1
|
Abstract
Oxygenic photosynthesis is the principal converter of sunlight into chemical energy. Cyanobacteria and plants provide aerobic life with oxygen, food, fuel, fibers, and platform chemicals. Four multisubunit membrane proteins are involved: photosystem I (PSI), photosystem II (PSII), cytochrome b6f (cyt b6f), and ATP synthase (FOF1). ATP synthase is likewise a key enzyme of cell respiration. Over three billion years, the basic machinery of oxygenic photosynthesis and respiration has been perfected to minimize wasteful reactions. The proton-driven ATP synthase is embedded in a proton tight-coupling membrane. It is composed of two rotary motors/generators, FO and F1, which do not slip against each other. The proton-driven FO and the ATP-synthesizing F1 are coupled via elastic torque transmission. Elastic transmission decouples the two motors in kinetic detail but keeps them perfectly coupled in thermodynamic equilibrium and (time-averaged) under steady turnover. Elastic transmission enables operation with different gear ratios in different organisms.
Collapse
Affiliation(s)
- Wolfgang Junge
- Department of Biophysics, Universität Osnabrück, DE-49069 Osnabrück, Germany;
| | | |
Collapse
|
2
|
Abstract
Molecular bioenergetics deals with the construction, function and regulation of the powerhouses of life. The present overview sketches scenes and actors, farsighted goals and daring hypotheses, meticulous tool-making, painstaking benchwork, lucky discovery, serious scepticism, emphatic believing and strong characters with weak and others with hard arguments, told from a personal, admittedly limited, perspective. Bioenergetics will blossom further with the search focused on both where there is bright light for ever-finer detail and the obvious dark spots for surprise and discovery.
Collapse
|
3
|
Abstract
In this article, I reflect on research on two ATPases. The first is F(1)F(0)-ATPase, also known as ATP synthase. It is the terminal enzyme in oxidative phosphorylation and famous as a nanomotor. Early work on mitochondrial enzyme involved purification in large amount, followed by deduction of subunit composition and stoichiometry and determination of molecular sizes of holoenzyme and individual subunits. Later work on Escherichia coli enzyme utilized mutagenesis and optical probes to reveal the molecular mechanism of ATP hydrolysis and detailed facets of catalysis. The second ATPase is P-glycoprotein, which confers multidrug resistance, notably to anticancer drugs, in mammalian cells. Purification of the protein in large quantity allowed detailed characterization of catalysis, formulation of an alternating sites mechanism, and recently, advances in structural characterization.
Collapse
Affiliation(s)
- Alan E Senior
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY 14642, USA.
| |
Collapse
|
4
|
Abstract
The chloroplast adenosine triphosphate (ATP) synthase is located in the thylakoid membrane and synthesizes ATP from adenosine diphosphate and inorganic phosphate at the expense of the electrochemical proton gradient formed by light-dependent electron flow. The structure, activities, and mechanism of the chloroplast ATP synthase are discussed. Emphasis is given to the inherent structural asymmetry of the ATP synthase and to the implication of this asymmetry to the mechanism of ATP synthesis and hydrolysis. A critical evaluation of the evidence in support of and against the notion that one part of the enzyme rotates with respect to other parts during catalytic turnover is presented. It is concluded that although rotation can occur, whether it is required for activity of the ATP synthase has not been established unequivocally.
Collapse
Affiliation(s)
- R. E. McCarty
- Department of Biology, Johns Hopkins University, Baltimore, Maryland 21218; e-mail:
| | | | | |
Collapse
|
5
|
Nakamoto RK, Ketchum CJ, al-Shawi MK. Rotational coupling in the F0F1 ATP synthase. ANNUAL REVIEW OF BIOPHYSICS AND BIOMOLECULAR STRUCTURE 1999; 28:205-34. [PMID: 10410801 DOI: 10.1146/annurev.biophys.28.1.205] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The F0F1 ATP synthase is a large multisubunit complex that couples translocation of protons down an electrochemical gradient to the synthesis of ATP. Recent advances in structural analyses have led to the demonstration that the enzyme utilizes a rotational catalytic mechanism. Kinetic and biochemical evidence is consistent with the expected equal participation of the three catalytic sites in the alpha 3 beta 3 hexamer, which operate in sequential, cooperative reaction pathways. The rotation of the core gamma subunit plays critical roles in establishing the conformation of the sites and the cooperative interactions. Mutational analyses have shown that the rotor subunits are responsible for coupling and in doing so transmit specific conformational information between transport and catalysis.
Collapse
Affiliation(s)
- R K Nakamoto
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville 22906, USA.
| | | | | |
Collapse
|
6
|
|
7
|
Abstract
The structure of the core catalytic unit of ATP synthase, alpha 3 beta 3 gamma, has been determined by X-ray crystallography, revealing a roughly symmetrical arrangement of alternating alpha and beta subunits around a central cavity in which helical portions of gamma are found. A low-resolution structural model of F0, based on electron spectroscopic imaging, locates subunit a and the two copies of subunit b outside of a subunit c oligomer. The structures of individual subunits epsilon and c (largely) have been solved by NMR spectroscopy, but the oligomeric structure of c is still unknown. The structures of subunits a and delta remain undefined, that of b has not yet been defined but biochemical evidence indicates a credible model. Subunits gamma, epsilon, b, and delta are at the interface between F1 and F0; gamma epsilon complex forms one element of the stalk, interacting with c at the base and alpha and beta at the top. The locations of b and delta are less clear. Elucidation of the structure F0, of the stalk, and of the entire F1F0 remains a challenging goal.
Collapse
Affiliation(s)
- J Weber
- Department of Biochemistry, University of Rochester Medical Center, NY 14642, USA
| | | |
Collapse
|
8
|
Liang Y, Ackerman SH. Characterization of mutations in the beta subunit of the mitochondrial F1-ATPase that produce defects in enzyme catalysis and assembly. J Biol Chem 1996; 271:26522-8. [PMID: 8900121 DOI: 10.1074/jbc.271.43.26522] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The ATP2 gene, coding for the beta subunit of the mitochondrial F1-ATPase, was cloned from nine independent isolates of chemically mutagenized yeast. Seven different mutant alleles were identified. In one case the mutation occurs in the mitochondrial targeting sequence (M1I). The remaining six mutations map to the mature part of the beta subunit protein and alter amino acids that are conserved in the bovine heart mitochondrial and Escherichia coli beta subunit proteins. Biochemical analysis of the yeast atp2 mutants identified two different phenotypes. The G133D, P179L, and G227D mutations correlate with an assembly-defective phenotype that is characterized by the accumulation of the F1 alpha and beta subunits in large protein aggregates. Strains harboring the A192V, E222K, or R293K mutations assemble an F1 of normal size that is none-the-less catalytically inactive. The effect of the atp2 mutations was also analyzed in diploids formed by crossing the mutants to wild type yeast. Hybrid enzymes formed with beta subunits containing either the G133D, E222K, or R293K mutations are compromised for steady-state ATPase activity. The display of partial dominance confirms the importance of Gly133 for structural stability and of Glu222 and Arg293 for catalytic cooperativity.
Collapse
Affiliation(s)
- Y Liang
- Department of Surgery, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | | |
Collapse
|
9
|
Amano T, Hisabori T, Muneyuki E, Yoshida M. Catalytic activities of alpha3beta3gamma complexes of F1-ATPase with 1, 2, or 3 incompetent catalytic sites. J Biol Chem 1996; 271:18128-33. [PMID: 8663463 DOI: 10.1074/jbc.271.30.18128] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
In order to know how many functional catalytic sites are necessary for ATPase activity of F1-ATPase from a thermophilic Bacillus PS3, a new method of isolating homogeneous preparations of the alpha3beta3gamma complex with 1, 2, or 3 incompetent catalytic sites was developed. Ten glutamic acids (Glu.Tag) were linked to the C terminus of the catalytically incompetent beta(E190Q) subunit. The Glu.Tag itself did not affect ATPase activity of the complexes. Two kinds of alpha3beta3gamma complexes, one containing beta(wild-type) and the other Glu.Tag-linked beta(E190Q), were mixed, urea-denatured, and dialyzed, and alpha3beta3gamma complexes were reconstituted. Each of the complexes containing a different number of Glu.Tag-linked beta(E190Q) was separated by anion-exchange chromatography and analyzed. The results were as follows. 1) Normal steady-state ATPase activity requires three intact catalytic sites. 2) Chase-acceleration, a catalytic cooperativity, requires at least two intact catalytic sites. 3) Single-site catalysis can be mediated by a single intact catalytic site alone. Rescrambling of subunits between complexes could occur when the complex was aged under certain conditions, and this might be one of the reasons for previous contradictory results (Miwa, K., Ohtsubo, M., Denda, K., Hisabori, T., Date, T., and Yoshida, M.(1989) J. Biochem. (Tokyo) 106, 730-734).
Collapse
Affiliation(s)
- T Amano
- Research Laboratory of Resources Utilization, Tokyo Institute of Technology, 4259 Nagatsuta, Yokohama 226, Japan
| | | | | | | |
Collapse
|
10
|
Mukhopadhyay A, Uh M, Mueller DM. Level of ATP synthase activity required for yeast Saccharomyces cerevisiae to grow on glycerol media. FEBS Lett 1994; 343:160-4. [PMID: 8168623 DOI: 10.1016/0014-5793(94)80310-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Two independent cold-sensitive pet mutants in the gene (ATP5) coding for the oligomycin sensitivity conferring protein (OSCP) have been isolated in the yeast Saccharomyces cerevisiae. The mutations in both strains alter the initiating methionine codon in the ATP5 gene: ATG to ATA (Ile) and AAG (Lys). Western blot analysis of total yeast protein after the cells were grown at 18 degrees C, 30 degrees C, and 37 degrees C, indicates that the level of OSCP decreased 80% relative to the wild type strain. In addition, the level of the oligomycin-sensitive ATPase decreased 85% relative to the wild type strain, after growth at 30 degrees C. These findings indicate that for S. cerevisiae, the level of oxidative phosphorylation can decrease 85% without showing a large growth defect on media containing glycerol at 30 degrees C, but not at 18 degrees C.
Collapse
Affiliation(s)
- A Mukhopadhyay
- Department of Biological Chemistry, Chicago Medical School, North Chicago, IL 60064
| | | | | |
Collapse
|
11
|
Boyer PD. The binding change mechanism for ATP synthase--some probabilities and possibilities. BIOCHIMICA ET BIOPHYSICA ACTA 1993; 1140:215-50. [PMID: 8417777 DOI: 10.1016/0005-2728(93)90063-l] [Citation(s) in RCA: 716] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- P D Boyer
- Department of Chemistry and Biochemistry, University of California, Los Angeles 90024-1570
| |
Collapse
|
12
|
Issartel JP, Dupuis A, Garin J, Lunardi J, Michel L, Vignais PV. The ATP synthase (F0-F1) complex in oxidative phosphorylation. EXPERIENTIA 1992; 48:351-62. [PMID: 1533842 DOI: 10.1007/bf01923429] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The transmembrane electrochemical proton gradient generated by the redox systems of the respiratory chain in mitochondria and aerobic bacteria is utilized by proton translocating ATP synthases to catalyze the synthesis of ATP from ADP and P(i). The bacterial and mitochondrial H(+)-ATP synthases both consist of a membranous sector, F0, which forms a H(+)-channel, and an extramembranous sector, F1, which is responsible for catalysis. When detached from the membrane, the purified F1 sector functions mainly as an ATPase. In chloroplasts, the synthesis of ATP is also driven by a proton motive force, and the enzyme complex responsible for this synthesis is similar to the mitochondrial and bacterial ATP synthases. The synthesis of ATP by H(+)-ATP synthases proceeds without the formation of a phosphorylated enzyme intermediate, and involves co-operative interactions between the catalytic subunits.
Collapse
Affiliation(s)
- J P Issartel
- Laboratoire de Biochimie (URA 1130 du CNRS), Département de Biologie Moléculaire et Structurale, Grenoble, France
| | | | | | | | | | | |
Collapse
|
13
|
Cross RL. Chapter 13 The reaction mechanism of F0F1ATP synthases. ACTA ACUST UNITED AC 1992. [DOI: 10.1016/s0167-7306(08)60181-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
|
14
|
al-Shawi MK, Parsonage D, Senior AE. Adenosine triphosphatase and nucleotide binding activity of isolated beta-subunit preparations from Escherichia coli F1F0-ATP synthase. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(19)39403-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
15
|
Thermodynamic analyses of the catalytic pathway of F1-ATPase from Escherichia coli. Implications regarding the nature of energy coupling by F1-ATPases. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(19)39579-1] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
16
|
Affiliation(s)
- H Tiedge
- Dr. Arthur M. Fishberg Research Center for Neurobiology, Mount Sinai School of Medicine, New York, NY 10029-6574
| | | |
Collapse
|
17
|
Al-Shawi MK, Senior AE. Complete kinetic and thermodynamic characterization of the unisite catalytic pathway of Escherichia coli F1-ATPase. Comparison with mitochondrial F1-ATPase and application to the study of mutant enzymes. J Biol Chem 1988. [DOI: 10.1016/s0021-9258(19)77684-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
18
|
Xue ZX, Melese T, Stempel KE, Reedy TJ, Boyer PD. Properties of chloroplast F1-ATPase partially modified by 2-azido adenine nucleotides, including demonstration of three catalytic pathways. J Biol Chem 1988. [DOI: 10.1016/s0021-9258(18)37473-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
19
|
Cross RL. The number of functional catalytic sites on F1-ATPases and the effects of quaternary structural asymmetry on their properties. J Bioenerg Biomembr 1988; 20:395-405. [PMID: 2906058 DOI: 10.1007/bf00762200] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Recent structural and kinetic studies of F1 and F0F1 are reviewed with regard to their implications for the binding change mechanism for ATP synthesis by oxidative phosphorylation and photophosphorylation. It is concluded that at least two and probably all three of the catalytic sites on F1 are functionally equivalent despite permanent structural asymmetry in the soluble enzyme. A rotary mechanism in which all three catalytic subunits experience all possible interactions with the single-copy subunits during turnover is thought not to apply to soluble F1 but remains an attractive model for the membrane bound enzyme.
Collapse
Affiliation(s)
- R L Cross
- Department of Biochemistry and Molecular Biology, State University of New York, Health Science Center, Syracuse 13210
| |
Collapse
|
20
|
Rao R, Cunningham D, Cross RL, Senior AE. Pyridoxal 5‘-diphospho-5‘-adenosine binds at a single site on isolated alpha-subunit from Escherichia coli F1-ATPase and specifically reacts with lysine 201. J Biol Chem 1988. [DOI: 10.1016/s0021-9258(18)60613-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|