphosphate). The reverse reaction proceeds without the dissociation of RecA from DNA. The reaction reaches equilibrium and its yield depends on the homology between the reaction substrates. We estimate the tolerance of the RecA-promoted strand exchange to individual base substitutions for a comprehensive set of possible base combinations in a selected position along oligonucleotide substrates for strand exchange and find, in agreement with previously reported estimations, that this tolerance is higher than in the case of free DNA. It is demonstrated that the short oligonucleotide-based approach can be applied to the human recombinases Rad51 and Dmc1 when strand exchange is performed in the presence of calcium ions and ATP. Remarkably, despite the commonly held belief that the eukaryotic recombinases have an inherently lower strand exchange activity, in our system their efficiencies in strand exchange are comparable with that of RecA. Under our experimental conditions, the human recombinases exhibit a significantly higher tolerance to interruptions of homology due to point base substitutions than RecA. Finding conditions where a chemical reaction is reversible and reaches equilibrium is critically important for its thermodynamically correct description. We believe that the experimental system described here will substantially facilitate further studies on different aspects of the mechanisms of homologous recombination.
Collapse
Affiliation(s)
- Alexander A Volodin
- Institute of Molecular Genetics of the Russian Academy of Sciences, Kurchatov Square, 123182 Moscow, Russia
| | | | | | | |
Collapse
|
3
|
Wilson JE. The use of monoclonal antibodies and limited proteolysis in elucidation of structure-function relationships in proteins. METHODS OF BIOCHEMICAL ANALYSIS 2006; 35:207-50. [PMID: 2002771 DOI: 10.1002/9780470110560.ch4] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- J E Wilson
- Biochemistry Department, Michigan State University, East Lansing
| |
Collapse
|
4
|
Ikeda M, Hamano K, Shibata T. Epitope mapping of anti-recA protein IgGs by region specified polymerase chain reaction mutagenesis. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)42694-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
5
|
Abstract
A protein has various epitopes, and a monoclonal antibody specifically binds to the protein by recognizing 1 of the epitopes. This characteristic of the monoclonal antibody has opened various new approaches in a wide variety of research works. In studies about recA protein and its promoted various reactions relating to genetic recombination, anti-recA protein-monoclonal antibodies are very useful to analyse reaction mechanisms and to detect transition in the higher order-structure of the protein, as well as to measure the amounts of recA protein in vitro or in vivo and to identify the related proteins. In this article, we will review studies on recA protein in which monoclonal antibodies were used as major tools. By using anti-recA protein-monoclonal IgGs as specific inhibitors, the partial reactions of the homologous pairing and strand exchange promoted by recA protein were separated, and by use of a set of anti-recA protein IgGs the stages of activation of recA protein in the above reactions were discriminated.
Collapse
Affiliation(s)
- T Shibata
- Laboratory of Microbiology, RIKEN (Institute of Physical and Chemical Research), Saitama, Japan
| | | | | | | |
Collapse
|
6
|
|
7
|
Ikeda M, Makino O, Shibata T. Probing the activation stages of the RecA protein by monoclonal IgGs during the pairing of homologous DNA molecules. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(19)38981-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
8
|
Ikawa S, Kamiya N, Shibata T. Defective homologous pairing and proficient processive unwinding by the recA430 mutant protein and intermediates of homologous pairing by recA protein. J Biol Chem 1989. [DOI: 10.1016/s0021-9258(19)30062-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
9
|
Nakagawa K, Hashikawa J, Makino O, Ando T, Shibata T. Subunit structure of a yeast site-specific endodeoxyribonuclease, endo SceI. A study using monoclonal antibodies. EUROPEAN JOURNAL OF BIOCHEMISTRY 1988; 171:23-9. [PMID: 2828049 DOI: 10.1111/j.1432-1033.1988.tb13753.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Endo SceI is a eucaryotic site-specific endoDNase of 120 kDa that causes double-stranded scission at well-defined sites, but is distinguishable from procaryotic restriction endonucleases by its mode of sequence recognition and lack of related specific DNA modification. In purified preparations of endoSceI, only two polypeptide species of 75 kDa (75-kDa peptide) and 50 kDa (50-kDa peptide) are detected in apparently equal amounts. We prepared mouse monoclonal IgGs that bound specifically to the 75-kDa peptide (but not the 50-kDa peptide) without inhibiting the endoSceI activity. Immunoprecipitation experiments with these IgGs revealed that the 75-kDa peptide and the 50-kDa peptide are physically associated with each other and with the endonucleolytic activity. Full endoSceI activity was recovered by mixing the purified 75-kDa peptide and the partially purified 50-kDa peptide, each of which exhibited little or no endonuclease activity alone. These observations indicate that endoSceI consists of two non-identical subunits of 75 kDa and 50 kDa, and that both subunits are required for full enzyme activity.
Collapse
Affiliation(s)
- K Nakagawa
- Laboratory of Microbiology, Riken Institute, Saitama, Japan
| | | | | | | | | |
Collapse
|