1
|
Yaparla A, Stern DB, Hossainey MRH, Crandall KA, Grayfer L. Amphibian myelopoiesis. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 146:104701. [PMID: 37196852 DOI: 10.1016/j.dci.2023.104701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 05/19/2023]
Abstract
Macrophage-lineage cells are indispensable to immunity and physiology of all vertebrates. Amongst these, amphibians represent a key stage in vertebrate evolution and are facing decimating population declines and extinctions, in large part due to emerging infectious agents. While recent studies indicate that macrophages and related innate immune cells are critically involved during these infections, much remains unknown regarding the ontogeny and functional differentiation of these cell types in amphibians. Accordingly, in this review we coalesce what has been established to date about amphibian blood cell development (hematopoiesis), the development of key amphibian innate immune cells (myelopoiesis) and the differentiation of amphibian macrophage subsets (monopoiesis). We explore the current understanding of designated sites of larval and adult hematopoiesis across distinct amphibian species and consider what mechanisms may lend to these species-specific adaptations. We discern the identified molecular mechanisms governing the functional differentiation of disparate amphibian (chiefly Xenopus laevis) macrophage subsets and describe what is known about the roles of these subsets during amphibian infections with intracellular pathogens. Macrophage lineage cells are at the heart of so many vertebrate physiological processes. Thus, garnering greater understanding of the mechanisms responsible for the ontogeny and functionality of these cells in amphibians will lend to a more comprehensive view of vertebrate evolution.
Collapse
Affiliation(s)
- Amulya Yaparla
- Department of Biological Sciences, George Washington University, Washington, DC, 20052, USA
| | - David B Stern
- Milken Institute School of Public Health, Computational Biology Institute, George Washington University, Washington, DC, 20052, USA
| | | | - Keith A Crandall
- Milken Institute School of Public Health, Computational Biology Institute, George Washington University, Washington, DC, 20052, USA
| | - Leon Grayfer
- Department of Biological Sciences, George Washington University, Washington, DC, 20052, USA.
| |
Collapse
|
2
|
Grayfer L, Robert J. Amphibian macrophage development and antiviral defenses. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 58:60-7. [PMID: 26705159 PMCID: PMC4775336 DOI: 10.1016/j.dci.2015.12.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 12/12/2015] [Accepted: 12/13/2015] [Indexed: 05/29/2023]
Abstract
Macrophage lineage cells represent the cornerstone of vertebrate physiology and immune defenses. In turn, comparative studies using non-mammalian animal models have revealed that evolutionarily distinct species have adopted diverse molecular and physiological strategies for controlling macrophage development and functions. Notably, amphibian species present a rich array of physiological and environmental adaptations, not to mention the peculiarity of metamorphosis from larval to adult stages of development, involving drastic transformation and differentiation of multiple new tissues. Thus it is not surprising that different amphibian species and their respective tadpole and adult stages have adopted unique hematopoietic strategies. Accordingly and in order to establish a more comprehensive view of these processes, here we review the hematopoietic and monopoietic strategies observed across amphibians, describe the present understanding of the molecular mechanisms driving amphibian, an in particular Xenopus laevis macrophage development and functional polarization, and discuss the roles of macrophage-lineage cells during ranavirus infections.
Collapse
Affiliation(s)
- Leon Grayfer
- Department of Biological Sciences, George Washington University, Washington, DC, USA
| | - Jacques Robert
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA.
| |
Collapse
|
3
|
Rosenfeld L, Shirian J, Zur Y, Levaot N, Shifman JM, Papo N. Combinatorial and Computational Approaches to Identify Interactions of Macrophage Colony-stimulating Factor (M-CSF) and Its Receptor c-FMS. J Biol Chem 2015; 290:26180-93. [PMID: 26359491 PMCID: PMC4646268 DOI: 10.1074/jbc.m115.671271] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 09/06/2015] [Indexed: 01/06/2023] Open
Abstract
The molecular interactions between macrophage colony-stimulating factor (M-CSF) and the tyrosine kinase receptor c-FMS play a key role in the immune response, bone metabolism, and the development of some cancers. Because no x-ray structure is available for the human M-CSF · c-FMS complex, the binding epitope for this complex is largely unknown. Our goal was to identify the residues that are essential for binding of the human M-CSF to c-FMS. For this purpose, we used a yeast surface display (YSD) approach. We expressed a combinatorial library of monomeric M-CSF (M-CSFM) single mutants and screened this library to isolate variants with reduced affinity for c-FMS using FACS. Sequencing yielded a number of single M-CSFM variants with mutations both in the direct binding interface and distant from the binding site. In addition, we used computational modeling to map the identified mutations onto the M-CSFM structure and to classify the mutations into three groups as follows: those that significantly decrease protein stability; those that destroy favorable intermolecular interactions; and those that decrease affinity through allosteric effects. To validate the YSD and computational data, M-CSFM and three variants were produced as soluble proteins; their affinity and structure were analyzed; and very good correlations with both YSD data and computational predictions were obtained. By identifying the M-CSFM residues critical for M-CSF · c-FMS interactions, we have laid down the basis for a deeper understanding of the M-CSF · c-FMS signaling mechanism and for the development of target-specific therapeutic agents with the ability to sterically occlude the M-CSF·c-FMS binding interface.
Collapse
Affiliation(s)
- Lior Rosenfeld
- From the Department of Biotechnology Engineering and the National Institute of Biotechnology in the Negev, and
| | - Jason Shirian
- the Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Yuval Zur
- From the Department of Biotechnology Engineering and the National Institute of Biotechnology in the Negev, and the Department of Physiology and Cell Biology, Ben-Gurion University of the Negev, Beer-Sheva 8410501 and
| | - Noam Levaot
- the Department of Physiology and Cell Biology, Ben-Gurion University of the Negev, Beer-Sheva 8410501 and
| | - Julia M Shifman
- the Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Niv Papo
- From the Department of Biotechnology Engineering and the National Institute of Biotechnology in the Negev, and
| |
Collapse
|
4
|
Felix J, De Munck S, Verstraete K, Meuris L, Callewaert N, Elegheert J, Savvides SN. Structure and Assembly Mechanism of the Signaling Complex Mediated by Human CSF-1. Structure 2015; 23:1621-1631. [PMID: 26235028 DOI: 10.1016/j.str.2015.06.019] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 06/12/2015] [Accepted: 06/21/2015] [Indexed: 01/03/2023]
Abstract
Human colony-stimulating factor 1 receptor (hCSF-1R) is unique among the hematopoietic receptors because it is activated by two distinct cytokines, CSF-1 and interleukin-34 (IL-34). Despite ever-growing insights into the central role of hCSF-1R signaling in innate and adaptive immunity, inflammatory diseases, and cancer, the structural basis of the functional dichotomy of hCSF-1R has remained elusive. Here, we report crystal structures of ternary complexes between hCSF-1 and hCSF-1R, including their complete extracellular assembly, and propose a mechanism for the cooperative human CSF-1:CSF-1R complex that relies on the adoption by dimeric hCSF-1 of an active conformational state and homotypic receptor interactions. Furthermore, we trace the cytokine-binding duality of hCSF-1R to a limited set of conserved interactions mediated by functionally equivalent residues on CSF-1 and IL-34 that play into the geometric requirements of hCSF-1R activation, and map the possible mechanistic consequences of somatic mutations in hCSF-1R associated with cancer.
Collapse
Affiliation(s)
- Jan Felix
- Laboratory for Protein Biochemistry and Biomolecular Engineering (L-ProBE), Department of Biochemistry and Microbiology, Ghent University, 9000 Ghent, Belgium; Unit for Structural Biology, VIB Inflammation Research Center, 9052 Ghent, Belgium
| | - Steven De Munck
- Laboratory for Protein Biochemistry and Biomolecular Engineering (L-ProBE), Department of Biochemistry and Microbiology, Ghent University, 9000 Ghent, Belgium; Unit for Structural Biology, VIB Inflammation Research Center, 9052 Ghent, Belgium
| | - Kenneth Verstraete
- Laboratory for Protein Biochemistry and Biomolecular Engineering (L-ProBE), Department of Biochemistry and Microbiology, Ghent University, 9000 Ghent, Belgium; Unit for Structural Biology, VIB Inflammation Research Center, 9052 Ghent, Belgium
| | - Leander Meuris
- Laboratory for Protein Biochemistry and Biomolecular Engineering (L-ProBE), Department of Biochemistry and Microbiology, Ghent University, 9000 Ghent, Belgium; VIB Medical Biotechnology Center, 9052 Ghent, Belgium
| | - Nico Callewaert
- Laboratory for Protein Biochemistry and Biomolecular Engineering (L-ProBE), Department of Biochemistry and Microbiology, Ghent University, 9000 Ghent, Belgium; VIB Medical Biotechnology Center, 9052 Ghent, Belgium
| | - Jonathan Elegheert
- Laboratory for Protein Biochemistry and Biomolecular Engineering (L-ProBE), Department of Biochemistry and Microbiology, Ghent University, 9000 Ghent, Belgium
| | - Savvas N Savvides
- Laboratory for Protein Biochemistry and Biomolecular Engineering (L-ProBE), Department of Biochemistry and Microbiology, Ghent University, 9000 Ghent, Belgium; Unit for Structural Biology, VIB Inflammation Research Center, 9052 Ghent, Belgium.
| |
Collapse
|
5
|
The adipokine Retnla modulates cholesterol homeostasis in hyperlipidemic mice. Nat Commun 2014; 5:4410. [PMID: 25022542 DOI: 10.1038/ncomms5410] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2014] [Accepted: 06/16/2014] [Indexed: 01/05/2023] Open
Abstract
Hyperlipidemia is a well-recognized risk factor for atherosclerosis and can be regulated by adipokines. Expression of the adipokine resistin-like molecule alpha (Retnla) is regulated by food intake; whether Retnla has a role in the pathogenesis of hyperlipidemia and atherosclerosis is unknown. Here we report that Retnla has a cholesterol-lowering effect and protects against atherosclerosis in low-density lipoprotein receptor-deficient mice. On a high-fat diet, Retnla deficiency promotes hypercholesterolaemia and atherosclerosis, whereas Retnla overexpression reverses these effects and improves the serum lipoprotein profile, with decreased cholesterol in the very low-density lipoprotein fraction concomitant with reduced serum apolipoprotein B levels. We show that Retnla upregulates cholesterol-7-α-hydroxylase, a key hepatic enzyme in the cholesterol catabolic pathway, through induction of its transcriptional activator liver receptor homologue-1, leading to increased excretion of cholesterol in the form of bile acids. These findings define Retnla as a novel therapeutic target for treating hypercholesterolaemia and atherosclerosis.
Collapse
|
6
|
Allosteric competitive inactivation of hematopoietic CSF-1 signaling by the viral decoy receptor BARF1. Nat Struct Mol Biol 2012; 19:938-47. [PMID: 22902366 DOI: 10.1038/nsmb.2367] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Accepted: 07/19/2012] [Indexed: 12/24/2022]
Abstract
Hematopoietic human colony-stimulating factor 1 (hCSF-1) is essential for innate and adaptive immunity against viral and microbial infections and cancer. The human pathogen Epstein-Barr virus secretes the lytic-cycle protein BARF1 that neutralizes hCSF-1 to achieve immunomodulation. Here we show that BARF1 binds the dimer interface of hCSF-1 with picomolar affinity, away from the cognate receptor-binding site, to establish a long-lived complex featuring three hCSF-1 at the periphery of the BARF1 toroid. BARF1 locks dimeric hCSF-1 into an inactive conformation, rendering it unable to signal via its cognate receptor on human monocytes. This reveals a new functional role for hCSF-1 cooperativity in signaling. We propose a new viral strategy paradigm featuring an allosteric decoy receptor of the competitive type, which couples efficient sequestration and inactivation of the host growth factor to abrogate cooperative assembly of the cognate signaling complex.
Collapse
|
7
|
Wang T, Hanington PC, Belosevic M, Secombes CJ. Two Macrophage Colony-Stimulating Factor Genes Exist in Fish That Differ in Gene Organization and Are Differentially Expressed. THE JOURNAL OF IMMUNOLOGY 2008; 181:3310-22. [DOI: 10.4049/jimmunol.181.5.3310] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
8
|
Douglass TG, Driggers L, Zhang JG, Hoa N, Delgado C, Williams CC, Dan Q, Sanchez R, Jeffes EWB, Wepsic HT, Myers MP, Koths K, Jadus MR. Macrophage colony stimulating factor: not just for macrophages anymore! A gateway into complex biologies. Int Immunopharmacol 2008; 8:1354-76. [PMID: 18687298 DOI: 10.1016/j.intimp.2008.04.016] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2008] [Accepted: 04/21/2008] [Indexed: 12/21/2022]
Abstract
Macrophage colony stimulating factor (M-CSF, also called colony stimulating factor-1) has traditionally been viewed as a growth/differentiation factor for monocytes, macrophages, and some female-specific tumors. As a result of alternative mRNA splicing and post-translational processing, several forms of M-CSF protein are produced: a secreted glycoprotein, a longer secreted form containing proteoglycan, and a short membrane-bound isoform. These different forms of M-CSF all initiate cell signaling in cells bearing the M-CSF receptor, called c-fms. Here we review the biology of M-CSF, which has important roles in bone physiology, the intestinal tract, cancer metastases to the bone, macrophage-mediated tumor cell killing and tumor immunity. Although this review concentrates mostly on the membrane form of human M-CSF (mM-CSF), the biology of the soluble forms and the M-CSF receptor will also be discussed for comparative purposes. The mechanisms of the biological effects of the membrane-bound M-CSF reveal that this cytokine is unexpectedly involved in many complex molecular events. Recent experiments suggest that a tumor vaccine based on membrane-bound M-CSF-transduced tumor cells, combined with anti-angiogenic therapy, should be evaluated further for use in clinical trials.
Collapse
Affiliation(s)
- Thomas G Douglass
- Biology Department, California State University Long Beach, 1250 Bellflower Blvd, Long Beach CA 90840, United States
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Liu H, Chen X, Focia PJ, He X. Structural basis for stem cell factor-KIT signaling and activation of class III receptor tyrosine kinases. EMBO J 2007; 26:891-901. [PMID: 17255936 PMCID: PMC1794399 DOI: 10.1038/sj.emboj.7601545] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2006] [Accepted: 12/15/2006] [Indexed: 11/08/2022] Open
Abstract
Stem cell factor (SCF) binds to and activates the KIT receptor, a class III receptor tyrosine kinase (RTK), to stimulate diverse processes including melanogenesis, gametogenesis and hematopoeisis. Dysregulation of KIT activation is associated with many cancers. We report a 2.5 A crystal structure of the functional core of SCF bound to the extracellular ligand-binding domains of KIT. The structure reveals a 'wrapping' SCF-recognition mode by KIT, in which KIT adopts a bent conformation to facilitate each of its first three immunoglobulin (Ig)-like domains to interact with SCF. Three surface epitopes on SCF, an extended loop, the B and C helices, and the N-terminal segment, contact distinct KIT domains, with two of the epitopes undergoing large conformational changes upon receptor binding. The SCF/KIT complex reveals a unique RTK dimerization assembly, and a novel recognition mode between four-helix bundle cytokines and Ig-family receptors. It serves as a framework for understanding the activation mechanisms of class III RTKs.
Collapse
Affiliation(s)
- Heli Liu
- Department of Molecular Pharmacology and Biological Chemistry, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Xiaoyan Chen
- Department of Molecular Pharmacology and Biological Chemistry, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Pamela J Focia
- Department of Molecular Pharmacology and Biological Chemistry, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Xiaolin He
- Department of Molecular Pharmacology and Biological Chemistry, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Molecular Pharmacology and Biological Chemistry, Northwestern University Feinberg School of Medicine, Searle 8-417, 303 E Chicago Ave, Chicago, IL 60611, USA. Tel.: +1 312 503 8030; Fax: +1 312 503 5349; E-mail:
| |
Collapse
|
10
|
Cao ZY, Wu KF, Li G, Lin YM, Zhang B, Zheng GG. Enhancement of NIH3T3 cell proliferation by expressing macrophage colony stimulating factor in nuclei. Chin J Cancer Res 2003. [DOI: 10.1007/s11670-003-0010-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
11
|
Metzler DE, Metzler CM, Sauke DJ. Chemical Communication Between Cells. Biochemistry 2001. [DOI: 10.1016/b978-012492543-4/50033-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
12
|
Savvides SN, Boone T, Andrew Karplus P. Flt3 ligand structure and unexpected commonalities of helical bundles and cystine knots. NATURE STRUCTURAL BIOLOGY 2000; 7:486-91. [PMID: 10881197 DOI: 10.1038/75896] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Human Flt3 ligand (Flt3L) stimulates early hematopoiesis by activating a type III tyrosine kinase receptor on primitive bone marrow stem cells. The crystal structure of soluble Flt3L reveals that it is a homodimer of two short chain alpha-helical bundles. Comparisons of structure-function relationships of Flt3L with the homologous hematopoietic cytokines macrophage colony stimulating factor (MCSF) and stem cell factor (SCF) suggest that they have a common receptor binding mode that is distinct from the paradigm derived from the complex of growth hormone with its receptor. Furthermore, we identify recognition features common to all helical and cystine-knot protein ligands that activate type III tyrosine kinase receptors, and the closely related type V tyrosine kinase receptors.
Collapse
Affiliation(s)
- S N Savvides
- Program in Biophysics, Cornell University, Ithaca, NY 14853, USA
| | | | | |
Collapse
|
13
|
Friedrich K, Wietek S, Lischke A, Wellbrock C, Kreitman RJ, Pastan I, Sebald W. A two-step selection approach for the identification of ligand-binding determinants in cytokine receptors. Anal Biochem 1999; 268:179-86. [PMID: 10075806 DOI: 10.1006/abio.1998.3078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have developed a novel cell-based method for the isolation and selection of mutant cytokine receptors with defects in ligand binding and applied it to the human interleukin-4 receptor. The experimental procedure is based upon the functional heterologous expression of receptor mutants in eukaryotic cells followed by a two-step selection procedure. Positive selection for cells that express receptor variants is achieved by means of an agonistic antibody that mediates cell survival through receptor dimerization. An IL-4-coupled toxin is subsequently used to select against cells expressing wild-type receptors. Cells expressing mutant receptors that are unable to bind the cytotoxic ligand survive and can be amplified. The procedure allows the isolation of rare receptor variants from cell pools containing predominantly wild-type cells. This method, which should be equally applicable to similar receptor systems, was used to demonstrate the importance of a critical charged amino acid residue in the human IL-4 receptor alpha-subunit for IL-4-induced receptor activation.
Collapse
Affiliation(s)
- K Friedrich
- Physiologische Chemie II, Physiologische Chemie I, Biozentrum, Am Hubland, Würzburg, D-97074, Germany.
| | | | | | | | | | | | | |
Collapse
|
14
|
Graddis TJ, Brasel K, Friend D, Srinivasan S, Wee S, Lyman SD, March CJ, McGrew JT. Structure-function analysis of FLT3 ligand-FLT3 receptor interactions using a rapid functional screen. J Biol Chem 1998; 273:17626-33. [PMID: 9651358 DOI: 10.1074/jbc.273.28.17626] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
FLT3 ligand (FLT3L) stimulates primitive hematopoietic cells by binding to and activating the FLT3 receptor (FLT3R). We carried out a structure-activity study of human FLT3L in order to define the residues involved in receptor binding. We developed a rapid method to screen randomly mutagenized FLT3L using a FLT3R-Fc fusion protein to probe the relative binding activities of mutated ligand. Approximately 60,000 potential mutants were screened, and the DNA from 59 clones was sequenced. Thirty-one single amino acid substitutions at 24 positions of FLT3L either enhanced or reduced activity in receptor binding and cell proliferation assays. Eleven representative proteins were purified and analyzed for receptor affinity, specific activity, and physical properties. Receptor affinity and bioactivity were highly correlated. FLT3L affinity for receptor improved when four individual mutations that enhance FLT3L receptor affinity were combined in a single molecule. A model of FLT3L three-dimensional structure was generated based on sequence alignment and x-ray structure of macrophage colony-stimulating factor. Most residues implicated in receptor binding are widely dispersed in the primary structure of FLT3L, yet they localize to a surface patch in the tertiary model. A mutation that maps to and is predicted to disrupt the proposed dimerization interface between FLT3L monomers exhibits a Stokes radius that is concentration-dependent, suggesting that this mutation disrupts the FLT3L dimer.
Collapse
Affiliation(s)
- T J Graddis
- Department of Protein Chemistry, Immunex Corporation, Seattle, Washington 98101, USA
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Happersberger HP, Stapleton J, Cowgill C, Glocker MO. Characterization of the folding pathway of recombinant human macrophage-colony stimulating-factor β (rhM-CSF β) by bis-cysteinyl modification and mass spectrometry. Proteins 1998. [DOI: 10.1002/(sici)1097-0134(1998)33:2+<50::aid-prot7>3.0.co;2-r] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
16
|
Abstract
M-CSF (CSF-1) can be produced in a variety of structural forms that may affect function in vivo. Truncated, nonglycosylated forms of recombinant M-CSF (rM-CSF) from E. coli have been refolded in vitro in high yield and shown to be functionally equivalent in vitro to glycosylated rM-CSF secreted from mammalian cells. An N-terminal domain of 149 amino acids is produced by all of the known M-CSF mRNA splice variants and is the region responsible for bioactivity observed in vitro. Heterodimeric rM-CSFs from different splice variants containing this domain were produced in pure form by refolding in vitro, and are fully active, but have yet to be observed in vivo. The circulating half-life of truncated M-CSF forms injected intravenously into rats increased with the MW of the M-CSF used. Large increases in half-life in vivo were observed following chemical addition of a single molecule of 10 kD polyethylene glycol to rM-CSF in vitro. The crystal structure of rM-CSF revealed that M-CSF is a member of a family of molecules related by having a distinctive four-helical-bundle structural core. Site-directed mutagenesis showed that residues in or near helix A and helix C are involved in receptor binding, as reflected by decreased bioactivity and receptor binding of certain mutants. A soluble form of the M-CSF receptor, c-fms, was produced in a baculovirus/Sf9 expression system and purified to homogeneity. The MW of rM-CSF saturated with this soluble receptor was determined by molecular sieve chromatography and light scattering. Each dimeric M-CSF molecule appears to bind two soluble receptor molecules in vitro, supporting the observation that M-CSF signaling is linked to receptor dimerization.
Collapse
Affiliation(s)
- K Koths
- Chiron Corporation, Emeryville, California 94608-2916, USA
| |
Collapse
|
17
|
|