1
|
Marafie SK, Al-Mulla F. An Overview of the Role of Furin in Type 2 Diabetes. Cells 2023; 12:2407. [PMID: 37830621 PMCID: PMC10571965 DOI: 10.3390/cells12192407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/27/2023] [Indexed: 10/14/2023] Open
Abstract
Post-translational modifications (PTMs) play important roles in regulating several human diseases, like cancer, neurodegenerative disorders, and metabolic disorders. Investigating PTMs' contribution to protein functions is critical for modern biology and medicine. Proprotein convertases (PCs) are irreversible post-translational modifiers that have been extensively studied and are considered as key targets for novel therapeutics. They cleave proteins at specific sites causing conformational changes affecting their functions. Furin is considered as a PC model in regulating growth factors and is involved in regulating many pro-proteins. The mammalian target of the rapamycin (mTOR) signaling pathway is another key player in regulating cellular processes and its dysregulation is linked to several diseases including type 2 diabetes (T2D). The role of furin in the context of diabetes has been rarely explored and is currently lacking. Moreover, furin variants have altered activity that could have implications on overall health. In this review, we aim to highlight the role of furin in T2D in relation to mTOR signaling. We will also address furin genetic variants and their potential effect on T2D and β-cell functions. Understanding the role of furin in prediabetes and dissecting it from other confounding factors like obesity is crucial for future therapeutic interventions in metabolic disorders.
Collapse
Affiliation(s)
- Sulaiman K. Marafie
- Biochemistry and Molecular Biology Department, Dasman Diabetes Institute, P.O. Box 1180, Dasman 15462, Kuwait
| | - Fahd Al-Mulla
- Genetics and Bioinformatics Department, Dasman Diabetes Institute, P.O. Box 1180, Dasman 15462, Kuwait
| |
Collapse
|
2
|
Proprotein convertases regulate trafficking and maturation of key proteins within the secretory pathway. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 133:1-54. [PMID: 36707198 DOI: 10.1016/bs.apcsb.2022.10.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Proprotein Convertases (PCs) are serine endoproteases that regulate the homeostasis of protein substrates in the cell. The PCs family counts 9 members-PC1/3, PC2, PC4, PACE4, PC5/6, PC7, Furin, SKI-1/S1P, and PCSK9. The first seven PCs are known as Basic Proprotein Convertases due to their propensity to cleave after polybasic clusters. SKI-1/S1P requires the additional presence of hydrophobic residues for processing, whereas PCSK9 is catalytically dead after autoactivation and exerts its functions using mechanisms alternative to direct cleavage. All PCs traffic through the canonical secretory pathway, reaching different compartments where the various substrates reside. Despite PCs members do not share the same subcellular localization, most of the cellular organelles count one or more Proprotein Convertases, including ER, Golgi stack, endosomes, secretory granules, and plasma membranes. The widespread expression of these enzymes at the systemic level speaks for their importance in the homeostasis of a large number of biological functions. Among others, PCs cleave precursors of hormones and growth factors and activate receptors and transcription factors. Notably, dysregulation of the enzymatic activity of Proprotein Convertases is associated to major human pathologies, such as cardiovascular diseases, cancer, diabetes, infections, inflammation, autoimmunity diseases, and Parkinson. In the current COVID-19 pandemic, Furin has further attracted the attention as a key player for conferring high pathogenicity to SARS-CoV-2. Here, we review the Proprotein Convertases family and their most important substrates along the secretory pathway. Knowledge about the complex functions of PCs is important to identify potential drug strategies targeting this class of enzymes.
Collapse
|
3
|
Abstract
Analysis of the SARS-CoV-2 sequence revealed a multibasic furin cleavage site at the S1/S2 boundary of the spike protein distinguishing this virus from SARS-CoV. Furin, the best-characterized member of the mammalian proprotein convertases, is an ubiquitously expressed single pass type 1 transmembrane protein. Cleavage of SARS-CoV-2 spike protein by furin promotes viral entry into lung cells. While furin knockout is embryonically lethal, its knockout in differentiated somatic cells is not, thus furin provides an exciting therapeutic target for viral pathogens including SARS-CoV-2 and bacterial infections. Several peptide-based and small-molecule inhibitors of furin have been recently reported, and select cocrystal structures have been solved, paving the way for further optimization and selection of clinical candidates. This perspective highlights furin structure, substrates, recent inhibitors, and crystal structures with emphasis on furin's role in SARS-CoV-2 infection, where the current data strongly suggest its inhibition as a promising therapeutic intervention for SARS-CoV-2.
Collapse
Affiliation(s)
- Essam
Eldin A. Osman
- Department
of Medicinal Chemistry, College of Pharmacy, Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Alnawaz Rehemtulla
- Department
of Radiation Oncology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Nouri Neamati
- Department
of Medicinal Chemistry, College of Pharmacy, Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
4
|
de Souza AA, de Andrade DM, Siqueira FDS, Di Iorio JF, Veloso MP, Coelho CDM, Viegas Junior C, Gontijo VS, Dos Santos MH, Meneghetti MCZ, Nader HB, Tersariol ILDS, Juliano L, Juliano MA, Judice WADS. Semysinthetic biflavonoid Morelloflavone-7,4',7″,3‴,4‴-penta-O-butanoyl is a more potent inhibitor of Proprotein Convertases Subtilisin/Kexin PC1/3 than Kex2 and Furin. Biochim Biophys Acta Gen Subj 2021; 1865:130016. [PMID: 34560176 DOI: 10.1016/j.bbagen.2021.130016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 08/11/2021] [Accepted: 09/17/2021] [Indexed: 11/23/2022]
Abstract
BACKGROUND Garcinia brasiliensis is a species native to the Amazon forest. The white mucilaginous pulp is used in folk medicine as a wound healing agent and for peptic ulcer, urinary, and tumor disease treatments. The activity of the proprotein convertases (PCs) Subtilisin/Kex is associated with the development of viral, bacterial and fungal infections, osteoporosis, hyperglycemia, atherosclerosis, cardiovascular, neurodegenerative and neoplastic diseases. METHODS Morelloflavone (BF1) and semisynthetic biflavonoid (BF2, 3 and 4) from Garcinia brasiliensis were tested as inhibitor of PCs Kex2, PC1/3 and Furin, and determined IC50, Ki, human proinflammatory cytokines secretion in Caco-2 cells, mechanism of inhibition, and performed molecular docking studies. RESULTS Biflavonoids were more effective in the inhibition of neuroendocrine PC1/3 than mammalian Furin and fungal Kex2. BF1 presented a mixed inhibition mechanism for Kex2 and PC1, and competitive inhibition for Furin. BF4 has no good interaction with Kex2 and Furin since carboxypropyl groups results in steric hindrance to ligand-protein interactions. Carboxypropyl groups of BF4 promote steric hindrance with Kex2 and Furin, but effective in the affinity of PC1/3. BF4 was more efficient at inhibiting PCl/3 (IC50 = 1.13 μM and Ki = 0,59 μM, simple linear competitive mechanism of inhibition) than Kex2, Furin. Also, our results strongly suggested that BF4 also inhibits the endogenous cellular PC1/3 activity in Caco-2 cells, since PC1/3 inhibition by BF4 causes a large increase in IL-8 and IL-1β secretion in Caco-2 cells. CONCLUSIONS BF4 is a potent and selective inhibitor of PC1/3. GENERAL SIGNIFICANCE BF4 is the best candidate for further clinical studies on inhibition of PC1/3.
Collapse
Affiliation(s)
- Aline Aparecida de Souza
- Centro Interdisciplinar de Investigação Bioquímica, Universidade de Mogi das Cruzes, 08780-911 Mogi das Cruzes, SP, Brazil
| | - Débora Martins de Andrade
- Centro Interdisciplinar de Investigação Bioquímica, Universidade de Mogi das Cruzes, 08780-911 Mogi das Cruzes, SP, Brazil
| | - Fábio da Silva Siqueira
- Centro Interdisciplinar de Investigação Bioquímica, Universidade de Mogi das Cruzes, 08780-911 Mogi das Cruzes, SP, Brazil
| | - Juliana Fortes Di Iorio
- Centro Interdisciplinar de Investigação Bioquímica, Universidade de Mogi das Cruzes, 08780-911 Mogi das Cruzes, SP, Brazil
| | - Marcia Paranho Veloso
- Laboratório de Modelagem Molecular e Simulação Computacional, Faculdade de Ciências Farmacêuticas, Universidade Federal de Alfenas, 37130-001 Alfenas, MG, Brazil
| | - Camila de Morais Coelho
- Laboratório de Modelagem Molecular e Simulação Computacional, Faculdade de Ciências Farmacêuticas, Universidade Federal de Alfenas, 37130-001 Alfenas, MG, Brazil
| | - Claudio Viegas Junior
- Laboratório de Pesquisa em Química Medicinal, Universidade Federal de Alfenas, 37,133-840 Alfenas, MG, Brazil
| | - Vanessa Silva Gontijo
- Laboratório de Pesquisa em Química Medicinal, Universidade Federal de Alfenas, 37,133-840 Alfenas, MG, Brazil
| | | | - Maria Cecília Zorél Meneghetti
- Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São Paulo, 04044-020 São Paulo, SP, Brazil
| | - Helena Bonciani Nader
- Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São Paulo, 04044-020 São Paulo, SP, Brazil
| | - Ivarne Luis Dos Santos Tersariol
- Centro Interdisciplinar de Investigação Bioquímica, Universidade de Mogi das Cruzes, 08780-911 Mogi das Cruzes, SP, Brazil; Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São Paulo, 04044-020 São Paulo, SP, Brazil
| | - Luiz Juliano
- Departamento de Biofísica, Escola Paulista de Medicina, Universidade Federal de São Paulo, 04044-020 São Paulo, SP, Brazil
| | - Maria Aparecida Juliano
- Departamento de Biofísica, Escola Paulista de Medicina, Universidade Federal de São Paulo, 04044-020 São Paulo, SP, Brazil
| | - Wagner Alves de Souza Judice
- Centro Interdisciplinar de Investigação Bioquímica, Universidade de Mogi das Cruzes, 08780-911 Mogi das Cruzes, SP, Brazil.
| |
Collapse
|
5
|
Kumar M, Madan J, Sodhi RK, Singh SB, Katyal A. Decoding the silent walk of COVID-19: Halting its spread using old bullets. Biomed Pharmacother 2021; 133:110891. [PMID: 33227700 PMCID: PMC7572089 DOI: 10.1016/j.biopha.2020.110891] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 10/11/2020] [Accepted: 10/12/2020] [Indexed: 01/08/2023] Open
Abstract
Severe acute respiratory syndrome (SARS) develops within 3-14 days when CoV2 invades epithelial, myeloid cells in the nasopharynx and pneumocytes in the respiratory tract through angiotensin converting enzyme (ACE2). Infection swiftly disseminates to gastrointestinal, cardiovascular, renal organs as well as immune system to deregulate their normal functioning through unique and distinct mechanisms. The health system and economy has been intensely thwarted by the rapid spread and exorbitant mortality caused by COVID-19 disease across the globe. The acute progression of the disease and high infection rate pose an enormous challenge for its therapeutic management and critical care. The viral structure, genome and proteome have been deciphered which yielded cues for targeting already available therapeutic entities. More than 200 compounds have been screened and till date approximately 69 therapeutic agents are undergoing clinical trials across the world. Among these, remedesivir (RMD), chloroquine (CQ), hydroxychloroquine (HCQ), noscapine (NOS) and heparin have demonstrated fairly promising results in preclinical and clinical studies. Recently, RMD has been approved by USFDA for the management of COVID 19. However, intense research is going on to screen and ace the 'magic bullets' for the management of SARS-CoV2 infection worldwide. The current review illustrates the plausible therapeutic targets in SARS-CoV2 important for inhibition of virus cycle. In addition, the role of RMD, CQ, HCQ, NOS and heparin in combating infection has been addressed. The importance of vitamin C and D supplements as adjunct therapies in the prevention of SARS-CoV2 virus infection have also been summarized.
Collapse
Affiliation(s)
- Mukesh Kumar
- Dr. B.R Ambedkar Centre for Biomedical Research, University of Delhi, Delhi, India
| | - Jitender Madan
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Rupinder Kaur Sodhi
- Department of Pharmacology, Chandigarh College of Pharmacy, Mohali, Punjab, India
| | - Shashi Bala Singh
- Department of Pharmacology, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Anju Katyal
- Dr. B.R Ambedkar Centre for Biomedical Research, University of Delhi, Delhi, India.
| |
Collapse
|
6
|
Böttcher-Friebertshäuser E, Garten W, Klenk HD. Characterization of Proprotein Convertases and Their Involvement in Virus Propagation. ACTIVATION OF VIRUSES BY HOST PROTEASES 2018. [PMCID: PMC7122180 DOI: 10.1007/978-3-319-75474-1_9] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
| | - Wolfgang Garten
- Institut für Virologie, Philipps Universität, Marburg, Germany
| | | |
Collapse
|
7
|
Klein C. The role of relaxin in mare reproductive physiology: A comparative review with other species. Theriogenology 2016; 86:451-6. [PMID: 27158127 DOI: 10.1016/j.theriogenology.2016.04.061] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 12/23/2015] [Accepted: 03/14/2016] [Indexed: 11/16/2022]
Abstract
Relaxin is a peptide hormone best known for its action during the latter half of pregnancy, in particular for its softening effect on pelvic ligaments that aids in preparation of the birth canal for the impending delivery of the fetus. The source of relaxin during early pregnancy varies across species, with the CL being the main source in a number of species. The main source of relaxin during late equine pregnancy is the placenta. In mares with impaired placental function, circulating relaxin levels decline before abortion. During early pregnancy, relaxin promotes endometrial angiogenesis through upregulating endometrial expression of vascular endothelial growth factor. The horse is unique in that the equine conceptus expresses relaxin messenger RNA as early as 8 days after ovulation, with levels increasing as conceptus development proceeds. Although secretion of functional relaxin has not been verified, it is likely, given that the embryo also expresses transcripts coding for enzymes processing the prohormone to yield the mature hormone. Furin, an enzyme which belongs to the subtilisin-like proprotein convertase family known to process preprorelaxin, appears to be the foremost convertase expressed by equine conceptuses. Conceptus-derived relaxin could drive endometrial angiogenesis and also act in an autocrine fashion to promote the embryo's own development. Relaxin is also expressed by ovarian structures during the nonpregnant estrous cycle. In the mare, follicular expression of relaxin is comparable among follicles of varying size and has been localized to granulosa and theca cells. In women and pigs, relaxin appears to promote follicular development. In the rat, multiple lines of evidence indicate that relaxin is involved in the ovulatory process. In the mare, relaxin might play a similar role in the ovulatory process, as in equine ovarian stromal cells relaxin promotes the secretion of gelatinases and tissue inhibitors of metalloproteinases; local proteolysis of the follicular wall is integral to the ovulatory process. However, functional studies addressing the role of relaxin in the ovulatory process are missing in the mare.
Collapse
Affiliation(s)
- Claudia Klein
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
8
|
Bessonnard S, Mesnard D, Constam DB. PC7 and the related proteases Furin and Pace4 regulate E-cadherin function during blastocyst formation. J Cell Biol 2015; 210:1185-97. [PMID: 26416966 PMCID: PMC4586756 DOI: 10.1083/jcb.201503042] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Targeted deletion of PC7 and the related proprotein convertases Furin and Pace4, combined with live imaging of their activities, unmasks their overlapping and complementary functions in morula compaction and ICM formation in mouse blastocysts and in E-cadherin precursor processing. The first cell differentiation in mammalian embryos segregates polarized trophectoderm cells from an apolar inner cell mass (ICM). This lineage decision is specified in compacted morulae by cell polarization and adhesion acting on the Yes-associated protein in the Hippo signaling pathway, but the regulatory mechanisms are unclear. We show that morula compaction and ICM formation depend on PC7 and the related proprotein convertases (PCs) Furin and Pace4 and that these proteases jointly regulate cell–cell adhesion mediated by E-cadherin processing. We also mapped the spatiotemporal activity profiles of these proteases by live imaging of a transgenic reporter substrate in wild-type and PC mutant embryos. Differential inhibition by a common inhibitor revealed that all three PCs are active in inner and outer cells, but in partially nonoverlapping compartments. E-cadherin processing by multiple PCs emerges as a novel mechanism to modulate cell–cell adhesion and fate allocation.
Collapse
Affiliation(s)
- Sylvain Bessonnard
- Swiss Federal Institute of Technology in Lausanne, School of Life Sciences, Swiss Institute for Experimental Cancer Research, 1015 Lausanne, Switzerland
| | - Daniel Mesnard
- Swiss Federal Institute of Technology in Lausanne, School of Life Sciences, Swiss Institute for Experimental Cancer Research, 1015 Lausanne, Switzerland
| | - Daniel B Constam
- Swiss Federal Institute of Technology in Lausanne, School of Life Sciences, Swiss Institute for Experimental Cancer Research, 1015 Lausanne, Switzerland
| |
Collapse
|
9
|
El Najjar F, Lampe L, Baker ML, Wang LF, Dutch RE. Analysis of cathepsin and furin proteolytic enzymes involved in viral fusion protein activation in cells of the bat reservoir host. PLoS One 2015; 10:e0115736. [PMID: 25706132 PMCID: PMC4338073 DOI: 10.1371/journal.pone.0115736] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 11/18/2014] [Indexed: 12/12/2022] Open
Abstract
Bats of different species play a major role in the emergence and transmission of highly pathogenic viruses including Ebola virus, SARS-like coronavirus and the henipaviruses. These viruses require proteolytic activation of surface envelope glycoproteins needed for entry, and cellular cathepsins have been shown to be involved in proteolysis of glycoproteins from these distinct virus families. Very little is currently known about the available proteases in bats. To determine whether the utilization of cathepsins by bat-borne viruses is related to the nature of proteases in their natural hosts, we examined proteolytic processing of several viral fusion proteins in cells derived from two fruit bat species, Pteropus alecto and Rousettus aegyptiacus. Our work shows that fruit bat cells have homologs of cathepsin and furin proteases capable of cleaving and activating both the cathepsin-dependent Hendra virus F and the furin-dependent parainfluenza virus 5 F proteins. Sequence analysis comparing Pteropus alecto furin and cathepsin L to proteases from other mammalian species showed a high degree of conservation; however significant amino acid variation occurs at the C-terminus of Pteropus alecto furin. Further analysis of furin-like proteases from fruit bats revealed that these proteases are catalytically active and resemble other mammalian furins in their response to a potent furin inhibitor. However, kinetic analysis suggests that differences may exist in the cellular localization of furin between different species. Collectively, these results indicate that the unusual role of cathepsin proteases in the life cycle of bat-borne viruses is not due to the lack of active furin-like proteases in these natural reservoir species; however, differences may exist between furin proteases present in fruit bats compared to furins in other mammalian species, and these differences may impact protease usage for viral glycoprotein processing.
Collapse
Affiliation(s)
- Farah El Najjar
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, United States of America
| | - Levi Lampe
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, United States of America
| | - Michelle L. Baker
- CSIRO Australian Animal Health Laboratory, East Geelong, Victoria, Australia
| | - Lin-Fa Wang
- CSIRO Australian Animal Health Laboratory, East Geelong, Victoria, Australia
- Program in Emerging Infectious Diseases, Duke–National University of Singapore Graduate Medical School, Singapore, Singapore
| | - Rebecca Ellis Dutch
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, United States of America
| |
Collapse
|
10
|
|
11
|
Pilz IH, Di Pasquale G, Rzadzinska A, Leppla SH, Chiorini JA. Mutation in the platelet-derived growth factor receptor alpha inhibits adeno-associated virus type 5 transduction. Virology 2012; 428:58-63. [PMID: 22520943 DOI: 10.1016/j.virol.2012.03.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Revised: 11/21/2011] [Accepted: 03/05/2012] [Indexed: 01/01/2023]
Abstract
Due to its non-pathogenic lifecycle, little is known about the cellular determinants of infection by adeno-associated virus (AAV). To identify these critical cellular factors, we took advantage of the gene transfer abilities of AAV in combination with a forward genetic selection to identify proteins critical for transduction by this virus. AAV serotype 5 (AAV5) vectors encoding the furin gene were used to transduce furin-deficient cells followed by selection with furin-dependent toxins. A population of cells specifically resistant to AAV5 transduction was identified and sequence analysis suggested all had a single amino acid mutation in the leader sequence of the platelet-derived growth factor receptor alpha (PDGFRα) gene. Characterization of this mutation suggested it inhibited PDGFRα trafficking resulting in limited expression on the plasma membrane. Mutagenesis and transfection experiments confirmed the effect of this mutation on PDGFRα trafficking, and the AAV5 resistant phenotype could be rescued by transfection with wild type PDGFRα.
Collapse
Affiliation(s)
- Ingo H Pilz
- Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | |
Collapse
|
12
|
Takahashi T, Ida T, Sato T, Nakashima Y, Nakamura Y, Tsuji A, Kojima M. Production of n-octanoyl-modified Ghrelin in Cultured Cells Requires Prohormone Processing Protease and Ghrelin O-acyltransferase, as well as n-octanoic Acid. ACTA ACUST UNITED AC 2009; 146:675-82. [DOI: 10.1093/jb/mvp112] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
13
|
Hashimoto T, Tachibana Y, Nozaki H, Mazda O, Niidome T, Murakami A, Yamaoka T. Intracellular Enzyme-responsive Fragmentation of Nonviral Gene Carriers Leads to Polyplex Destabilization and Enhanced Transgene Expression. CHEM LETT 2009. [DOI: 10.1246/cl.2009.718] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
14
|
Rholam M, Brakch N, Germain D, Thomas DY, Fahy C, Boussetta H, Boileau G, Cohen P. Role of Amino Acid Sequences Flanking Dibasic Cleavage Sites in Precursor Proteolytic Processing. ACTA ACUST UNITED AC 2008. [DOI: 10.1111/j.1432-1033.1995.0707p.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
15
|
Burrell HE, Simpson AWM, Mehat S, McCreavy DT, Durham B, Fraser WD, Sharpe GR, Gallagher JA. Potentiation of ATP- and bradykinin-induced [Ca2+]c responses by PTHrP peptides in the HaCaT cell line. J Invest Dermatol 2007; 128:1107-15. [PMID: 18007586 DOI: 10.1038/sj.jid.5701159] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
In the epidermis, local and systemic factors including extracellular nucleotides and parathyroid hormone-related protein (PTHrP) regulate keratinocyte proliferation and differentiation. Extracellular nucleotides increase proliferation via activation of P2 receptors and induction of calcium transients, while endoproteases cleave PTHrP, resulting in fragments with different cellular functions. We investigated the effects of adenosine 5'-triphosphate (ATP) alone and in combination with synthetic PTHrP peptides on calcium transients in HaCaT cells. ATP induced calcium transients, while PTHrP peptides did not. C-terminal and mid-molecule PTHrP peptides (1-100 pM) potentiated ATP-induced calcium transients independently of calcium influx. 3-Isobutyl-1-methylxanthine potentiated ATP-induced calcium transients, suggesting that a cyclic monophosphate is responsible. Cyclic AMP is not involved, but cyclic GMP is a likely candidate since the protein kinase G inhibitor, KT5823, inhibited potentiation. Co-stimulation with ATP and either PTHrP (43-52) or PTHrP (70-77) increased proliferation, suggesting that this is important in the regulation of cell turnover and wound healing and may be a mechanism for hyperproliferation in skin disorders such as psoriasis. Finally, PTHrP fragments potentiated bradykinin-induced calcium transients, suggesting a role in inflammation in the skin. Since PTHrP is found in many normal and malignant cells, potentiation is likely to have a wider role in modulating signal transduction events.
Collapse
Affiliation(s)
- Helen E Burrell
- Department of Human Anatomy and Cell Biology, University of Liverpool, Liverpool, UK.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
Hendra virus and Nipah virus are highly pathogenic paramyxoviruses that have recently emerged from flying foxes to cause serious disease outbreaks in humans and livestock in Australia, Malaysia, Singapore and Bangladesh. Their unique genetic constitution, high virulence and wide host range set them apart from other paramyxoviruses. These features led to their classification into the new genus Henipavirus within the family Paramyxoviridae and to their designation as Biosafety Level 4 pathogens. This review provides an overview of henipaviruses and the types of infection they cause, and describes how studies on the structure and function of henipavirus proteins expressed from cloned genes have provided insights into the unique biological properties of these emerging human pathogens.
Collapse
Affiliation(s)
- Bryan T Eaton
- Australian Animal Health Laboratory, Commonwealth Scientific and Industrial Research Organization, 5 Portarlington Road, Geelong, Victoria 3220, Australia.
| | | | | | | |
Collapse
|
17
|
Kusafuka K, Nakano K, Hiraki Y, Shukunami C, Nagatsuka H, Nagai N, Takemura T, Sakaguchi Y, Okazaki K, Kusafuka M, Hisha H, Ikehara S. Expression and localization of cartilage-specific matrix protein chondromodulin-I mRNA in salivary pleomorphic adenomas. Virchows Arch 2004; 446:34-40. [PMID: 15549376 DOI: 10.1007/s00428-004-1125-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2004] [Accepted: 08/23/2004] [Indexed: 10/26/2022]
Abstract
Pleomorphic adenoma is the most common epithelial tumor in the salivary glands. This tumor frequently exhibits "mesenchyme"-like components, including myxoid or chondroid areas. Recently, using immunohistochemical techniques, we reported that cartilage-specific matrix protein, chondromodulin-I (ChM-I), was deposited on the inter-territorial matrix of the chondroid area in salivary pleomorphic adenomas and that ChM-I, which is also a strong angio-inhibitory factor, plays an important role in the avascular nature of the chondroid area and the chondroid formation in this type of tumor. To elucidate which cells express ChM-I mRNA in pleomorphic adenomas, we examined the expression and localization of ChM-I mRNA in this type of tumor using an in situ hybridization technique. Immunoreactivity for ChM-I was observed in the inter-territorial matrix of the chondroid area, especially around the lacunae, and in the cytoplasm of neoplastic myoepithelial cells of the myxoid element of pleomorphic adenomas. On in situ hybridization analysis, strong signals for ChM-I mRNA were detected in the cytoplasm of the lacuna cells of the chondroid element, and moderate to marked signals were observed in the cytoplasm of the neoplastic myoepithelial cells of the myxoid element. Signals for ChM-I mRNA were also seen in the cytoplasm of the spindle-shaped neoplastic myoepithelial cells in the transitional areas between the myxoid and chondroid elements of this tumor. Signals for ChM-I mRNA were not seen in the inner ductal cells or the fibrous element. These findings indicate that lacuna cells and neoplastic myoepithelial cells express ChM-I mRNA and that mature ChM-I, which lacuna cells and neoplastic myoepithelial cells translate, is deposited in the chondroid matrix of pleomorphic adenomas. In conclusion, lacuna cells and neoplastic myoepithelial cells express ChM-I mRNA ectopically in pleomorphic adenoma, and this plays an important role in chondroid formation and hypovascularity in this type of tumor.
Collapse
Affiliation(s)
- Kimihide Kusafuka
- Department of Transplantation for Regeneration Therapy, sponsored by Otsuka Pharmaceutical Co. Ltd., Kansai Medical University, Moriguchi City, 570-8506 Osaka, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Ogiwara K, Shinohara M, Takahashi T. Structure and expression of Furin mRNA in the ovary of the medaka, Oryzias latipes. ACTA ACUST UNITED AC 2004; 301:449-59. [PMID: 15114652 DOI: 10.1002/jez.a.20071] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A cDNA for furin was cloned from the ovary of the medaka, Oryzias latipes, by a combination of cDNA library screening, 5'-rapid amplification of cDNA ends (RACE), and 3'- RACE. The cDNA sequence codes for a protein of 814 amino acid residues highly homologous to other vertebrate furins, Ca(2+)-dependent serine proteases belonging to the subtilysin-like proprotein convertase family. The medaka preprofurin consists of a leader sequence, a propeptide with autoactivation sites, a Kex2-like catalytic domain, a P domain, a cysteine-rich domain, a putative transmembrane domain, and a cytoplasmic domain. The catalytic triad residues (Asp-164, His-205, and Ser-379) were all conserved. Furin mRNA was expressed in many tissues of this, including the ovary. In the ovary, the greatest expression of furin mRNA occurred in oocytes of small growing follicles, as demonstrated by Northern blotting, RT-PCR, and in situ hybridization analysis. Temporary and spatial expression patterns of the medaka fish furin were similar to those of stromelysin-3 and MT5-MMP during oocyte growth and postnatal development.
Collapse
Affiliation(s)
- Katsueki Ogiwara
- Division of Biological Sciences, Graduate School of Science, Hokkaido University, Sapporo 060-0810, Japan
| | | | | |
Collapse
|
19
|
Dey A, Norrbom C, Zhu X, Stein J, Zhang C, Ueda K, Steiner DF. Furin and prohormone convertase 1/3 are major convertases in the processing of mouse pro-growth hormone-releasing hormone. Endocrinology 2004; 145:1961-71. [PMID: 14684599 DOI: 10.1210/en.2003-1472] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We investigated the proteolytic processing of mouse pro-GHRH [84 amino acids (aa)] by furin, PC1/3, PC2, and PC5/6A. We created six point mutations in the N- and C-terminal cleavage sites, RXXR decreased and RXRXXR decreased, respectively. The following results were obtained after transient transfection/cotransfection and metabolic pulse-chase labeling studies in several neuroendocrine cells. 1) Furin was the most efficient convertase in cleaving the N-terminal RXXR/RXRR site to generate intermediate I, 12-84aa, whereas PC1/3 was the most potent in processing the C-terminal RXRXXR site to yield mature GHRH, 12-53aa. 2) Both PC1/3 and PC5/6A also processed the N-terminal site but less efficiently than furin. 3) PC2 was much weaker in cleaving the C-terminal site relative to PC1/3 to generate mature GHRH. 4) The Q10R mutant was significantly more susceptible to furin cleavage at the N-terminal site than the wild-type pro-GHRH. And 5) the N- and C-terminal P1 Arg residues, R11 and R54, respectively, were essential for mature GHRH production. We also showed localization of the GHRH immunoreactive peptides in Golgi and secretory granules in neuroendocrine cells by an immunofluorescence assay. We conclude that the efficient production of mature GHRH from pro-GHRH is a stepwise process mediated predominantly by furin at the N-terminal cleavage site followed by PC1/3 at the C terminus.
Collapse
Affiliation(s)
- Arunangsu Dey
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Sasanami T, Toriyama M, Mori M. Carboxy-terminal proteolytic processing at a consensus furin cleavage site is a prerequisite event for quail ZPC secretion. Biol Reprod 2003; 68:1613-9. [PMID: 12606320 DOI: 10.1095/biolreprod.102.011841] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
In avian species, a glycoprotein homologous to mammalian ZPC is synthesized in the granulosa cells of developing follicles. We have previously reported that the newly synthesized ZPC (proZPC) in granulosa cells is cleaved at a consensus furin cleavage site to generate mature ZPC prior to secretion. In the present study, we examined the effect of the proteolytic cleavage of proZPC on ZPC secretion by using a specific inhibitor of furin endoprotease and site-directed mutagenesis of the furin cleavage site. Western blot analysis demonstrated that the furin inhibitor efficiently blocked both the proteolytic cleavage of proZPC and the subsequent ZPC secretion. A site-directed mutant that possessed a mutated sequence for furin cleavage was not secreted from the cells. The immunocytochemical observations indicated that proZPC produced in the presence of a furin inhibitor or those produced by the site-directed mutant of the furin cleavage site had accumulated in the endoplasmic reticulum. These results indicate that proZPC is proteolytically cleaved at the consensus furin cleavage site with furin-like protease, and the failure of this cleavage results in its accumulation in the endoplasmic reticulum. Therefore, the C-terminal proteolytic processing of proZPC at the consensus furin cleavage site is a prerequisite event for quail ZPC secretion.
Collapse
Affiliation(s)
- Tomohiro Sasanami
- Department of Applied Biological Chemistry, Faculty of Agriculture, Shizuoka University, Japan
| | | | | |
Collapse
|
21
|
Ohkubo K, Naito Y, Fujiwara T, Miyazaki JI, Ikehara Y, Ono J. Inhibitory effect of the alpha1-antitrypsin Pittsburgh type-mutant (alpha1-PIM/R) on proinsulin processing in the regulated secretory pathway of the pancreatic beta-cell line MIN6. Endocr J 2003; 50:9-20. [PMID: 12733705 DOI: 10.1507/endocrj.50.9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
To elucidate its effect on proinsulin processing, we introduced the expression of a Pittsburgh type-mutant, alpha1-protease inhibitor M/R (alpha1-PIM/R) and its chimera protein with growth hormone (GH) (GHalpha1-PIM/R) into MIN6 cells. In metabolic labeling and chasing experiments with [3H]-Leu and [35S]-Met, proinsulin appeared in the medium during stimulatory secretion only from MIN6 clones expressing GHalpha1-PIM/R and, surprisingly, alpha1-PIM/R, but not from the clones of either the control or alpha1-PI. The major part of alpha1-PIM/R was secreted through the constitutive pathway and about 10% of total secreted alpha1-PIM/R in the chase periods entered the regulated pathway. On the other hand, GHalpha1-PIM/R was mainly transported to the secretory granules and about 80% of the total secreted GHalpha1-PIM/R in the chase periods was secreted during stimulatory secretion. In the first 3 h chase periods without stimulation, only alpha1-PIM/R and no GHalpha1-PIM/R appeared in the medium, thus suggesting that alpha1-PIM/R might be transported through a constitutive-like pathway for those periods. The alpha1-PI, which had no inhibitory effect on proinsulin processing, showed similar secretion pathways to those of alpha1-PIM/R. This implies that some part of alpha1-PIM/R and alpha1-PI entered the regulated pathway, not due to any specific interaction between the processing endoproteases and serine protease inhibitors, but due to some type of passive transport in a nonselective manner. The inhibitory effect of alpha1-PIM/R in the regulated secretory pathway was slightly but clearly evident when it was expressed in MIN6 beta-cells.
Collapse
Affiliation(s)
- Kumiko Ohkubo
- Department of Laboratory Medicine, Fukuoka University School of Medicine, Fukuoka 814-0180, Japan
| | | | | | | | | | | |
Collapse
|
22
|
Sasanami T, Pan J, Doi Y, Hisada M, Kohsaka T, Toriyama M. Secretion of egg envelope protein ZPC after C-terminal proteolytic processing in quail granulosa cells. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:2223-31. [PMID: 11985601 DOI: 10.1046/j.1432-1033.2002.02880.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In avian species, an egg envelope homologous to the mammalian zona pellucida is called the perivitelline membrane. We have previously reported that one of its components, a glycoprotein homologous to mammalian ZPC, is synthesized in the granulosa cells of the quail ovary. In the present study, we investigated the proteolytic cleavage of the newly synthesized ZPC and the secretion of ZPC from the granulosa cells. Western blot analysis of the cell lysates demonstrated that the 43-kDa protein is the precursor of mature ZPC (proZPC), and is converted to the 35-kDa protein before secretion. The accumulation of proZPC in the presence of brefeldin A, and conversion of proZPC to ZPC in the presence of monensin, indicate the possibility that the proteolytic processing of ZPC occurs in the Golgi apparatus. An analysis of amino-acid sequence identified that the C terminus of mature ZPC protein is Phe360, and the N-terminal amino-acid sequence of the proZPC-derived fragment was determined as Asp363. These results suggest that newly synthesized ZPC is cleaved at the consensus furin cleavage site, and the resulting two basic residues at the C terminus are subsequently trimmed off to generate mature ZPC prior to secretion.
Collapse
Affiliation(s)
- Tomohiro Sasanami
- Department of Applied Biological Chemistry, Faculty of Agriculture, Shizuoka University, Japan
| | | | | | | | | | | |
Collapse
|
23
|
|
24
|
|
25
|
White KE, Carn G, Lorenz-Depiereux B, Benet-Pages A, Strom TM, Econs MJ. Autosomal-dominant hypophosphatemic rickets (ADHR) mutations stabilize FGF-23. Kidney Int 2001; 60:2079-86. [PMID: 11737582 DOI: 10.1046/j.1523-1755.2001.00064.x] [Citation(s) in RCA: 364] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND The gene for the renal phosphate wasting disorder autosomal-dominant hypophosphatemic rickets (ADHR) is FGF23, which encodes a secreted protein related to the fibroblast growth factors (FGFs). We previously detected missense mutations R176Q, R179W, and R179Q in FGF23 from ADHR kindreds. The mutations replace R residues within a subtilisin-like proprotein convertase (SPC) cleavage site 176RHTR-179 (RXXR motif). The goal of these studies was to determine if the ADHR mutations lead to protease resistance of FGF-23. METHODS The ADHR mutations were introduced into human FGF-23 cDNA clones with or without an N-terminal FLAG tag by site-directed mutagenesis and were transiently transfected into HEK293 cells. Protein expression was determined by Western analyses. RESULTS Antibodies directed toward the C-terminal portion of FGF-23 revealed that the native FGF-23 protein resolved as 32 kD and 12 kD species in HEK293 conditioned media; however, the three mutated proteins were detected only as the 32 kD band. An N-terminal FLAG-tagged native FGF-23 resolved as two bands of 36 kD and 26 kD when detected with a FLAG antibody, whereas the R176Q mutant resolved primarily as the 36 kD protein species. Cleavage of FGF-23 was not enhanced by extracellular incubation of FGF-23 with HEK293 cells. Native and mutant FGF-23s bound heparin. CONCLUSIONS FGF-23 proteins containing the ADHR mutations are secreted, and produce polypeptides less sensitive to protease cleavage than wild-type FGF-23. Therefore, the ADHR mutations may protect FGF-23 from proteolysis, thereby potentially elevating circulating concentrations of FGF-23 and leading to phosphate wasting in ADHR patients.
Collapse
Affiliation(s)
- K E White
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | | | | | | | | | | |
Collapse
|
26
|
Zhang Y, Kida Y, Kuwano K, Misumi Y, Ikehara Y, Arai S. Role of furin in delivery of a CTL epitope of an anthrax toxin-fusion protein. Microbiol Immunol 2001; 45:119-25. [PMID: 11293477 DOI: 10.1111/j.1348-0421.2001.tb01279.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Anthrax toxin lethal factor (LF) in combination with anthrax toxin protective antigen (PA) was endocytosed and translocated to the cytosol of mammalian cells. Residues 1-255 of anthrax toxin lethal factor (LFn) was fused to a cytotoxic T lymphocyte (CTL) epitope of an influenza virus. For processing the toxins, PA must be cleaved into a 63-kDa fragment (PA63) by furin, which is a subtilisin-like processing endo-protease expressed by many eukaryotic cells. To test the ability of cells treated with the LFn fusion protein plus PA to deliver the epitope, CTL assay was performed. Two types of cell lines were identified, one was able to deliver CTL epitope while the other failed to efficiently deliver the epitope. To further elucidate the differences between these cells, the role of furin in these cells was examined. Disruption of the furin gene reduced its ability to deliver the CTL epitope. Furin expression in cells capable of efficiently delivering CTL epitope was quantitatively higher than in cells unable to deliver the epitope. The results suggest that furin plays a critical role in delivery of the CTL epitope of LFn fusion protein.
Collapse
MESH Headings
- Animals
- Anthrax/immunology
- Anthrax Vaccines/chemistry
- Anthrax Vaccines/immunology
- Anthrax Vaccines/metabolism
- Antigens, Bacterial
- Antigens, Viral/genetics
- Antigens, Viral/immunology
- Bacillus anthracis/immunology
- Bacterial Toxins/chemistry
- Bacterial Toxins/genetics
- Bacterial Toxins/immunology
- Bacterial Toxins/metabolism
- Blotting, Western
- Cells, Cultured
- Chloroquine/pharmacology
- Cytotoxicity, Immunologic/drug effects
- Epitopes, T-Lymphocyte/genetics
- Epitopes, T-Lymphocyte/immunology
- Female
- Flow Cytometry
- Furin
- Gene Deletion
- Gene Expression
- Orthomyxoviridae/genetics
- Orthomyxoviridae/immunology
- Ovalbumin/immunology
- Peptide Fragments/chemistry
- Peptide Fragments/immunology
- Peptide Fragments/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Recombinant Fusion Proteins/chemistry
- Recombinant Fusion Proteins/metabolism
- Subtilisins/genetics
- Subtilisins/metabolism
- T-Lymphocytes, Cytotoxic/immunology
- Transfection
Collapse
Affiliation(s)
- Y Zhang
- Department of Microbiology, Kurume University School of Medicine, Fukuoka, Japan
| | | | | | | | | | | |
Collapse
|
27
|
Wang L, Harcourt BH, Yu M, Tamin A, Rota PA, Bellini WJ, Eaton BT. Molecular biology of Hendra and Nipah viruses. Microbes Infect 2001; 3:279-87. [PMID: 11334745 DOI: 10.1016/s1286-4579(01)01381-8] [Citation(s) in RCA: 209] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The structure and genetic organization of Hendra and Nipah viruses places them in the subfamily Paramyxovirinae. However, low homology with other subfamily members and several novel biological and molecular features such as genome length and F(0 )cleavage site suggest classification in a new genus within the Paramyxovirinae.
Collapse
Affiliation(s)
- L Wang
- CSIRO Livestock Industries, Australian Animal Health Laboratory, Private Bag 24, 5 Portarlington Road, Geelong, Victoria 3220, Australia.
| | | | | | | | | | | | | |
Collapse
|
28
|
Kusafuka K, Hiraki Y, Shukunami C, Yamaguchi A, Kayano T, Takemura T. Cartilage-specific matrix protein chondromodulin-I is associated with chondroid formation in salivary pleomorphic adenomas: immunohistochemical analysis. THE AMERICAN JOURNAL OF PATHOLOGY 2001; 158:1465-72. [PMID: 11290564 PMCID: PMC1891914 DOI: 10.1016/s0002-9440(10)64097-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Chondromodulin-I (ChM-I) is a novel cartilage-specific matrix protein. In the growth plates of the long bones, ChM-I was shown to be expressed in mature to upper hypertrophic chondrocytes, and to be deposited in the cartilage matrix. As ChM-I strongly inhibits angiogenesis, cartilage is avascular. Also, ChM-I has bifunctional activity against chondrocyte proliferation. On the other hand, pleomorphic adenomas of the salivary glands frequently have chondroid elements. To elucidate the relationship between chondroid formation and hypovascularity in salivary pleomorphic adenomas, we immunohistochemically examined the expression and localization of ChM-I in 35 cases of this tumor. ChM-I was immunolocalized to the lacunae in the chondroid elements of pleomorphic adenomas (100%). Type II collagen and aggrecan were immunolocalized throughout the matrix around lacuna cells of the chondroid element (100%, 91.7%), and ChM-I was infrequently immunolocalized to the spindle-shaped myoepithelial cells in the myxoid element (37.5%). Fibroblast growth factor-2 was strongly immunolocalized to the lacuna cells in the chondroid element (100%), among the neoplastic myoepithelial cells in the myxoid elements (96.9%), and on the basement membranes around the solid nests of neoplastic myoepithelial cells (71.4%). Although CD34 is a marker of endothelial cells, CD34 was expressed in the endothelial cells in only a few areas around the epithelial elements and in the fibrous element of pleomorphic adenomas. No signals for CD34 were observed in chondroid elements in pleomorphic adenomas (P < 0.001), but a few signals were seen in the myxoid elements (P < 0.05). These findings suggested that lacuna cells and neoplastic myoepithelial cells expressed ChM-I, and that this molecule may play an important role in hypovascularity and chondroid differentiation in pleomorphic adenoma. In conclusion, pleomorphic adenoma expressed ChM-I, which is involved in hypovascularity and chondroid formation in this type of tumor.
Collapse
Affiliation(s)
- K Kusafuka
- Department of Pathology, Japanese Red Cross Medical Center, 4-1-22 Hiroo, Shibuya-ku, Tokyo 150-8935, Japan
| | | | | | | | | | | |
Collapse
|
29
|
Li M, Mbikay M, Nakayama K, Miyata A, Arimura A. Prohormone convertase PC4 processes the precursor of PACAP in the testis. Ann N Y Acad Sci 2001; 921:333-9. [PMID: 11193847 DOI: 10.1111/j.1749-6632.2000.tb06988.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- M Li
- Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana 70112, USA.
| | | | | | | | | |
Collapse
|
30
|
Dubois CM, Blanchette F, Laprise MH, Leduc R, Grondin F, Seidah NG. Evidence that furin is an authentic transforming growth factor-beta1-converting enzyme. THE AMERICAN JOURNAL OF PATHOLOGY 2001; 158:305-16. [PMID: 11141505 PMCID: PMC1850265 DOI: 10.1016/s0002-9440(10)63970-3] [Citation(s) in RCA: 178] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Transforming growth factor (TGF)-beta1 plays an essential role in cell growth and differentiation. It is also considered as a gatekeeper of immune homeostasis with gene disruption leading to autoimmune and inflammatory diseases. TGF-beta1 is produced as an inactive precursor polypeptide that can be efficiently secreted but correct proteolytic cleavage is an essential step for its activation. Assessment of the cleavage site has revealed a unique R-H-R-R sequence reminiscent of proprotein convertase (PC) recognition motifs and has previously demonstrated that this PC-like cleavage site is correctly cleaved by furin, a member of the PC family. Here we report that among PC members, furin more closely satisfies the requirements needed to fulfill the role of a genuine TGF-beta1 convertase. Even though six members of the PC family have the ability to cleave TGF-beta1, ectopic expression of alpha(1)-antitrypsin Portland (alpha(1)-AT-PDX), a potent furin inhibitor, blocked 80% of TGF-beta1 processing mediated by endogenous enzymes as demonstrated in an in vitro digestion assay. Genetic complementation of a furin-deficient LoVo cell line with the wild-type gene restores the production of mature and bioactivable TGF-beta1. Moreover, both furin and TGF-beta are coordinately expressed and regulated in vitro and in vivo in the hematopoietic and immune system, an important tissue target. These results demonstrate for the first time that furin is an authentic and adaptive TGF-beta1-converting enzyme whereas other members of the PC family might substitute or supplement furin activity. Our study advances our comprehension of the complexity of the TGF-beta system and should facilitate the development of therapeutically useful TGF-beta inhibitors.
Collapse
Affiliation(s)
- C M Dubois
- Immunology Division and Department of Pharmacology, Faculty of Medicine, Université de Sherbrooke, Sherbrooke, Canada.
| | | | | | | | | | | |
Collapse
|
31
|
Morris BJ. Renin. Compr Physiol 2000. [DOI: 10.1002/cphy.cp070301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
32
|
Gäken J, Jiang J, Daniel K, van Berkel E, Hughes C, Kuiper M, Darling D, Tavassoli M, Galea-Lauri J, Ford K, Kemeny M, Russell S, Farzaneh F. Fusagene vectors: a novel strategy for the expression of multiple genes from a single cistron. Gene Ther 2000; 7:1979-85. [PMID: 11175308 DOI: 10.1038/sj.gt.3301341] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Transduction of cells with multiple genes, allowing their stable and co-ordinated expression, is difficult with the available methodologies. A method has been developed for expression of multiple gene products, as fusion proteins, from a single cistron. The encoded proteins are post-synthetically cleaved and processed into each of their constituent proteins as individual, biologically active factors. Specifically, linkers encoding cleavage sites for the Golgi expressed endoprotease, furin, have been incorporated between in-frame cDNA sequences encoding different secreted or membrane bound proteins. With this strategy we have developed expression vectors encoding multiple proteins (IL-2 and B7.1, IL-4 and B7.1, IL-4 and IL-2, IL-12 p40 and p35, and IL-12 p40, p35 and IL-2 ). Transduction and analysis of over 100 individual clones, derived from murine and human tumour cell lines, demonstrate the efficient expression and biological activity of each of the encoded proteins. Fusagene vectors enable the co-ordinated expression of multiple gene products from a single, monocistronic, expression cassette.
Collapse
Affiliation(s)
- J Gäken
- Immune Gene Therapy Programme, Department of Molecular Medicine, The Rayne Institute, London, UK
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Mazurkiewicz JE, Corliss D, Slominski A. Spatiotemporal expression, distribution, and processing of POMC and POMC-derived peptides in murine skin. J Histochem Cytochem 2000; 48:905-14. [PMID: 10858267 DOI: 10.1177/002215540004800703] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
In murine skin, after depilation-induced anagen, there was a differential spatial and temporal expression of pro-opiomelanocortin (POMC) mRNA, of the POMC-derived peptides beta-endorphin, ACTH, beta-MSH, and alpha-MSH, and of the prohormone convertases PC1 and PC2 in epidermal and hair follicle keratinocytes and in the cells of sebaceous units. Using a combination of in situ hybridization histochemistry and immunohistochemistry, we found cell-specific variations in the expression of POMC mRNA that were consistent with immunoreactivities for POMC-derived peptides. Cells that contained POMC peptide immunoreactivity (IR) also expressed POMC mRNA, and where the IR increased there was a parallel increase in mRNA. The levels of PC1-IR and PC2-IR also showed cell-specific variations and were present in the same cells that contained the POMC peptides. Based on the cleavage specificities of these convertases and on the spatial and temporal expression of the convertases and of ACTH, beta-endorphin, beta-MSH, and alpha-MSH, we can infer that the activities of PC1 and PC2 are responsible for the cell-specific differential processing of POMC in murine skin.
Collapse
Affiliation(s)
- J E Mazurkiewicz
- Department of Microbiology, Immunology and Molecular Genetics, Albany Medical College, Albany, New York 12208, USA
| | | | | |
Collapse
|
34
|
Oliva AA, Chan SJ, Steiner DF. Evolution of the prohormone convertases: identification of a homologue of PC6 in the protochordate amphioxus. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1477:338-48. [PMID: 10708868 DOI: 10.1016/s0167-4838(99)00283-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Many of the protein precursors traversing the secretory pathway undergo cleavage at multibasic sites to generate their bioactive forms. The proprotein convertases (PCs), a family of subtilisin-like proteases, are the major endoproteases that serve this function. Genes encoding seven distinct members of this family have so far been characterized in vertebrates: furin, PC2, PC1/PC3, PC4, PACE4, PC5/PC6 and PC7/PC8/LPC. Multiple PC genes have also been cloned from a number of invertebrates, including Drosophila melanogaster and Caenorhabditis elegans. These findings suggest that gene duplication and diversification of the PCs have occurred throughout metazoan evolution. To investigate the structural and functional changes which have occurred during vertebrate development, we have analyzed the expression of PC genes in the protochordate amphioxus. We have previously shown that amphioxus express homologous PC2 and PC1/PC3 genes [Proc. Natl. Acad. Sci. USA 92 (1995) 3591]. Here we report the characterization of amphioxus cDNAs encoding proteases with a high degree of similarity to mammalian PC6. Three cDNAs encoding three PC6 isoforms differing only in their carboxy-terminal sequences were found, derived by alternative splicing. Two isoforms appear to be soluble enzymes, whereas the third contains a transmembrane hydrophobic segment and thus is likely to be membrane-bound. All three variants contain many repeats of a cysteine-rich motif that is found in several other PC family members. Thus, amphioxus, like the vertebrates, expresses two types of PCs, e.g., PC2 and PC1/PC3 which function in the regulated secretory pathway in neuroendocrine cells, and the more widely expressed PC6 which functions mainly in the constitutive pathway.
Collapse
Affiliation(s)
- A A Oliva
- Baylor College of Medicine, Division of Neuroscience, One Baylor Plaza, S603, Houston, TX 77030, USA
| | | | | |
Collapse
|
35
|
Imaizumi T, Jyonouchi K, Kato T, Chikuma T, Tanaka A. Anterograde axonal transport of Boc-Arg-Val-Arg-Arg-MCA hydrolyzing enzyme in rat sciatic nerves: cleavage occurs between basic residues. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1476:337-49. [PMID: 10669798 DOI: 10.1016/s0167-4838(99)00239-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Axonal transport of Boc-Arg-Val-Arg-Arg-MCA hydrolyzing enzyme activity was studied in rat sciatic nerves from 12 to 120 h after double ligations. The anterograde axonal transport increased and peaked 72 h after ligation. The optimum pH for Boc-Arg-Val-Arg-Arg-MCA hydrolyzing enzyme activity was 6.5 to 6.9 and did not require Ca(2+) for the activity. Two molecular forms with enzyme activity were identified by size-exclusion chromatography and the molecular masses of the two enzymes were estimated to be 98 and 52 kDa. Two enzyme activities were strongly inhibited by Hg(2+), Cu(2+) and trypsin inhibitors such as TLCK, antipain and leupeptin. It cleaved the substrate, Boc-Arg-Val-Arg-Arg-MCA, between the dibasic sequence Arg-Arg, and needed a support of aminopeptidase B-like enzyme activity for the liberation of 7-amino-4-methylcoumarin. These results suggest that the enzyme is transported in rat sciatic nerves and involved in the post-translational processing of precursor proteins under the anterograde axonal transport. But there is absolutely no evidence for a role in precursor processing and such a putative role is purely speculative.
Collapse
Affiliation(s)
- T Imaizumi
- Department of Pharmaceutical Analytical Chemistry, Showa College of Pharmaceutical Sciences, Machida-shi, 3-3165 Higashi-tamagawagakuen, Tokyo, Japan
| | | | | | | | | |
Collapse
|
36
|
Bassi DE, Mahloogi H, Klein-Szanto AJP. The Proprotein Convertases Furin and PACE4 Play a Significant Role in Tumor Progression. Mol Carcinog 2000. [DOI: 10.1002/1098-2744(200006)28:2<63::aid-mc1>3.0.co;2-c] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
37
|
Sato T, Kondo T, Fujisawa T, Seiki M, Ito A. Furin-independent pathway of membrane type 1-matrix metalloproteinase activation in rabbit dermal fibroblasts. J Biol Chem 1999; 274:37280-4. [PMID: 10601293 DOI: 10.1074/jbc.274.52.37280] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We investigated the gene expression and intracellular activity of processing protease furin and its involvement in the process of membrane type 1-matrix metalloproteinase (MT1-MMP) activation in rabbit dermal fibroblasts. When the rabbit fibroblasts were treated with concanavalin A (ConA), pro-MMP-2 was converted to an active 62-kDa MMP-2 through the appearance of a 64-kDa intermediate MMP-2. The ConA-induced pro-MMP-2 activation resulted from increasing the gene expression and production of MT1-MMP in the rabbit fibroblasts. Reverse transcriptase-polymerase chain reaction demonstrated that in rabbit dermal fibroblasts furin mRNA was detected and, unlike MT1-MMP, was not increased by ConA. These findings are further supported by the fact that the intracellular furin activity also was constitutively detected and was unchanged by the ConA treatment. Very similar phenomena were also observed in human uterine cervical fibroblasts, which are known to produce MT1-MMP by ConA stimulation. These results suggest that the expression of the furin gene and the intracellular activity are not regulated by ConA. On the other hand, neither a synthetic furin inhibitor, decanoyl-RVKR-CH(2)Cl (25-100 microM) nor a furin antisense oligonucleotide (40 microM) inhibited the MT1-MMP-mediated pro-MMP-2 activation in ConA-treated rabbit dermal fibroblasts, whereas these compounds interfered with pro-MMP-2 activation in ConA-treated human uterine cervical fibroblasts. Nonetheless, the furin antisense oligonucleotide completely suppressed furin gene expression in both rabbit and human fibroblasts. These results suggest that furin does not participate in the process of MT1-MMP activation induced by ConA in rabbit dermal fibroblasts.
Collapse
Affiliation(s)
- T Sato
- Department of Biochemistry, School of Pharmacy, Tokyo University of Pharmacy and Life Science, Horinouchi, Hachioji, Tokyo 192-0392, Japan.
| | | | | | | | | |
Collapse
|
38
|
Zecca L, Mesonero JE, Gloor SM, Semenza G. Species differences in the sites of cleavage of pro-lactase to lactase supports lack of selective pressure. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1435:51-60. [PMID: 10561537 DOI: 10.1016/s0167-4838(99)00201-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The pro-sequences in pro-lactase-phlorizin hydrolase (LPH) are needed for lactase to proceed past the ER, but are irrelevant as to the enzymatic activities. Hence, in all species removal of the pro- sequences (or most of them) must take place after the ER. Contrary to this, the details of the removal of these pro-sequences are to be expected to differ in the various species, since they are not subjected to selective pressure. Using site-directed mutagenesis we investigated processing in rabbit. The first cleavage occurs by furin (or furin-like PCs) and takes place at R-A-A-R(349) in the pro-sequence, generating the known 180 kDa intermediate. Replacing R(349) by Q results in a mutant which is not cleaved but nevertheless transported to the cell surface as demonstrated by immunofluorescence. Further processing of either the 180 kDa intermediate or the mutant is not directly mediated by furin-like PCs, but involves (also) other proteases. These results demonstrate that formation of the 180 kDa intermediate, consistently found only in rabbits, but not in man, is not essential for lactase transport: in all likelihood lack of selective pressure has led to species-specific processing of pro-LPH.
Collapse
Affiliation(s)
- L Zecca
- Institute of Biochemistry, Swiss Federal Institute of Technology, ETH Zentrum, CH-8092, Postfach 35, Zurich, Switzerland
| | | | | | | |
Collapse
|
39
|
Abstract
Success in controlling hyperglycemia in type I diabetics will require a restoration of basal insulin. To this end, three plasmid DNAs (pDNA) encoding preproinsulin were compared for constitutive expression and processing to insulin in nonendocrine cells in vitro. The pDNAs were designed to express rat proinsulin I (VR-3501), rat proinsulin I with the B10 aspartic acid point mutation (VR-3502), and a derivative of VR-3502 with a furin cleavage site added at the B-chain and C-peptide junction (VR-3503). Cells transfected with VR-3501 or VR-3502 were able to secrete only proinsulin, whereas transfection with VR-3503 yielded 30-70% mature insulin, which could be increased to >99% by cotransfection with a furin expression plasmid (VR-3505). The insulin produced was biologically active. The bilateral injection of 100 microg of VR-3502 plasmid into the tibialis anterior muscles of mice on two consecutive days yielded, on average, several hundred picograms of heterologous proinsulin per milliliter of serum. In BALB/c mice, serum proinsulin peaked 7-14 days postinjection and declined to preinjection levels by days 21-28. In athymic nude mice, serum proinsulin was sustained for at least 6 weeks. The therapeutic efficacy of delivering insulin via muscle injection of pDNA was evaluated in athymic nude mice made diabetic with the beta cell toxin streptozotocin (STZ). All animals given control DNA died within 1 week of receiving STZ while 40% of the mice coinjected with plasmids VR-3503 and VR-3505 lived through the duration of the 4-week experiment. Muscles of the surviving animals contained 17-100 ng of immune-reactive insulin (IRI), 86-94% of which was mature insulin. The results suggest that heterologous insulin made in muscle increased the survival rate. We propose that insulin plasmid expression in skeletal muscle may be a valid approach to basal insulin delivery. The feasibility of plasmid DNA-based delivery of basal insulin was investigated. An expression system consisting of pDNAs encoding a selectively mutated rat preproinsulin and mouse furin was developed and characterized in vitro and in vivo. When injected with preproinsulin pDNA, the mouse tibialis anterior muscle expressed and released proinsulin into serum at levels comparable to normal basal insulin in rodents. These heterologous proinsulin levels were sustained for several weeks in immune-compromised nondiabetic mice. Mouse muscle coinjected with a pDNA encoding the endopeptidase furin and a pDNA encoding a pre-proinsulin modified to contain two furin cleavage sites produced fully processed insulin. This muscle-made insulin appears to have contributed to the survival of mice treated with a highly diabetogenic dose of streptozotocin, a beta cell toxin. The results demonstrate that skeletal muscle is able to express and deliver therapeutic insulin from plasmid DNA.
Collapse
Affiliation(s)
- A M Abai
- Department of Molecular Biology, Vical, Inc., San Diego, CA 92121, USA.
| | | | | |
Collapse
|
40
|
Fortenberry Y, Liu J, Lindberg I. The role of the 7B2 CT peptide in the inhibition of prohormone convertase 2 in endocrine cell lines. J Neurochem 1999; 73:994-1003. [PMID: 10461888 DOI: 10.1046/j.1471-4159.1999.0730994.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Prohormone convertase (PC) 2 plays an important role in the processing of neuropeptide precursors via the regulated secretory pathway in neuronal and endocrine tissues. PC2 interacts with 7B2, a neuroendocrine protein that is cleaved to a 21-kDa domain involved in proPC2 maturation and a carboxyl-terminal peptide (CT peptide) that represents a potent inhibitor of PC2 in vitro. A role for the CT peptide as an inhibitor in vivo has not yet been established. To study the involvement of the CT peptide in PC2-mediated cleavages in neuroendocrine cells, we constructed a mutant proenkephalin (PE) expression vector containing PE with its carboxyl-terminal peptide (peptide B) replaced with the 7B2 inhibitory CT peptide. This PECT chimera was stably transfected into two PC2-expressing cell lines, AtT-20/PC2 and Rin cells. Although recombinant PECT proved to be a potent (nM) inhibitor of PC2 in vitro, cellular PC2-mediated cleavages of PE were not inhibited by the PECT chimera, nor was proopiomelanocortin cleavage (as assessed by adrenocorticotropin cleavage to alpha-melanocyte-stimulating hormone) inhibited further than in control cells expressing only the competitive substrate PE. Tests of stimulated secretion showed that both the CT peptide and the PE portion of the chimera were stored in regulated secretory granules of transfected clones. In both AtT-20/PC2 and Rin cells expressing the chimera, the CT peptide was substantially internally hydrolyzed, potentially accounting for the observed lack of inhibition. Taken together, our data suggest that overexpressed CT peptide derived from PECT is unable to inhibit PC2 in mature secretory granules, most likely due to its inactivation by PC2 or by other enzyme(s).
Collapse
Affiliation(s)
- Y Fortenberry
- Department of Biochemistry and Molecular Biology, Louisiana State University Medical Center, New Orleans 70112, USA
| | | | | |
Collapse
|
41
|
Kubo H, Matsushita M, Kotani M, Kawasaki H, Saido TC, Kawashima S, Katagiri C, Suzuki A. Molecular basis for oviductin-mediated processing from gp43 to gp41, the predominant glycoproteins of Xenopus egg envelopes. DEVELOPMENTAL GENETICS 1999; 25:123-9. [PMID: 10440846 DOI: 10.1002/(sici)1520-6408(1999)25:2<123::aid-dvg6>3.0.co;2-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Acquisition of fertilizability in Xenopus coelomic eggs is correlated with the conversion from coelomic to vitelline envelope during passage of the eggs through the pars recta portion of oviduct. The conversion includes processing of a major envelope constituent gp43 of coelomic envelopes to gp41 of vitelline envelopes by a trypsin-type protease, oviductin, which is secreted from the pars recta. Our recent sequencing analyses [Kubo et al., (1997): Dev Growth Diff 39:405-411] strongly suggested that the N-terminal portion of gp41 is exposed as a result of oviductin digestion. In this study, a monoclonal antibody specific to the predicted N-terminus of gp41 was raised by immunizing mice with a synthetic N-terminal hexapeptide (QLPVSP) coupled to keyhole limpet hemocyanin. The antibody specifically reacted to gp41, but not to gp43, indicating that Gln62 is exposed as the N-terminal amino acid of gp41 by oviductin-mediated cleavage of gp43 at Arg61 in GSR61. The C-terminal sequencing of gp43 and gp41 indicated that Arg373 in GSR373 as the C-terminus of gp41 is generated by cleavage of three amino acid (WNQ) residues from the C-terminus of gp43. The resulting polypeptide moiety of gp41 has a molecular mass of 33900 Da with 312 amino acid residues. We propose that oviductin possessing the substrate specificity of GSR simultaneously digests gp43 at Arg residues in GSR61 and GSR373 to generate the N- and C-terminus of gp41, respectively.
Collapse
Affiliation(s)
- H Kubo
- Department of Membrane Biochemistry, Tokyo Metropolitan Institute of Medical Science, Honkomagome, Bunkyo-ku, Tokyo, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Varlamov O, Wu F, Shields D, Fricker LD. Biosynthesis and packaging of carboxypeptidase D into nascent secretory vesicles in pituitary cell lines. J Biol Chem 1999; 274:14040-5. [PMID: 10318817 DOI: 10.1074/jbc.274.20.14040] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Metallocarboxypeptidase D (CPD) is a membrane-bound trans-Golgi network (TGN) protein. In AtT-20 cells, CPD is initially produced as a 170-kDa endoglycosidase H-sensitive glycoprotein. Within 30 min of chase, the CPD increases to 180 kDa and is resistant to endoglycosidase H as a result of carbohydrate maturation. CPD also undergoes an activation step required for binding to a substrate affinity resin. Blocking the protein exit from the endoplasmic reticulum inhibits the increase in molecular mass but not the step required for affinity column binding, suggesting that enzyme activation precedes carbohydrate maturation and that these reactions occur in distinct intracellular compartments. Only the higher molecular weight mature CPD enters nascent secretory vesicles, which bud from the TGN of permeabilized AtT-20 and GH3 cells. The budding efficiency of CPD into vesicles is 2-3-fold lower than that of endogenous proopiomelanocortin in AtT-20 cells or prolactin in GH3 cells. In contrast, the packaging of a truncated form of CPD, which lacks the cytoplasmic tail and transmembrane domain, was similar to that of proopiomelanocortin. Taken together, the results support the proposal that CPD functions in the TGN in the processing of proteins that transit the secretory pathway and that the C-terminal region plays a major role in TGN retention.
Collapse
Affiliation(s)
- O Varlamov
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | |
Collapse
|
43
|
Methot D, Silversides DW, Reudelhuber TL. In vivo enzymatic assay reveals catalytic activity of the human renin precursor in tissues. Circ Res 1999; 84:1067-72. [PMID: 10325244 DOI: 10.1161/01.res.84.9.1067] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The aspartyl protease renin is secreted into the circulation of mammals in 2 forms: the proteolytically processed active form of the enzyme and the precursor form, prorenin. Prorenin has no detectable enzymatic activity in the circulation, but it is the exclusive form of the enzyme produced by several tissues that also produce the other components of the renin enzymatic cascade (renin-angiotensin system). To test whether prorenin might be enzymatically active in these tissues, transgenic mice expressing the human renin substrate (angiotensinogen) exclusively in the pituitary gland were mated to mice expressing either active human renin or prorenin in the same tissue. Measurement of in vivo product formation in pituitary glands of double-transgenic mice revealed that human prorenin was enzymatically active, and Western blot analysis demonstrated that this prorenin was in the precursor form with its prosegment attached. This in vivo enzymatic assay demonstrates for the first time that human prorenin can be activated within tissues by nonproteolytic means, where it could contribute to the activity of a localized renin-angiotensin system.
Collapse
Affiliation(s)
- D Methot
- Laboratory of Molecular Biochemistry of Hypertension and Medical Research Canada Multidisciplinary Research Group on Hypertension, Clinical Research Institute of Montreal, Canada
| | | | | |
Collapse
|
44
|
Ogata R, Torimura T, Kin M, Ueno T, Tateishi Y, Kuromatsu R, Shimauchi Y, Sakamoto M, Tamaki S, Sata M, Tanikawa K. Increased expression of membrane type 1 matrix metalloproteinase and matrix metalloproteinase-2 with tumor dedifferentiation in hepatocellular carcinomas. Hum Pathol 1999; 30:443-50. [PMID: 10208467 DOI: 10.1016/s0046-8177(99)90121-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Destruction of the extracellular matrices is required for tumor invasion and metastasis. Matrix metalloproteinase-2 degrades type IV collagen and laminin, major components of the basement membrane. Membrane type 1 matrix metalloproteinase activates the latent form of matrix metalloproteinase-2. We studied changes in membrane type 1 matrix metalloproteinase and matrix metalloproteinase-2 expression in relation to the tumor differentiation of hepatocellular carcinomas. Activity of matrix metalloproteinase-2 was also evaluated in hepatocellular carcinomas and noncancerous tissues. Overall, 37 hepatocellular carcinomas were studied. Expression of membrane type 1 matrix metalloproteinase and matrix metalloproteinase-2 was determined by either immunohistochemistry (n=37) or in situ hybridization (n=6). Changes in membrane type 1 matrix metalloproteinase and matrix metalloproteinase-2 expression were evaluated in relation to tumor differentiation. Gelatinolytic activities were analyzed by gelatin zymography (n=4). Membrane type 1 matrix metalloproteinase and matrix metalloproteinase-2 were detected in hepatoma cells and stromal cells. In addition, these matrix metalloproteinases were detected in the same hepatoma cells. Increased expression of membrane type 1 matrix metalloproteinase and matrix metalloproteinase-2 was associated with tumor dedifferentiation. The active form of matrix metalloproteinase-2 was more strongly expressed by hepatocellular carcinomas than by noncancerous tissues. These findings indicate that increased expression of membrane type 1 matrix metalloproteinase and matrix metalloproteinase-2 was associated with tumor dedifferentiation, suggesting that these matrix metalloproteinases are intimately involved in the invasion of hepatocellular carcinomas.
Collapse
Affiliation(s)
- R Ogata
- Second Department of Medicine, Kurume University School of Medicine, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Simmen T, Nobile M, Bonifacino JS, Hunziker W. Basolateral sorting of furin in MDCK cells requires a phenylalanine-isoleucine motif together with an acidic amino acid cluster. Mol Cell Biol 1999; 19:3136-44. [PMID: 10082580 PMCID: PMC84107 DOI: 10.1128/mcb.19.4.3136] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Furin is a subtilisin-related endoprotease which processes a wide range of bioactive proteins. Furin is concentrated in the trans-Golgi network (TGN), where proteolytic activation of many precursor proteins takes place. A significant fraction of furin, however, cycles among the TGN, the plasma membrane, and endosomes, indicating that the accumulation in the TGN reflects a dynamic localization process. The cytosolic domain of furin is necessary and sufficient for TGN localization, and two signals are responsible for retrieval of furin to the TGN. A tyrosine-based (YKGL) motif mediates internalization of furin from the cell surface into endosomes. An acidic cluster that is part of two casein kinase II phosphorylation sites (SDSEEDE) is then responsible for retrieval of furin from endosomes to the TGN. In addition, the acidic EEDE sequence also mediates endocytic activity. Here, we analyzed the sorting of furin in polarized epithelial cells. We show that furin is delivered to the basolateral surface of MDCK cells, from where a significant fraction of the protein can return to the TGN. A phenylalanine-isoleucine motif together with the acidic EEDE cluster is required for basolateral sorting and constitutes a novel signal regulating intracellular traffic of furin.
Collapse
Affiliation(s)
- T Simmen
- Institute of Biochemistry, BIL Biomedical Research Center, University of Lausanne, CH-1066 Epalinges, Switzerland
| | | | | | | |
Collapse
|
46
|
Mesonero JE, Gloor SM, Semenza G. Processing of human intestinal prolactase to an intermediate form by furin or by a furin-like proprotein convertase. J Biol Chem 1998; 273:29430-6. [PMID: 9792647 DOI: 10.1074/jbc.273.45.29430] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human lactase-phlorizin hydrolase (human-LPH) is synthesized as a large precursor (prepro-LPH), then cleaved to a pro-LPH of 220 kDa which is further cut to a "mature-like LPH" of a size close to that of mature LPH, i.e. about 150 kDa (in the processing of rabbit pro-LPH the intermediate has a mass of approximately 180 kDa). By coexpression of human prepro-LPH with furin in COS-7 cells we show that furin generates a mature-like LPH. Radioactive amino acid sequence analysis reveals that furin recognizes the motif R-T-P-R832, a protein convertase consensus, to generate a NH2 terminus located 36 amino acids upstream of the NH2 terminal found in vivo at Ala869. This intermediate is ultimately cleaved to the mature LPH form by other proteases including the pancreatic ones. These data demonstrate that human pro-LPH, like the rabbit enzyme, is processed to the mature enzyme by furin or furin-like enzymes through at least an intermediate form that has, however, an apparent mass close to that of the mature enzyme.
Collapse
Affiliation(s)
- J E Mesonero
- Department of Biochemistry, Swiss Federal Institute of Technology, ETH Zentrum, CH-8092 Zurich, Switzerland
| | | | | |
Collapse
|
47
|
Kuno K, Matsushima K. ADAMTS-1 protein anchors at the extracellular matrix through the thrombospondin type I motifs and its spacing region. J Biol Chem 1998; 273:13912-7. [PMID: 9593739 DOI: 10.1074/jbc.273.22.13912] [Citation(s) in RCA: 179] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cellular disintegrin and metalloproteinases (ADAMs) are a family of genes with a sequence similar to those of snake venom metalloproteinases and disintegrins. The ADAMTS-1 gene encodes a new type of ADAM protein with respect to possessing the thrombospondin (TSP) type I motifs. Expression of the gene is induced in kidney and heart by in vivo administration of lipopolysaccharide, suggesting a possible role in the inflammatory reaction. In this study, we characterized the ADAMTS-1 gene product by using a transient expression system in COS-7 cells. We found that the precursor and processed forms of ADAMTS-1 were secreted from cells. Under normal growth conditions, little or none of both forms was detected in the cell culture medium, and instead the majority was found associated with the extracellular matrix (ECM). In addition, when cells were cultured in the presence of heparin, the mature form of ADAMTS-1 protein was detected in the cell culture medium, suggesting that binding of ADAMTS-1 to the ECM is mediated through sulfated glycosaminoglycans such as heparan sulfate. Analyses of deletion mutants of the ADAMTS-1 protein revealed that the spacer region as well as three TSP type I motifs in the carboxyl-terminal region of the ADAMTS-1 protein are important for a tight interaction with the ECM. These results suggest that the ADAMTS-1 is a unique ADAM family protein that anchors at the ECM.
Collapse
Affiliation(s)
- K Kuno
- Department of Pharmacology, Cancer Research Institute, Kanazawa University, 13-1 Takara-machi, Kanazawa, Ishikawa 920, Japan.
| | | |
Collapse
|
48
|
Varlamov O, Fricker LD. Intracellular trafficking of metallocarboxypeptidase D in AtT-20 cells: localization to the trans-Golgi network and recycling from the cell surface. J Cell Sci 1998; 111 ( Pt 7):877-85. [PMID: 9490632 DOI: 10.1242/jcs.111.7.877] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Carboxypeptidase D (CPD) is a recently discovered membrane-bound metallocarboxypeptidase that has been proposed to be involved in the post-translational processing of peptides and proteins that transit the secretory pathway. In the present study, the intracellular distribution of CPD was examined in AtT-20 cells, a mouse anterior pituitary-derived corticotroph. Antisera to CPD stain the same intracellular structures as those labeled with furin and wheat germ agglutinin. This distribution is distinct from carboxypeptidase E, which is localized to the secretory vesicles in the cell processes. The perinuclear distribution of CPD is detected even when the AtT-20 cells are treated with brefeldin A for 1–30 minutes, suggesting that CPD is present in the trans-Golgi network (TGN). Although CPD is predominantly found in the TGN, an antiserum to the full length protein is internalized within 15–30 minutes of incubation at 37 degrees C. In contrast, an antiserum raised against the C-terminal region of CPD does not become internalized, suggesting that this domain is cytosolic. The antiserum to the full length CPD is internalized to a structure that co-stains with furin and wheat germ agglutinin, but is distinct from transferrin recycling endosomes. The internalization of CPD is not substantially affected by treatment of the AtT-20 cells with brefeldin A. These data are consistent with the cycling of CPD to the cell surface and back to the TGN. The TGN localization of CPD raises the possibility of a role for this enzyme in the processing of proteins that transit the secretory pathway.
Collapse
Affiliation(s)
- O Varlamov
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | |
Collapse
|
49
|
Li M, Nakayama K, Shuto Y, Somogyvari-Vigh A, Arimura A. Testis-specific prohormone convertase PC4 processes the precursor of pituitary adenylate cyclase-activating polypeptide (PACAP). Peptides 1998; 19:259-68. [PMID: 9493858 DOI: 10.1016/s0196-9781(97)00293-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The physiological substrate for proprotein convertase (PC) 4, which is expressed only in the testis, has remained unknown. Pituitary adenylate cyclase activating polypeptide (PACAP), originally isolated from the hypothalamus, exists as two amidated forms with 38 (PACAP38) and 27 (PACAP27) residues. PACAP-like immunoreactivity (PACAP-li) is found not only in the brain, but also in the peripheral tissues, and is especially abundant in the testis. Immunohistochemistry of the rat testis demonstrated strong PACAP-li in spermatids in the cap and acrosome phases. The nearly simultaneous expression of PC4 transcripts and PACAP-li in spermatids during spermatogenesis led to the hypothesis that PACAP precursor is processed by PC4. To investigate this possibility, rat pituitary GH4C1 cells were stably transfected with human PACAP cDNA, and some of these cells were co-transfected with mouse PC4 cDNA. The acid extracts of the cells were fractionated by reversed-phase HPLC. Each fraction was examined for PACAP-li using three antisera which recognize PACAP precursor, PACAP38 and/or PACAP27. Negligible PACAP-li that eluted with synthetic PACAP38 or PACAP27 was detected from cells transfected with PACAP cDNA; however, PC4 co-transfected cells showed marked PACAP-li peaks with the retention times for both PACAP38 and PACAP27. Moreover, Western blot analysis revealed immunostained bands, corresponding to the Mr for PACAP38 and PACAP27, in the PC4 co-transfected cells. Bioactivity, as indicated by stimulation of cAMP production in pituitary cell cultures, was found only in the extracts of PC4 co-transfected cells. These results provide evidence that PACAP precursor in the testis is a substrate for PC4. The processing of PACAP precursor by PC4 at a critical time in spermatogenesis suggests an important regulatory role of PC4 and PACAP in the maturation of germ cells in the testis.
Collapse
Affiliation(s)
- M Li
- Department of Medicine, Tulane University Medical Center, New Orleans, LA 70112, USA
| | | | | | | | | |
Collapse
|
50
|
Wolins N, Bosshart H, Küster H, Bonifacino JS. Aggregation as a determinant of protein fate in post-Golgi compartments: role of the luminal domain of furin in lysosomal targeting. J Cell Biol 1997; 139:1735-45. [PMID: 9412468 PMCID: PMC2132652 DOI: 10.1083/jcb.139.7.1735] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The mammalian endopeptidase furin is a type 1 integral membrane protein that is predominantly localized to the TGN and is degraded in lysosomes with a t1/2 = 2-4 h. Whereas the localization of furin to the TGN is largely mediated by sorting signals in the cytosolic tail of the protein, we show here that targeting of furin to lysosomes is a function of the luminal domain of the protein. Inhibition of lysosomal degradation results in the accumulation of high molecular weight aggregates of furin; aggregation is also dependent on the luminal domain of furin. Temperature and pharmacologic manipulations suggest that furin aggregation occurs in the TGN and thus precedes delivery to lysosomes. These findings are consistent with a model in which furin becomes progressively aggregated in the TGN, an event that leads to its transport to lysosomes. Our observations indicate that changes in the aggregation state of luminal domains can be potent determinants of biosynthetic targeting to lysosomes and suggest the possible existence of quality control mechanisms for disposal of aggregated proteins in compartments of the secretory pathway other than the endoplasmic reticulum.
Collapse
Affiliation(s)
- N Wolins
- Cell Biology and Metabolism Branch, National Institite of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|