1
|
Effert J, Westphalen M, Calderari A, Shi YM, Elamri I, Najah S, Grün P, Li Y, Gruez A, Weissman KJ, Bode HB. Pyrrolizwilline, a Unique Bacterial Alkaloid Assembled by a Nonribosomal Peptide Synthetase and non-Enzymatic Dimerization. Angew Chem Int Ed Engl 2024; 63:e202411258. [PMID: 39428351 DOI: 10.1002/anie.202411258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/29/2024] [Accepted: 10/02/2024] [Indexed: 10/22/2024]
Abstract
Pyrrolizidine alkaloids (PAs) are a structurally diverse group of heterocyclic specialized metabolites characterized by a core structure comprising a hexahydro-1H-pyrrolizine. PAs are synthesized through two main pathways. In plants, assembly occurs via a homospermidine synthase, and in bacteria, through combined action of a nonribosomal peptide synthetase and a Baeyer-Villiger monooxygenase. While the toxic properties of plant-derived PAs and their prevalence in animal and human foods have been extensively studied, the biological roles and biosynthesis of more complex bacterial PAs are not well understood. Here, we report the identification and characterization of a bacterial biosynthetic gene cluster from Xenorhabdus hominickii, xhpA-G, which is responsible for producing the PA pseudo-dimer pyrrolizwilline. Analysis of X. hominickii promoter exchange mutants together with heterologous expression of xhpA-G in E. coli, revealed a set of pathway intermediates, two of which were chemically synthesized, as well as multiple derivatives. This information was leveraged to propose a detailed biosynthetic pathway to pyrrolizwilline. Furthermore, we have characterized the hydrolase XhpG, the key enzyme in the conversion of the pathway intermediate pyrrolizixenamide to pyrrolizwilline, using X-ray crystallography and small-angle X-ray scattering (SAXS).
Collapse
Affiliation(s)
- Juliana Effert
- Max Planck Institute for Terrestrial Microbiology, Department of Natural Products in Organismic Interactions, 35043, Marburg, Germany
| | - Margaretha Westphalen
- Molecular Biotechnology, Department of Biosciences, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany
| | | | - Yi-Ming Shi
- Max Planck Institute for Terrestrial Microbiology, Department of Natural Products in Organismic Interactions, 35043, Marburg, Germany
- Key Laboratory of Quantitative Synthetic Biology, Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Isam Elamri
- Max Planck Institute for Terrestrial Microbiology, Department of Natural Products in Organismic Interactions, 35043, Marburg, Germany
- Molecular Biotechnology, Department of Biosciences, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany
| | - Soumaya Najah
- Unit MCAM, UMR 7245, CNRS-Muséum National d'Histoire Naturelle (MNHN), 75005, Paris, France
| | - Peter Grün
- Max Planck Institute for Terrestrial Microbiology, Department of Natural Products in Organismic Interactions, 35043, Marburg, Germany
| | - Yanyan Li
- Unit MCAM, UMR 7245, CNRS-Muséum National d'Histoire Naturelle (MNHN), 75005, Paris, France
| | - Arnaud Gruez
- Université de Lorraine, CNRS, IMoPA, F-54000, Nancy, France
| | | | - Helge B Bode
- Max Planck Institute for Terrestrial Microbiology, Department of Natural Products in Organismic Interactions, 35043, Marburg, Germany
- Molecular Biotechnology, Department of Biosciences, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany
- Center for Synthetic Microbiology (SYNMIKRO), Phillips University Marburg, 35043, Marburg, Germany
- Department of Chemistry, Phillips University Marburg, 35043, Marburg, Germany
- LOEWE Centre for Translational Biodiversity Genomics (LOEW-TBG) & Senckenberg Gesellschaft für Naturforschung, 60325, Frankfurt am, Main, Germany
| |
Collapse
|
2
|
Balola A, Ferreira S, Rocha I. From plastic waste to bioprocesses: Using ethylene glycol from polyethylene terephthalate biodegradation to fuel Escherichia coli metabolism and produce value-added compounds. Metab Eng Commun 2024; 19:e00254. [PMID: 39720189 PMCID: PMC11667706 DOI: 10.1016/j.mec.2024.e00254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 10/29/2024] [Accepted: 11/22/2024] [Indexed: 12/26/2024] Open
Abstract
Polyethylene Terephthalate (PET) is a petroleum-based plastic polymer that, by design, can last decades, if not hundreds of years, when released into the environment through plastic waste leakage. In the pursuit of sustainable solutions to plastic waste recycling and repurposing, the enzymatic depolymerization of PET has emerged as a promising green alternative. However, the metabolic potential of the resulting PET breakdown molecules, such as the two-carbon (C2) molecule ethylene glycol (EG), remains largely untapped. Here, we review and discuss the current state of research regarding existing natural and synthetic microbial pathways that enable the assimilation of EG as a carbon and energy source for Escherichia coli. Leveraging the metabolic versatility of E. coli, we explore the viability of this widely used industrial strain in harnessing EG as feedstock for the synthesis of target value-added compounds via metabolic and protein engineering strategies. Consequently, we assess the potential of EG as a versatile alternative to conventional carbon sources like glucose, facilitating the closure of the loop between the highly available PET waste and the production of valuable biochemicals. This review explores the interplay between PET biodegradation and EG metabolism, as well as the key challenges and opportunities, while offering perspectives and suggestions for propelling advancements in microbial EG assimilation for circular economy applications.
Collapse
Affiliation(s)
- Alexandra Balola
- Instituto de Tecnologia Química e Biológica António Xavier, Oeiras, Portugal
| | - Sofia Ferreira
- Instituto de Tecnologia Química e Biológica António Xavier, Oeiras, Portugal
| | - Isabel Rocha
- Instituto de Tecnologia Química e Biológica António Xavier, Oeiras, Portugal
| |
Collapse
|
3
|
Kim J, Kim YB, Kim JY, Seo MJ, Yeom SJ, Sung BH. Investigation of Bottleneck Enzyme Through Flux Balance Analysis to Improve Glycolic Acid Production in Escherichia coli. J Microbiol 2024; 62:1023-1033. [PMID: 39466558 DOI: 10.1007/s12275-024-00175-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/20/2024] [Accepted: 09/22/2024] [Indexed: 10/30/2024]
Abstract
Amid rising environmental concerns, attempts have been made to produce glycolic acid (GA) using microbial processes with renewable carbon resources instead of using chemicals. The Dahms pathway for GA production uses xylose as a substrate and consists of relatively simple enzymatic steps. However, employing it leads to a decrease in cell growth and GA productivity. Systematically identifying and addressing metabolic bottlenecks in the Dahms pathway are essential for efficient glycolic acid (GA) production have not yet been performed. Through metabolic flux balance analysis, we found that insufficient aldehyde dehydrogenase (AldA) activity lowers GA production and negatively affects cell growth due to reduced energy production. Thus, we discovered a novel AldA isolated from Buttiauxella agrestis (BaAldA) demonstrated a 1.69-fold lower KM and a 1.49-fold higher turnover rate (kcat/KM) than AldA from Escherichia coli (EcAldA). GA production in E. coli harboring BaAldA was 1.59 times higher than in the original strain. Fed-batch fermentation of E. coli harboring BaAldA produced 22.70 g/L GA with a yield of 0.497 g/gxylose (98.2% of the theoretical maximum yield in the Dahms pathway), showing a higher final yield for GA than previously reported in E. coli. Our novel BaAldA enzyme shows great potential for the production of GA using microorganisms or enzymes. Furthermore, our approach to identifying metabolic bottlenecks using flux balance analysis could be utilized to enhance the microbial production of various desirable products in future studies.
Collapse
Affiliation(s)
- Jungyeon Kim
- Synthetic Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
- Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang-gun, Gangwon-do, 25354, Republic of Korea
- Institute of Food Industrialization, Institutes of Green Bioscience and Technology, Seoul National University, Pyeongchang-gun, Gangwon-do, 25354, Republic of Korea
| | - Ye-Bin Kim
- School of Biological Sciences and Biotechnology, Graduate School, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Ju-Young Kim
- School of Biological Sciences and Biotechnology, Graduate School, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Min-Ju Seo
- Institute of Synthetic Biology for Carbon Neutralization, Chonnam National University, Gwangju, 61186, Republic of Korea
- School of Biological Sciences and Technology , Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Soo-Jin Yeom
- School of Biological Sciences and Biotechnology, Graduate School, Chonnam National University, Gwangju, 61186, Republic of Korea.
- Institute of Synthetic Biology for Carbon Neutralization, Chonnam National University, Gwangju, 61186, Republic of Korea.
- School of Biological Sciences and Technology , Chonnam National University, Gwangju, 61186, Republic of Korea.
| | - Bong Hyun Sung
- Synthetic Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea.
- Department of Biosystems and Bioengineering, School of Biotechnology, Korea University of Science and Technology (UST), Daejeon, 34113, Republic of Korea.
- Graduate School of Engineering Biology, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
4
|
Smallman TR, Perlaza-Jiménez L, Wang X, Korman TM, Kotsanas D, Gibson JS, Turni C, Harper M, Boyce JD. Pathogenomic analysis and characterization of Pasteurella multocida strains recovered from human infections. Microbiol Spectr 2024; 12:e0380523. [PMID: 38426766 PMCID: PMC10986470 DOI: 10.1128/spectrum.03805-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 02/03/2024] [Indexed: 03/02/2024] Open
Abstract
Pasteurella multocida is an upper respiratory tract commensal in several mammal and bird species but can also cause severe disease in humans and in production animals such as poultry, cattle, and pigs. In this study, we performed whole-genome sequencing of P. multocida isolates recovered from a range of human infections, from the mouths of cats, and from wounds on dogs. Together with publicly available P. multocida genome sequences, we performed phylogenetic and comparative genomic analyses. While isolates from cats and dogs were spread across the phylogenetic tree, human infections were caused almost exclusively by subsp. septica strains. Most of the human isolates were capsule type A and LPS type L1 and L3; however, some strains lacked a capsule biosynthesis locus, and some strains contained a novel LPS outer-core locus, distinct from the eight LPS loci that can currently be identified using an LPS multiplex PCR. In addition, the P. multocida strains isolated from human infections contained novel mobile genetic elements. We compiled a curated database of known P. multocida virulence factor and antibiotic resistance genes (PastyVRDB) allowing for detailed characterization of isolates. The majority of human P. multocida isolates encoded a reduced range of iron receptors and contained only one filamentous hemagglutinin gene. Finally, gene-trait analysis identified a putative L-fucose uptake and utilization pathway that was over-represented in subsp. septica strains and may represent a novel host predilection mechanism in this subspecies. Together, these analyses have identified pathogenic mechanisms likely important for P. multocida zoonotic infections.IMPORTANCEPasteurella multocida can cause serious infections in humans, including skin and wound infections, pneumonia, peritonitis, meningitis, and bacteraemia. Cats and dogs are known vectors of human pasteurellosis, transmitting P. multocida via bite wounds or contact with animal saliva. The mechanisms that underpin P. multocida human predilection and pathogenesis are poorly understood. With increasing identification of antibiotic-resistant P. multocida strains, understanding these mechanisms is vital for developing novel treatments and control strategies to combat P. multocida human infection. Here, we show that a narrow range of P. multocida strains cause disease in humans, while cats and dogs, common vectors for zoonotic infections, can harbor a wide range of P. multocida strains. We also present a curated P. multocida-specific database, allowing quick and detailed characterization of newly sequenced P. multocida isolates.
Collapse
Affiliation(s)
- Thomas R. Smallman
- Department of Microbiology, Infection Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
| | - Laura Perlaza-Jiménez
- Monash Bioinformatics Platform, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Xiaochu Wang
- Department of Microbiology, Infection Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
| | - Tony M. Korman
- Monash University and Monash Health, Clayton, Victoria, Australia
| | - Despina Kotsanas
- Monash University and Monash Health, Clayton, Victoria, Australia
| | - Justine S. Gibson
- School of Veterinary Science, University of Queensland, Gatton, Queensland, Australia
| | - Conny Turni
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, St Lucia, Queensland, Australia
| | - Marina Harper
- Department of Microbiology, Infection Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
| | - John D. Boyce
- Department of Microbiology, Infection Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
5
|
Watanabe S. Characterization of a novel L-fuconate dehydratase involved in the non-phosphorylated pathway of L-fucose metabolism from bacteria. Biosci Biotechnol Biochem 2024; 88:177-180. [PMID: 38017627 DOI: 10.1093/bbb/zbad161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 11/10/2023] [Indexed: 11/30/2023]
Abstract
A sugar acid dehydratase from Paraburkholderia mimosarum, potentially involved in the non-phosphorylated L-fucose pathway, was functionally characterized. A biochemical analysis revealed its unique heterodimeric structure and higher specificity toward L-fuconate than D-arabinonate, D-altronate, and L-xylonate, which differed from homomeric homologs. This unique L-fuconate dehydratase has a poor phylogenetic relationship with other functional members of the D-altronate dehydratase/galactarate dehydratase protein family.
Collapse
Affiliation(s)
- Seiya Watanabe
- Department of Bioscience, Graduate School of Agriculture, Ehime University, Matsuyama, Ehime, Japan
- Center for Marine Environmental Studies (CMES), Ehime University, Matsuyama, Ehime, Japan
| |
Collapse
|
6
|
Wagner N, Bade F, Straube E, Rabe K, Frazão CJR, Walther T. In vivo implementation of a synthetic metabolic pathway for the carbon-conserving conversion of glycolaldehyde to acetyl-CoA. Front Bioeng Biotechnol 2023; 11:1125544. [PMID: 36845174 PMCID: PMC9947464 DOI: 10.3389/fbioe.2023.1125544] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 01/30/2023] [Indexed: 02/11/2023] Open
Abstract
Ethylene glycol (EG) derived from plastic waste or CO2 can serve as a substrate for microbial production of value-added chemicals. Assimilation of EG proceeds though the characteristic intermediate glycolaldehyde (GA). However, natural metabolic pathways for GA assimilation have low carbon efficiency when producing the metabolic precursor acetyl-CoA. In alternative, the reaction sequence catalyzed by EG dehydrogenase, d-arabinose 5-phosphate aldolase, d-arabinose 5-phosphate isomerase, d-ribulose 5-phosphate 3-epimerase (Rpe), d-xylulose 5-phosphate phosphoketolase, and phosphate acetyltransferase may enable the conversion of EG into acetyl-CoA without carbon loss. We investigated the metabolic requirements for in vivo function of this pathway in Escherichia coli by (over)expressing constituting enzymes in different combinations. Using 13C-tracer experiments, we first examined the conversion of EG to acetate via the synthetic reaction sequence and showed that, in addition to heterologous phosphoketolase, overexpression of all native enzymes except Rpe was required for the pathway to function. Since acetyl-CoA could not be reliably quantified by our LC/MS-method, the distribution of isotopologues in mevalonate, a stable metabolite that is exclusively derived from this intermediate, was used to probe the contribution of the synthetic pathway to biosynthesis of acetyl-CoA. We detected strong incorporation of 13C carbon derived from labeled GA in all intermediates of the synthetic pathway. In presence of unlabeled co-substrate glycerol, 12.4% of the mevalonate (and therefore acetyl-CoA) was derived from GA. The contribution of the synthetic pathway to acetyl-CoA production was further increased to 16.1% by the additional expression of the native phosphate acyltransferase enzyme. Finally, we demonstrated that conversion of EG to mevalonate was feasible albeit at currently extremely small yields.
Collapse
Affiliation(s)
- Nils Wagner
- TU Dresden, Institute of Natural Materials Technology, Dresden, Germany
| | - Frederik Bade
- TU Dresden, Institute of Natural Materials Technology, Dresden, Germany
| | - Elly Straube
- TU Dresden, Institute of Natural Materials Technology, Dresden, Germany
| | - Kenny Rabe
- TU Dresden, Institute of Natural Materials Technology, Dresden, Germany
| | | | | |
Collapse
|
7
|
Fukuhara S, Watanabe S, Watanabe Y, Nishiwaki H. Crystal Structure of l-2,4-Diketo-3-deoxyrhamnonate Hydrolase Involved in the Nonphosphorylated l-Rhamnose Pathway from Bacteria. Biochemistry 2023; 62:524-534. [PMID: 36563174 DOI: 10.1021/acs.biochem.2c00596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
2,4-Diketo-3-deoxy-l-rhamnonate (L-DKDR) hydrolase (LRA6) catalyzes the hydrolysis reaction of L-DKDR to pyruvate and l-lactate in the nonphosphorylated l-rhamnose pathway from bacteria and belongs to the fumarylacetoacetate hydrolase (FAH) superfamily. Most of the members of the FAH superfamily are involved in the microbial degradation of aromatic substances and share low sequence similarities with LRA6, by which the underlying catalytic mechanism remains unknown at the atomic level. We herein elucidated for the first time the crystal structures of LRA6 from Sphingomonas sp. without a ligand and in complex with pyruvate, in which a magnesium ion was coordinated with three acidic residues in the catalytic center. Structural, biochemical, and phylogenetic analyses suggested that LRA6 is a close but distinct subfamily of the fumarylpyruvate hydrolase (FPH) subfamily, and amino acid residues at equivalent position to 84 in LRA6 are related to different substrate specificities between them (Leu84 and Arg86 in LRA6 and FPH, respectively). Structural transition induced upon the binding of pyruvate was observed within a lid-like region, by which a glutamate-histidine dyad that is critical for catalysis was arranged sufficiently close to the ligand. Among several hydroxylpyruvates (2,4-diketo-5-hydroxycarboxylates), L-DKDR with a C6 methyl group was the best substrate for LRA6, conforming to the physiological role. Significant activity was also detected in acylpyruvate including acetylpyruvate. The structural analysis presented herein provides a more detailed understanding of the molecular evolution and physiological role of the FAH superfamily enzymes (e.g., the FAH like-enzyme involved in the mammalian l-fucose pathway).
Collapse
Affiliation(s)
- Shota Fukuhara
- Department of Bioscience, Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime 790-8566, Japan
| | - Seiya Watanabe
- Department of Bioscience, Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime 790-8566, Japan.,Center for Marine Environmental Studies (CMES), Ehime University, 2-5 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| | - Yasunori Watanabe
- Faculty of Science, Yamagata University, 1-4-12 Kojirakawa-machi, Yamagata, Yamagata 990-8560, Japan
| | - Hisashi Nishiwaki
- Department of Bioscience, Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime 790-8566, Japan
| |
Collapse
|
8
|
Yoshiwara K, Watanabe S, Watanabe Y. Crystal structure of l-rhamnose 1-dehydrogenase involved in the nonphosphorylative pathway of l-rhamnose metabolism in bacteria. FEBS Lett 2021; 595:637-646. [PMID: 33482017 DOI: 10.1002/1873-3468.14046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 11/05/2022]
Abstract
Several microorganisms can utilize l-rhamnose as a carbon and energy source through the nonphosphorylative metabolic pathway, in which l-rhamnose 1-dehydrogenase (RhaDH) catalyzes the NAD(P)+ -dependent oxidization of l-rhamnose to l-rhamnono-1,4-lactone. We herein investigated the crystal structures of RhaDH from Azotobacter vinelandii in ligand-free, NAD+ -bound, NADP+ -bound, and l-rhamnose- and NAD+ -bound forms at 1.9, 2.1, 2.4, and 1.6 Å resolution, respectively. The significant interactions with the 2'-phosphate group of NADP+ , but not the 2'-hydroxyl group of NAD+ , were consistent with a preference for NADP+ over NAD+ . The C5-OH and C6-methyl groups of l-rhamnose were recognized by specific residues of RhaDH through hydrogen bonds and hydrophobic contact, respectively, which contribute to the different substrate specificities from other aldose 1-dehydrogenases in the short-chain dehydrogenase/reductase superfamily.
Collapse
Affiliation(s)
| | - Seiya Watanabe
- Faculty of Agriculture, Ehime University, Matsuyama, Japan.,Department of Bioscience, Graduate School of Agriculture, Ehime University, Matsuyama, Japan.,Center for Marine Environmental Studies (CMES), Ehime University, Matsuyama, Japan
| | - Yasunori Watanabe
- Faculty of Agriculture, Ehime University, Matsuyama, Japan.,Department of Bioscience, Graduate School of Agriculture, Ehime University, Matsuyama, Japan.,Faculty of Science, Yamagata University, Japan
| |
Collapse
|
9
|
Bañares AB, Valdehuesa KNG, Ramos KRM, Nisola GM, Lee WK, Chung WJ. A pH-responsive genetic sensor for the dynamic regulation of D-xylonic acid accumulation in Escherichia coli. Appl Microbiol Biotechnol 2020; 104:2097-2108. [PMID: 31900554 DOI: 10.1007/s00253-019-10297-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/28/2019] [Accepted: 12/03/2019] [Indexed: 11/25/2022]
Abstract
The xylose oxidative pathway (XOP) is continuously gaining prominence as an alternative for the traditional pentose assimilative pathways in prokaryotes. It begins with the oxidation of D-xylose to D-xylonic acid, which is further converted to α-ketoglutarate or pyruvate + glycolaldehyde through a series of enzyme reactions. The persistent drawback of XOP is the accumulation of D-xylonic acid intermediate that causes culture media acidification. This study addresses this issue through the development of a novel pH-responsive synthetic genetic controller that uses a modified transmembrane transcription factor called CadCΔ. This genetic circuit was tested for its ability to detect extracellular pH and to control the buildup of D-xylonic acid in the culture media. Results showed that the pH-responsive genetic sensor confers dynamic regulation of D-xylonic acid accumulation, which adjusts with the perturbation of culture media pH. This is the first report demonstrating the use of a pH-responsive transmembrane transcription factor as a transducer in a synthetic genetic circuit that was designed for XOP. This may serve as a benchmark for the development of other genetic controllers for similar pathways that involve acidic intermediates.
Collapse
Affiliation(s)
- Angelo B Bañares
- Department of Energy Science and Technology (DEST), Energy and Environment Fusion Technology Center (E2FTC), Myongji University, Myongji-ro 116, Cheoin-gu, Yongin, 17058, Gyeonggi-do, Republic of Korea
| | - Kris Niño G Valdehuesa
- Department of Energy Science and Technology (DEST), Energy and Environment Fusion Technology Center (E2FTC), Myongji University, Myongji-ro 116, Cheoin-gu, Yongin, 17058, Gyeonggi-do, Republic of Korea
| | - Kristine Rose M Ramos
- Department of Energy Science and Technology (DEST), Energy and Environment Fusion Technology Center (E2FTC), Myongji University, Myongji-ro 116, Cheoin-gu, Yongin, 17058, Gyeonggi-do, Republic of Korea
| | - Grace M Nisola
- Department of Energy Science and Technology (DEST), Energy and Environment Fusion Technology Center (E2FTC), Myongji University, Myongji-ro 116, Cheoin-gu, Yongin, 17058, Gyeonggi-do, Republic of Korea
| | - Won-Keun Lee
- Division of Bioscience and Bioinformatics, Myongji University, Myongji-ro 116, Cheoin-gu, Yongin, 17058, Gyeonggi-do, Republic of Korea.
| | - Wook-Jin Chung
- Department of Energy Science and Technology (DEST), Energy and Environment Fusion Technology Center (E2FTC), Myongji University, Myongji-ro 116, Cheoin-gu, Yongin, 17058, Gyeonggi-do, Republic of Korea.
| |
Collapse
|
10
|
Francois JM, Alkim C, Morin N. Engineering microbial pathways for production of bio-based chemicals from lignocellulosic sugars: current status and perspectives. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:118. [PMID: 32670405 PMCID: PMC7341569 DOI: 10.1186/s13068-020-01744-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 06/01/2020] [Indexed: 05/08/2023]
Abstract
Lignocellulose is the most abundant biomass on earth with an annual production of about 2 × 1011 tons. It is an inedible renewable carbonaceous resource that is very rich in pentose and hexose sugars. The ability of microorganisms to use lignocellulosic sugars can be exploited for the production of biofuels and chemicals, and their concurrent biotechnological processes could advantageously replace petrochemicals' processes in a medium to long term, sustaining the emerging of a new economy based on bio-based products from renewable carbon sources. One of the major issues to reach this objective is to rewire the microbial metabolism to optimally configure conversion of these lignocellulosic-derived sugars into bio-based products in a sustainable and competitive manner. Systems' metabolic engineering encompassing synthetic biology and evolutionary engineering appears to be the most promising scientific and technological approaches to meet this challenge. In this review, we examine the most recent advances and strategies to redesign natural and to implement non-natural pathways in microbial metabolic framework for the assimilation and conversion of pentose and hexose sugars derived from lignocellulosic material into industrial relevant chemical compounds leading to maximal yield, titer and productivity. These include glycolic, glutaric, mesaconic and 3,4-dihydroxybutyric acid as organic acids, monoethylene glycol, 1,4-butanediol and 1,2,4-butanetriol, as alcohols. We also discuss the big challenges that still remain to enable microbial processes to become industrially attractive and economically profitable.
Collapse
Affiliation(s)
- Jean Marie Francois
- Toulouse Biotechnology Institute, CNRS, INRA, LISBP INSA, 135 Avenue de Rangueil, Toulouse Cedex 04, 31077 France
- Toulouse White Biotechnology (TWB, UMS INRA/INSA/CNRS), NAPA CENTER Bât B, 3 Rue Ariane 31520, Ramonville Saint-Agnes, France
| | - Ceren Alkim
- Toulouse Biotechnology Institute, CNRS, INRA, LISBP INSA, 135 Avenue de Rangueil, Toulouse Cedex 04, 31077 France
- Toulouse White Biotechnology (TWB, UMS INRA/INSA/CNRS), NAPA CENTER Bât B, 3 Rue Ariane 31520, Ramonville Saint-Agnes, France
| | - Nicolas Morin
- Toulouse Biotechnology Institute, CNRS, INRA, LISBP INSA, 135 Avenue de Rangueil, Toulouse Cedex 04, 31077 France
- Toulouse White Biotechnology (TWB, UMS INRA/INSA/CNRS), NAPA CENTER Bât B, 3 Rue Ariane 31520, Ramonville Saint-Agnes, France
| |
Collapse
|
11
|
Treitli SC, Kolisko M, Husník F, Keeling PJ, Hampl V. Revealing the metabolic capacity of Streblomastix strix and its bacterial symbionts using single-cell metagenomics. Proc Natl Acad Sci U S A 2019; 116:19675-19684. [PMID: 31492817 PMCID: PMC6765251 DOI: 10.1073/pnas.1910793116] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Lower termites harbor in their hindgut complex microbial communities that are involved in the digestion of cellulose. Among these are protists, which are usually associated with specific bacterial symbionts found on their surface or inside their cells. While these form the foundations of a classic system in symbiosis research, we still know little about the functional basis for most of these relationships. Here, we describe the complex functional relationship between one protist, the oxymonad Streblomastix strix, and its ectosymbiotic bacterial community using single-cell genomics. We generated partial assemblies of the host S. strix genome and Candidatus Ordinivivax streblomastigis, as well as a complex metagenome assembly of at least 8 other Bacteroidetes bacteria confirmed by ribosomal (r)RNA fluorescence in situ hybridization (FISH) to be associated with S. strix. Our data suggest that S. strix is probably not involved in the cellulose digestion, but the bacterial community on its surface secretes a complex array of glycosyl hydrolases, providing them with the ability to degrade cellulose to monomers and fueling the metabolism of S. strix In addition, some of the bacteria can fix nitrogen and can theoretically provide S. strix with essential amino acids and cofactors, which the protist cannot synthesize. On the contrary, most of the bacterial symbionts lack the essential glycolytic enzyme enolase, which may be overcome by the exchange of intermediates with S. strix This study demonstrates the value of the combined single-cell (meta)genomic and FISH approach for studies of complicated symbiotic systems.
Collapse
Affiliation(s)
- Sebastian C Treitli
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, 252 42 Vestec, Czech Republic
| | - Martin Kolisko
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 370 05 České Budějovice, Czech Republic
| | - Filip Husník
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Patrick J Keeling
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Vladimír Hampl
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, 252 42 Vestec, Czech Republic;
| |
Collapse
|
12
|
Boer H, Andberg M, Pylkkänen R, Maaheimo H, Koivula A. In vitro reconstitution and characterisation of the oxidative D-xylose pathway for production of organic acids and alcohols. AMB Express 2019; 9:48. [PMID: 30972503 PMCID: PMC6458216 DOI: 10.1186/s13568-019-0768-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 03/25/2019] [Indexed: 01/01/2023] Open
Abstract
The oxidative d-xylose pathway, i.e. Dahms pathway, can be utilised to produce from cheap biomass raw material useful chemical intermediates. In vitro metabolic pathways offer a fast way to study the rate-limiting steps and find the most suitable enzymes for each reaction. We have constructed here in vitro multi-enzyme cascades leading from d-xylose or d-xylonolactone to ethylene glycol, glycolic acid and lactic acid, and use simple spectrophotometric assays for the read-out of the efficiency of these pathways. Based on our earlier results, we focussed particularly on the less studied xylonolactone ring opening (hydrolysis) reaction. The bacterial Caulobacter crescentus lactonase (Cc XylC), was shown to be a metal-dependent enzyme clearly improving the formation of d-xylonic acid at pH range from 6 to 8. The following dehydration reaction by the ILVD/EDD family d-xylonate dehydratase is a rate-limiting step in the pathway, and an effort was made to screen for novel enolase family d-xylonate dehydratases, however, no suitable replacing enzymes were found for this reaction. Concerning the oxidation of glycolaldehyde to glycolic acid, several enzyme candidates were also tested. Both Escherichia coli aldehyde dehydrogenase (Ec AldA) and Azospirillum brasilense α-ketoglutarate semialdehyde dehydrogenase (Ab AraE) proved to be suitable enzymes for this reaction.
Collapse
|
13
|
Kumar A, Khan FI, Olaniran AO. Chloroacetaldehyde dehydrogenase from Ancylobacter aquaticus UV5: Cloning, expression, characterization and molecular modeling. Int J Biol Macromol 2018; 114:1117-1126. [PMID: 29605256 DOI: 10.1016/j.ijbiomac.2018.03.176] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 08/07/2017] [Accepted: 03/29/2018] [Indexed: 10/17/2022]
Abstract
1,2-Dichloroethane (1,2-DCE) is oxidatively converted to a carcinogenic intermediate compound, chloroacetaldehyde by chloroacetaldehyde dehydrogenase (CAldA) during its biodegradation by many bacterial strains, including Xanthobacter autotrophicus and Ancylobacter aquaticus. In this study, a 55kDa NAD-dependent CAldA expressed by chromosomally encoded aldA gene, is reported in an indigenous Ancylobacter aquaticus UV5. A. aquaticus UV5 aldA gene was found to be 99% homologous to the plasmid (pXAU1) encoded aldA gene reported in X. autotrophicus GJ10. Pulse-field gel electrophoresis (PFGE) and PCR experiments revealed the absence of pXAU1 in A. aquaticus UV5 and that aldA was chromosomal encoded. A 6× His-tag fused CAldA cloned in pET15b, overexpressed and purified on Co-agarose affinity column using AKTA purification system showed Mr of 57,526. CAldA was active optimally at pH9 and 30°C. The Km and vmax for the substrate, acetaldehyde were found to be 115μM and 650mU/mg, respectively. CAldA substrate specificity was found to be low for chloroacetaldehyde, formaldehyde, propionaldehyde, butyraldehyde, benzaldehyde and glutaraldehyde as compared to acetaldehyde. Computational modeling revealed a predicted structure of CAldA consisting of five β-sheets that comprise seven antiparallel β-strands and 11 mix strands. The Molecular Dynamics and Docking studies showed that acetaldehyde bind to CaldA more tightly as compared to chloroacetaldehyde.
Collapse
Affiliation(s)
- Ajit Kumar
- Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal (Westville Campus), Private Bag X54001, Durban 4000, South Africa
| | - Faez Iqbal Khan
- Department of Chemistry, Rhodes University, Grahamstown 6139, South Africa
| | - Ademola O Olaniran
- Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal (Westville Campus), Private Bag X54001, Durban 4000, South Africa.
| |
Collapse
|
14
|
Rossoni L, Carr R, Baxter S, Cortis R, Thorpe T, Eastham G, Stephens G. Engineering Escherichia coli to grow constitutively on D-xylose using the carbon-efficient Weimberg pathway. MICROBIOLOGY-SGM 2018; 164:287-298. [PMID: 29458683 PMCID: PMC5882109 DOI: 10.1099/mic.0.000611] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Bio-production of fuels and chemicals from lignocellulosic C5 sugars usually requires the use of the pentose phosphate pathway (PPP) to produce pyruvate. Unfortunately, the oxidation of pyruvate to acetyl-coenzyme A results in the loss of 33 % of the carbon as CO2, to the detriment of sustainability and process economics. To improve atom efficiency, we engineered Escherichia coli to utilize d-xylose constitutively using the Weimberg pathway, to allow direct production of 2-oxoglutarate without CO2 loss. After confirming enzyme expression in vitro, the pathway expression was optimized in vivo using a combinatorial approach, by screening a range of constitutive promoters whilst systematically varying the gene order. A PPP-deficient (ΔxylAB), 2-oxoglutarate auxotroph (Δicd) was used as the host strain, so that growth on d-xylose depended on the expression of the Weimberg pathway, and variants expressing Caulobacter crescentus xylXAB could be selected on minimal agar plates. The strains were isolated and high-throughput measurement of the growth rates on d-xylose was used to identify the fastest growing variant. This strain contained the pL promoter, with C. crescentus xylA at the first position in the synthetic operon, and grew at 42 % of the rate on d-xylose compared to wild-type E. coli using the PPP. Remarkably, the biomass yield was improved by 53.5 % compared with the wild-type upon restoration of icd activity. Therefore, the strain grows efficiently and constitutively on d-xylose, and offers great potential for use as a new host strain to engineer carbon-efficient production of fuels and chemicals via the Weimberg pathway.
Collapse
Affiliation(s)
- Luca Rossoni
- University of Nottingham, Bioprocess, Environmental and Chemical Technologies Research Group, Nottingham, UK
| | | | | | | | | | | | - Gill Stephens
- University of Nottingham, Bioprocess, Environmental and Chemical Technologies Research Group, Nottingham, UK
| |
Collapse
|
15
|
Miller DV, Ruhlin M, Ray WK, Xu H, White RH. N 5 ,N 10 -methylenetetrahydromethanopterin reductase from Methanocaldococcus jannaschii also serves as a methylglyoxal reductase. FEBS Lett 2017. [PMID: 28644554 DOI: 10.1002/1873-3468.12728] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In Methanocaldococcus jannaschii, methylglyoxal (MG) is required for aromatic amino acid biosynthesis. Previously, the reduction of MG to lactaldehyde in Methanocaldococcus jannaschii cell extracts using either NADPH or F420 H2 was demonstrated; however, the enzyme responsible was not identified. Using NADPH as the reductant, the unknown enzyme was purified from cell extracts of Methanocaldococcus jannaschii and determined to be the F420 -dependent N5 ,N10 -methylenetetrahydromethanopterin reductase (Mer). Here, we report that the recombinantly overexpressed Mer is able to use NADPH and MG (KM of 1.6 and 1.0 mm, respectively) to produce lactaldehyde. Additionally, Mer does not catalyze the reduction of MG to lactaldehyde in the presence of reduced Fo, the precursor of F420 .
Collapse
Affiliation(s)
- Danielle V Miller
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Michelle Ruhlin
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - William Keith Ray
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Huimin Xu
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Robert H White
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| |
Collapse
|
16
|
Hjelm A, Karyolaimos A, Zhang Z, Rujas E, Vikström D, Slotboom DJ, de Gier JW. Tailoring Escherichia coli for the l-Rhamnose P BAD Promoter-Based Production of Membrane and Secretory Proteins. ACS Synth Biol 2017; 6:985-994. [PMID: 28226208 DOI: 10.1021/acssynbio.6b00321] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Membrane and secretory protein production in Escherichia coli requires precisely controlled production rates to avoid the deleterious saturation of their biogenesis pathways. On the basis of this requirement, the E. coli l-rhamnose PBAD promoter (PrhaBAD) is often used for membrane and secretory protein production since PrhaBAD is thought to regulate protein production rates in an l-rhamnose concentration-dependent manner. By monitoring protein production in real-time in E. coli wild-type and an l-rhamnose catabolism deficient mutant, we demonstrate that the l-rhamnose concentration-dependent tunability of PrhaBAD-mediated protein production is actually due to l-rhamnose consumption rather than regulating production rates. Using this information, a RhaT-mediated l-rhamnose transport and l-rhamnose catabolism deficient double mutant was constructed. We show that this mutant enables the regulation of PrhaBAD-based protein production rates in an l-rhamnose concentration-dependent manner and that this is critical to optimize membrane and secretory protein production yields. The high precision of protein production rates provided by the PrhaBAD promoter in an l-rhamnose transport and catabolism deficient background could also benefit other applications in synthetic biology.
Collapse
Affiliation(s)
- Anna Hjelm
- Department
of Biochemistry and Biophysics, Center for Biomembrane Research, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Alexandros Karyolaimos
- Department
of Biochemistry and Biophysics, Center for Biomembrane Research, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Zhe Zhang
- Department
of Biochemistry and Biophysics, Center for Biomembrane Research, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Edurne Rujas
- Department
of Biochemistry and Biophysics, Center for Biomembrane Research, Stockholm University, SE-106 91 Stockholm, Sweden
| | | | - Dirk Jan Slotboom
- Groningen
Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9712 CP Groningen, The Netherlands
| | - Jan-Willem de Gier
- Department
of Biochemistry and Biophysics, Center for Biomembrane Research, Stockholm University, SE-106 91 Stockholm, Sweden
| |
Collapse
|
17
|
Hosseini Z, Marashi SA. Discovering missing reactions of metabolic networks by using gene co-expression data. Sci Rep 2017; 7:41774. [PMID: 28150713 PMCID: PMC5288723 DOI: 10.1038/srep41774] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 12/30/2016] [Indexed: 11/23/2022] Open
Abstract
Flux coupling analysis is a computational method which is able to explain co-expression of metabolic genes by analyzing the topological structure of a metabolic network. It has been suggested that if genes in two seemingly fully-coupled reactions are not highly co-expressed, then these two reactions are not fully coupled in reality, and hence, there is a gap or missing reaction in the network. Here, we present GAUGE as a novel approach for gap filling of metabolic networks, which is a two-step algorithm based on a mixed integer linear programming formulation. In GAUGE, the discrepancies between experimental co-expression data and predicted flux coupling relations is minimized by adding a minimum number of reactions to the network. We show that GAUGE is able to predict missing reactions of E. coli metabolism that are not detectable by other popular gap filling approaches. We propose that our algorithm may be used as a complementary strategy for the gap filling problem of metabolic networks. Since GAUGE relies only on gene expression data, it can be potentially useful for exploring missing reactions in the metabolism of non-model organisms, which are often poorly characterized, cannot grow in the laboratory, and lack genetic tools for generating knockouts.
Collapse
Affiliation(s)
- Zhaleh Hosseini
- Department of Biotechnology, College of science, University of Tehran, Tehran, Iran
| | - Sayed-Amir Marashi
- Department of Biotechnology, College of science, University of Tehran, Tehran, Iran
| |
Collapse
|
18
|
Bacterial Responses to Glyoxal and Methylglyoxal: Reactive Electrophilic Species. Int J Mol Sci 2017; 18:ijms18010169. [PMID: 28106725 PMCID: PMC5297802 DOI: 10.3390/ijms18010169] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 01/10/2017] [Accepted: 01/11/2017] [Indexed: 11/29/2022] Open
Abstract
Glyoxal (GO) and methylglyoxal (MG), belonging to α-oxoaldehydes, are produced by organisms from bacteria to humans by glucose oxidation, lipid peroxidation, and DNA oxidation. Since glyoxals contain two adjacent reactive carbonyl groups, they are referred to as reactive electrophilic species (RES), and are damaging to proteins and nucleotides. Therefore, glyoxals cause various diseases in humans, such as diabetes and neurodegenerative diseases, from which all living organisms need to be protected. Although the glyoxalase system has been known for some time, details on how glyoxals are sensed and detoxified in the cell have not been fully elucidated, and are only beginning to be uncovered. In this review, we will summarize the current knowledge on bacterial responses to glyoxal, and specifically focus on the glyoxal-associated regulators YqhC and NemR, as well as their detoxification mediated by glutathione (GSH)-dependent/independent glyoxalases and NAD(P)H-dependent reductases. Furthermore, we will address questions and future directions.
Collapse
|
19
|
The aldehyde dehydrogenase, AldA, is essential for L-1,2-propanediol utilization in laboratory-evolved Escherichia coli. Microbiol Res 2017; 194:47-52. [DOI: 10.1016/j.micres.2016.10.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 10/29/2016] [Indexed: 11/19/2022]
|
20
|
Cabulong RB, Valdehuesa KNG, Ramos KRM, Nisola GM, Lee WK, Lee CR, Chung WJ. Enhanced yield of ethylene glycol production from d-xylose by pathway optimization in Escherichia coli. Enzyme Microb Technol 2016; 97:11-20. [PMID: 28010767 DOI: 10.1016/j.enzmictec.2016.10.020] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 10/07/2016] [Accepted: 10/30/2016] [Indexed: 12/01/2022]
Abstract
The microbial production of renewable ethylene glycol (EG) has been gaining attention recently due to its growing importance in chemical and polymer industries. EG has been successfully produced biosynthetically from d-xylose through several novel pathways. The first report on EG biosynthesis employed the Dahms pathway in Escherichia coli wherein 71% of the theoretical yield was achieved. This report further improved the EG yield by implementing metabolic engineering strategies. First, d-xylonic acid accumulation was reduced by employing a weak promoter which provided a tighter control over Xdh expression. Second, EG yield was further improved by expressing the YjgB, which was identified as the most suitable aldehyde reductase endogenous to E. coli. Finally, cellular growth, d-xylose consumption, and EG yield were further increased by blocking a competing reaction. The final strain (WTXB) was able to reach up to 98% of the theoretical yield (25% higher as compared to the first study), the highest reported value for EG production from d-xylose.
Collapse
Affiliation(s)
- Rhudith B Cabulong
- Department of Energy Science and Technology (DEST), Energy and Environment Fusion Technology Center (E(2)FTC), Myongji University, Myongji-ro 116, Cheoin-gu, Yongin, Gyeonggi-do, 170-58, South Korea
| | - Kris Niño G Valdehuesa
- Department of Energy Science and Technology (DEST), Energy and Environment Fusion Technology Center (E(2)FTC), Myongji University, Myongji-ro 116, Cheoin-gu, Yongin, Gyeonggi-do, 170-58, South Korea
| | - Kristine Rose M Ramos
- Department of Energy Science and Technology (DEST), Energy and Environment Fusion Technology Center (E(2)FTC), Myongji University, Myongji-ro 116, Cheoin-gu, Yongin, Gyeonggi-do, 170-58, South Korea
| | - Grace M Nisola
- Department of Energy Science and Technology (DEST), Energy and Environment Fusion Technology Center (E(2)FTC), Myongji University, Myongji-ro 116, Cheoin-gu, Yongin, Gyeonggi-do, 170-58, South Korea
| | - Won-Keun Lee
- Division of Bioscience and Bioinformatics, Myongji University, Myongji-ro 116, Cheoin-gu, Yongin, Gyeonggi-do, 170-58, South Korea
| | - Chang Ro Lee
- Division of Bioscience and Bioinformatics, Myongji University, Myongji-ro 116, Cheoin-gu, Yongin, Gyeonggi-do, 170-58, South Korea
| | - Wook-Jin Chung
- Department of Energy Science and Technology (DEST), Energy and Environment Fusion Technology Center (E(2)FTC), Myongji University, Myongji-ro 116, Cheoin-gu, Yongin, Gyeonggi-do, 170-58, South Korea.
| |
Collapse
|
21
|
Kelly CL, Liu Z, Yoshihara A, Jenkinson SF, Wormald MR, Otero J, Estévez A, Kato A, Marqvorsen MHS, Fleet GWJ, Estévez RJ, Izumori K, Heap JT. Synthetic Chemical Inducers and Genetic Decoupling Enable Orthogonal Control of the rhaBAD Promoter. ACS Synth Biol 2016; 5:1136-1145. [PMID: 27247275 DOI: 10.1021/acssynbio.6b00030] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
External control of gene expression is crucial in synthetic biology and biotechnology research and applications, and is commonly achieved using inducible promoter systems. The E. coli rhamnose-inducible rhaBAD promoter has properties superior to more commonly used inducible expression systems, but is marred by transient expression caused by degradation of the native inducer, l-rhamnose. To address this problem, 35 analogues of l-rhamnose were screened for induction of the rhaBAD promoter, but no strong inducers were identified. In the native configuration, an inducer must bind and activate two transcriptional activators, RhaR and RhaS. Therefore, the expression system was reconfigured to decouple the rhaBAD promoter from the native rhaSR regulatory cascade so that candidate inducers need only activate the terminal transcription factor RhaS. Rescreening the 35 compounds using the modified rhaBAD expression system revealed several promising inducers. These were characterized further to determine the strength, kinetics, and concentration-dependence of induction; whether the inducer was used as a carbon source by E. coli; and the modality (distribution) of induction among populations of cells. l-Mannose was found to be the most useful orthogonal inducer, providing an even greater range of induction than the native inducer l-rhamnose, and crucially, allowing sustained induction instead of transient induction. These findings address the key limitation of the rhaBAD expression system and suggest it may now be the most suitable system for many applications.
Collapse
Affiliation(s)
- Ciarán L. Kelly
- Centre
for Synthetic Biology and Innovation, Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, U.K
| | - Zilei Liu
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, Oxford, OX1 3TA, U.K
| | - Akihide Yoshihara
- International
Institute of Rare Sugar Research and Education, Kagawa University, Miki, Kagawa 761-0795, Japan
| | - Sarah F. Jenkinson
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, Oxford, OX1 3TA, U.K
| | - Mark R. Wormald
- Glycobiology
Institute, Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, U.K
| | - Jose Otero
- Departamento
de Química Orgánica and Centro Singular de Investigación
en Química Biolóxica e Materiais Moleculares, Universidade de Santiago de Compostela, 15782 Santiago
de Compostela, Spain
| | - Amalia Estévez
- Departamento
de Química Orgánica and Centro Singular de Investigación
en Química Biolóxica e Materiais Moleculares, Universidade de Santiago de Compostela, 15782 Santiago
de Compostela, Spain
| | - Atsushi Kato
- Department
of Hospital Pharmacy, University of Toyama, Toyama 930-0194, Japan
| | - Mikkel H. S. Marqvorsen
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, Oxford, OX1 3TA, U.K
| | - George W. J. Fleet
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, Oxford, OX1 3TA, U.K
| | - Ramón J. Estévez
- Departamento
de Química Orgánica and Centro Singular de Investigación
en Química Biolóxica e Materiais Moleculares, Universidade de Santiago de Compostela, 15782 Santiago
de Compostela, Spain
| | - Ken Izumori
- International
Institute of Rare Sugar Research and Education, Kagawa University, Miki, Kagawa 761-0795, Japan
| | - John T. Heap
- Centre
for Synthetic Biology and Innovation, Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, U.K
| |
Collapse
|
22
|
Wu X, Xu L, Yan M. A new NAD +-dependent glyceraldehyde dehydrogenase obtained by rational design of l-lactaldehyde dehydrogenase from Escherichia coli. Biosci Biotechnol Biochem 2016; 80:2306-2310. [PMID: 27671251 DOI: 10.1080/09168451.2016.1194181] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
NAD + -dependent glyceraldehyde dehydrogenases usually had lower activity in the nonphosphorylated Entner-Doudoroff (nED) pathway. In the present study, a new NAD + -dependent glyceraldehyde dehydrogenase was engineered from l-lactaldehyde dehydrogenase of E. coli (EC: 1.2.1.22). Through comparison of the sequence alignment and the active center model, we found that a residue N286 of l-lactaldehyde dehydrogenase contributed an important structure role to substrate identification. By free energy calculation, three mutations (N286E, N286H, N286T) were chosen to investigate the change of substrate specificity of the enzyme. All mutants were able to oxidate glyceraldehyde. Especially, N286T showed the highest activity of 1.1U/mg, which was 5-fold higher than the reported NAD + -dependent glyceraldehyde dehydrogenases, and 70% activity was retained at 55 °C after an hour. Compared to l-lactaldehyde, N286T had a one-third lower Km value to glyceraldehyde.
Collapse
Affiliation(s)
- Xing Wu
- a College of Biotechnology and Pharmaceutical Engineering , Nanjing Tech University , Nanjing , P.R. China
| | - Lin Xu
- a College of Biotechnology and Pharmaceutical Engineering , Nanjing Tech University , Nanjing , P.R. China
| | - Ming Yan
- a College of Biotechnology and Pharmaceutical Engineering , Nanjing Tech University , Nanjing , P.R. China
| |
Collapse
|
23
|
Cam Y, Alkim C, Trichez D, Trebosc V, Vax A, Bartolo F, Besse P, François JM, Walther T. Engineering of a Synthetic Metabolic Pathway for the Assimilation of (d)-Xylose into Value-Added Chemicals. ACS Synth Biol 2016; 5:607-18. [PMID: 26186096 DOI: 10.1021/acssynbio.5b00103] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
A synthetic pathway for (d)-xylose assimilation was stoichiometrically evaluated and implemented in Escherichia coli strains. The pathway proceeds via isomerization of (d)-xylose to (d)-xylulose, phosphorylation of (d)-xylulose to obtain (d)-xylulose-1-phosphate (X1P), and aldolytic cleavage of the latter to yield glycolaldehyde and DHAP. Stoichiometric analyses showed that this pathway provides access to ethylene glycol with a theoretical molar yield of 1. Alternatively, both glycolaldehyde and DHAP can be converted to glycolic acid with a theoretical yield that is 20% higher than for the exclusive production of this acid via the glyoxylate shunt. Simultaneous expression of xylulose-1 kinase and X1P aldolase activities, provided by human ketohexokinase-C and human aldolase-B, respectively, restored growth of a (d)-xylulose-5-kinase mutant on xylose. This strain produced ethylene glycol as the major metabolic endproduct. Metabolic engineering provided strains that assimilated the entire C2 fraction into the central metabolism or that produced 4.3 g/L glycolic acid at a molar yield of 0.9 in shake flasks.
Collapse
Affiliation(s)
- Yvan Cam
- INSA, UPS, INP, LISBP, Université de Toulouse, 135 Avenue de Rangueil, 31077 Toulouse, France
- INRA, UMR792 Ingénierie des Systèmes Biologiques et des Procédés (LISBP),, 31077 Toulouse, France
- UMR5504, CNRS, 31077 Toulouse, France
- TWB, 3 rue des Satellites, Canal Biotech Building 2, 31400 Toulouse, France
| | - Ceren Alkim
- INSA, UPS, INP, LISBP, Université de Toulouse, 135 Avenue de Rangueil, 31077 Toulouse, France
- INRA, UMR792 Ingénierie des Systèmes Biologiques et des Procédés (LISBP),, 31077 Toulouse, France
- UMR5504, CNRS, 31077 Toulouse, France
- TWB, 3 rue des Satellites, Canal Biotech Building 2, 31400 Toulouse, France
| | - Debora Trichez
- INSA, UPS, INP, LISBP, Université de Toulouse, 135 Avenue de Rangueil, 31077 Toulouse, France
- INRA, UMR792 Ingénierie des Systèmes Biologiques et des Procédés (LISBP),, 31077 Toulouse, France
- UMR5504, CNRS, 31077 Toulouse, France
- TWB, 3 rue des Satellites, Canal Biotech Building 2, 31400 Toulouse, France
| | - Vincent Trebosc
- INSA, UPS, INP, LISBP, Université de Toulouse, 135 Avenue de Rangueil, 31077 Toulouse, France
- INRA, UMR792 Ingénierie des Systèmes Biologiques et des Procédés (LISBP),, 31077 Toulouse, France
- UMR5504, CNRS, 31077 Toulouse, France
- TWB, 3 rue des Satellites, Canal Biotech Building 2, 31400 Toulouse, France
| | - Amélie Vax
- INSA, UPS, INP, LISBP, Université de Toulouse, 135 Avenue de Rangueil, 31077 Toulouse, France
- INRA, UMR792 Ingénierie des Systèmes Biologiques et des Procédés (LISBP),, 31077 Toulouse, France
- UMR5504, CNRS, 31077 Toulouse, France
- TWB, 3 rue des Satellites, Canal Biotech Building 2, 31400 Toulouse, France
| | - François Bartolo
- INSA, UPS, INP, LISBP, Université de Toulouse, 135 Avenue de Rangueil, 31077 Toulouse, France
- Département Génie Mathématiques et Modélisation (GMM), 135 Avenue de Rangueil, 31077 Toulouse, France
| | - Philippe Besse
- INSA, UPS, INP, LISBP, Université de Toulouse, 135 Avenue de Rangueil, 31077 Toulouse, France
- Département Génie Mathématiques et Modélisation (GMM), 135 Avenue de Rangueil, 31077 Toulouse, France
| | - Jean Marie François
- INSA, UPS, INP, LISBP, Université de Toulouse, 135 Avenue de Rangueil, 31077 Toulouse, France
- INRA, UMR792 Ingénierie des Systèmes Biologiques et des Procédés (LISBP),, 31077 Toulouse, France
- UMR5504, CNRS, 31077 Toulouse, France
- TWB, 3 rue des Satellites, Canal Biotech Building 2, 31400 Toulouse, France
| | - Thomas Walther
- INSA, UPS, INP, LISBP, Université de Toulouse, 135 Avenue de Rangueil, 31077 Toulouse, France
- INRA, UMR792 Ingénierie des Systèmes Biologiques et des Procédés (LISBP),, 31077 Toulouse, France
- UMR5504, CNRS, 31077 Toulouse, France
- TWB, 3 rue des Satellites, Canal Biotech Building 2, 31400 Toulouse, France
| |
Collapse
|
24
|
Szappanos B, Fritzemeier J, Csörgő B, Lázár V, Lu X, Fekete G, Bálint B, Herczeg R, Nagy I, Notebaart RA, Lercher MJ, Pál C, Papp B. Adaptive evolution of complex innovations through stepwise metabolic niche expansion. Nat Commun 2016; 7:11607. [PMID: 27197754 PMCID: PMC5411730 DOI: 10.1038/ncomms11607] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 04/12/2016] [Indexed: 11/09/2022] Open
Abstract
A central challenge in evolutionary biology concerns the mechanisms by which complex metabolic innovations requiring multiple mutations arise. Here, we propose that metabolic innovations accessible through the addition of a single reaction serve as stepping stones towards the later establishment of complex metabolic features in another environment. We demonstrate the feasibility of this hypothesis through three complementary analyses. First, using genome-scale metabolic modelling, we show that complex metabolic innovations in Escherichia coli can arise via changing nutrient conditions. Second, using phylogenetic approaches, we demonstrate that the acquisition patterns of complex metabolic pathways during the evolutionary history of bacterial genomes support the hypothesis. Third, we show how adaptation of laboratory populations of E. coli to one carbon source facilitates the later adaptation to another carbon source. Our work demonstrates how complex innovations can evolve through series of adaptive steps without the need to invoke non-adaptive processes.
Collapse
Affiliation(s)
- Balázs Szappanos
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Temesvári krt. 62, Szeged H-6726, Hungary
| | - Jonathan Fritzemeier
- Department for Computer Science, Heinrich Heine University, Universitätsstraße 1, Düsseldorf D-40221, Germany
| | - Bálint Csörgő
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Temesvári krt. 62, Szeged H-6726, Hungary
| | - Viktória Lázár
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Temesvári krt. 62, Szeged H-6726, Hungary
| | - Xiaowen Lu
- Department of Bioinformatics (CMBI), Radboud University Medical Centre, Geert Grooteplein Zuid 26–28, Nijmegen 6525 GA, The Netherlands
| | - Gergely Fekete
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Temesvári krt. 62, Szeged H-6726, Hungary
| | - Balázs Bálint
- SeqOmics Biotechnology Ltd, Vállalkozók útja 7, Mórahalom H-6782, Hungary
| | - Róbert Herczeg
- SeqOmics Biotechnology Ltd, Vállalkozók útja 7, Mórahalom H-6782, Hungary
| | - István Nagy
- SeqOmics Biotechnology Ltd, Vállalkozók útja 7, Mórahalom H-6782, Hungary
- Sequencing Platform, Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Temesvári krt. 62, Szeged H-6726, Hungary
| | - Richard A. Notebaart
- Department of Bioinformatics (CMBI), Radboud University Medical Centre, Geert Grooteplein Zuid 26–28, Nijmegen 6525 GA, The Netherlands
- Department of Internal Medicine, Radboud University Medical Center, Geert Grooteplein Zuid 8, Nijmegen 6525 GA, The Netherlands
| | - Martin J. Lercher
- Department for Computer Science, Heinrich Heine University, Universitätsstraße 1, Düsseldorf D-40221, Germany
| | - Csaba Pál
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Temesvári krt. 62, Szeged H-6726, Hungary
| | - Balázs Papp
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Temesvári krt. 62, Szeged H-6726, Hungary
| |
Collapse
|
25
|
Lee SB, Lee SY, Lim HS. Aldehydic nature and conformation of 3,6-anhydro-L-galactose monomer. BIOTECHNOL BIOPROC E 2015. [DOI: 10.1007/s12257-015-0520-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
26
|
Fermentative production of enantiomerically pure S-1,2-propanediol from glucose by engineered E. coli strain. Appl Microbiol Biotechnol 2015; 100:1241-1251. [DOI: 10.1007/s00253-015-7034-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 09/10/2015] [Accepted: 09/22/2015] [Indexed: 10/22/2022]
|
27
|
Aziz RK, Khaw VL, Monk JM, Brunk E, Lewis R, Loh SI, Mishra A, Nagle AA, Satyanarayana C, Dhakshinamoorthy S, Luche M, Kitchen DB, Andrews KA, Palsson BØ, Charusanti P. Model-driven discovery of synergistic inhibitors against E. coli and S. enterica serovar Typhimurium targeting a novel synthetic lethal pair, aldA and prpC. Front Microbiol 2015; 6:958. [PMID: 26441892 PMCID: PMC4585216 DOI: 10.3389/fmicb.2015.00958] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 08/28/2015] [Indexed: 11/13/2022] Open
Abstract
Mathematical models of biochemical networks form a cornerstone of bacterial systems biology. Inconsistencies between simulation output and experimental data point to gaps in knowledge about the fundamental biology of the organism. One such inconsistency centers on the gene aldA in Escherichia coli: it is essential in a computational model of E. coli metabolism, but experimentally it is not. Here, we reconcile this disparity by providing evidence that aldA and prpC form a synthetic lethal pair, as the double knockout could only be created through complementation with a plasmid-borne copy of aldA. Moreover, virtual and biological screening against the two proteins led to a set of compounds that inhibited the growth of E. coli and Salmonella enterica serovar Typhimurium synergistically at 100-200 μM individual concentrations. These results highlight the power of metabolic models to drive basic biological discovery and their potential use to discover new combination antibiotics.
Collapse
Affiliation(s)
- Ramy K Aziz
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University Cairo, Egypt ; Department of Bioengineering, University of California, San Diego La Jolla, CA, USA
| | - Valerie L Khaw
- Department of Bioengineering, University of California, San Diego La Jolla, CA, USA
| | - Jonathan M Monk
- Department of Bioengineering, University of California, San Diego La Jolla, CA, USA
| | - Elizabeth Brunk
- Department of Bioengineering, University of California, San Diego La Jolla, CA, USA
| | - Robert Lewis
- Computer-Aided Drug Discovery, Albany Molecular Research, Inc., Albany NY, USA
| | - Suh I Loh
- Biology and Pharmacology, Albany Molecular Research Singapore Research Centre, Pte. Ltd., Singapore Singapore
| | - Arti Mishra
- Biology and Pharmacology, Albany Molecular Research Singapore Research Centre, Pte. Ltd., Singapore Singapore
| | - Amrita A Nagle
- Biology and Pharmacology, Albany Molecular Research Singapore Research Centre, Pte. Ltd., Singapore Singapore
| | - Chitkala Satyanarayana
- Biology and Pharmacology, Albany Molecular Research Singapore Research Centre, Pte. Ltd., Singapore Singapore
| | | | - Michele Luche
- Computer-Aided Drug Discovery, Albany Molecular Research, Inc., Albany NY, USA
| | - Douglas B Kitchen
- Computer-Aided Drug Discovery, Albany Molecular Research, Inc., Albany NY, USA
| | - Kathleen A Andrews
- Department of Bioengineering, University of California, San Diego La Jolla, CA, USA
| | - Bernhard Ø Palsson
- Department of Bioengineering, University of California, San Diego La Jolla, CA, USA
| | - Pep Charusanti
- Department of Bioengineering, University of California, San Diego La Jolla, CA, USA ; The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark Hørsholm, Denmark
| |
Collapse
|
28
|
Alkim C, Cam Y, Trichez D, Auriol C, Spina L, Vax A, Bartolo F, Besse P, François JM, Walther T. Optimization of ethylene glycol production from (D)-xylose via a synthetic pathway implemented in Escherichia coli. Microb Cell Fact 2015; 14:127. [PMID: 26336892 PMCID: PMC4559361 DOI: 10.1186/s12934-015-0312-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Accepted: 08/04/2015] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Ethylene glycol (EG) is a bulk chemical that is mainly used as an anti-freezing agent and a raw material in the synthesis of plastics. Production of commercial EG currently exclusively relies on chemical synthesis using fossil resources. Biochemical production of ethylene glycol from renewable resources may be more sustainable. RESULTS Herein, a synthetic pathway is described that produces EG in Escherichia coli through the action of (D)-xylose isomerase, (D)-xylulose-1-kinase, (D)-xylulose-1-phosphate aldolase, and glycolaldehyde reductase. These reactions were successively catalyzed by the endogenous xylose isomerase (XylA), the heterologously expressed human hexokinase (Khk-C) and aldolase (Aldo-B), and an endogenous glycolaldehyde reductase activity, respectively, which we showed to be encoded by yqhD. The production strain was optimized by deleting the genes encoding for (D)-xylulose-5 kinase (xylB) and glycolaldehyde dehydrogenase (aldA), and by overexpressing the candidate glycolaldehyde reductases YqhD, GldA, and FucO. The strain overproducing FucO was the best EG producer reaching a molar yield of 0.94 in shake flasks, and accumulating 20 g/L EG with a molar yield and productivity of 0.91 and 0.37 g/(L.h), respectively, in a controlled bioreactor under aerobic conditions. CONCLUSIONS We have demonstrated the feasibility to produce EG from (D)-xylose via a synthetic pathway in E. coli at approximately 90 % of the theoretical yield.
Collapse
Affiliation(s)
- Ceren Alkim
- INSA, UPS, INP, LISBP, Université de Toulouse, 135 Avenue de Rangueil, 31077, Toulouse, France. .,UMR792 Ingénierie des Systèmes Biologiques et des Procédés (LISBP), INRA, Toulouse, France. .,CNRS, UMR5504, Toulouse, France. .,TWB, 3 rue Ariane, 31520, Ramonville-St. Agnes, France.
| | - Yvan Cam
- INSA, UPS, INP, LISBP, Université de Toulouse, 135 Avenue de Rangueil, 31077, Toulouse, France. .,UMR792 Ingénierie des Systèmes Biologiques et des Procédés (LISBP), INRA, Toulouse, France. .,CNRS, UMR5504, Toulouse, France. .,TWB, 3 rue Ariane, 31520, Ramonville-St. Agnes, France.
| | - Debora Trichez
- INSA, UPS, INP, LISBP, Université de Toulouse, 135 Avenue de Rangueil, 31077, Toulouse, France. .,UMR792 Ingénierie des Systèmes Biologiques et des Procédés (LISBP), INRA, Toulouse, France. .,CNRS, UMR5504, Toulouse, France.
| | - Clément Auriol
- INSA, UPS, INP, LISBP, Université de Toulouse, 135 Avenue de Rangueil, 31077, Toulouse, France. .,UMR792 Ingénierie des Systèmes Biologiques et des Procédés (LISBP), INRA, Toulouse, France. .,CNRS, UMR5504, Toulouse, France. .,TWB, 3 rue Ariane, 31520, Ramonville-St. Agnes, France.
| | - Lucie Spina
- INSA, UPS, INP, LISBP, Université de Toulouse, 135 Avenue de Rangueil, 31077, Toulouse, France. .,UMR792 Ingénierie des Systèmes Biologiques et des Procédés (LISBP), INRA, Toulouse, France. .,CNRS, UMR5504, Toulouse, France.
| | - Amélie Vax
- INSA, UPS, INP, LISBP, Université de Toulouse, 135 Avenue de Rangueil, 31077, Toulouse, France. .,UMR792 Ingénierie des Systèmes Biologiques et des Procédés (LISBP), INRA, Toulouse, France. .,CNRS, UMR5504, Toulouse, France.
| | - François Bartolo
- UMR CNRS 5219, Institut de Mathématiques de Toulouse, INSA, Université de Toulouse, Toulouse, France.
| | - Philippe Besse
- UMR CNRS 5219, Institut de Mathématiques de Toulouse, INSA, Université de Toulouse, Toulouse, France.
| | - Jean Marie François
- INSA, UPS, INP, LISBP, Université de Toulouse, 135 Avenue de Rangueil, 31077, Toulouse, France. .,UMR792 Ingénierie des Systèmes Biologiques et des Procédés (LISBP), INRA, Toulouse, France. .,CNRS, UMR5504, Toulouse, France. .,TWB, 3 rue Ariane, 31520, Ramonville-St. Agnes, France.
| | - Thomas Walther
- INSA, UPS, INP, LISBP, Université de Toulouse, 135 Avenue de Rangueil, 31077, Toulouse, France. .,UMR792 Ingénierie des Systèmes Biologiques et des Procédés (LISBP), INRA, Toulouse, France. .,CNRS, UMR5504, Toulouse, France. .,TWB, 3 rue Ariane, 31520, Ramonville-St. Agnes, France.
| |
Collapse
|
29
|
Poust S, Piety J, Bar-Even A, Louw C, Baker D, Keasling JD, Siegel JB. Mechanistic Analysis of an Engineered Enzyme that Catalyzes the Formose Reaction. Chembiochem 2015; 16:1950-1954. [PMID: 26109266 DOI: 10.1002/cbic.201500228] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Indexed: 11/08/2022]
Abstract
An enzyme that catalyzes the formose reaction, termed "formolase", was recently engineered through a combination of computational protein design and directed evolution. We have investigated the kinetic role of the computationally designed residues and further characterized the enzyme's product profile. Kinetic studies illustrated that the computationally designed mutations were synergistic in their contributions towards enhancing activity. Mass spectrometry revealed that the engineered enzyme produces two products of the formose reaction-dihydroxyacetone and glycolaldehyde-with the product profile dependent on the formaldehyde concentration. We further explored the effects of this product profile on the thermodynamics and yield of the overall carbon assimilation from the formolase pathway to help guide future efforts to engineer this pathway.
Collapse
Affiliation(s)
- Sean Poust
- Department of Chemical and Biomolecular Engineering, University of California, 201 Gilman Hall, Berkeley, CA 94720-1462 (USA).,Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, 5885 Hollis Street, Emeryville, CA 94608 (USA)
| | - James Piety
- Department of Chemical and Biomolecular Engineering, University of California, 201 Gilman Hall, Berkeley, CA 94720-1462 (USA).,Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, 5885 Hollis Street, Emeryville, CA 94608 (USA)
| | - Arren Bar-Even
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm (Germany)
| | - Catherine Louw
- Department of Biochemistry, University of Washington, Box 357350, Seattle, WA 98195 (USA)
| | - David Baker
- Department of Biochemistry, University of Washington, Box 357350, Seattle, WA 98195 (USA)
| | - Jay D Keasling
- Department of Chemical and Biomolecular Engineering, University of California, 201 Gilman Hall, Berkeley, CA 94720-1462 (USA).,Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, 5885 Hollis Street, Emeryville, CA 94608 (USA)
| | - Justin B Siegel
- Departments of Chemistry and Biochemistry and Molecular Medicine, Genome Center, University of California, 451 Health Sciences Drive, Davis, CA 95616 (USA).,Department of Biochemistry, University of Washington, Box 357350, Seattle, WA 98195 (USA)
| |
Collapse
|
30
|
Identification and characterization of 2-keto-3-deoxy-l-rhamnonate dehydrogenase belonging to the MDR superfamily from the thermoacidophilic bacterium Sulfobacillus thermosulfidooxidans: implications to l-rhamnose metabolism in archaea. Extremophiles 2015; 19:469-78. [DOI: 10.1007/s00792-015-0731-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 01/09/2015] [Indexed: 10/24/2022]
|
31
|
Cho SJ, Lee SB. Identification and characterization of 3,6-anhydro-L-galactose dehydrogenases belonging to the aldehyde dehydrogenase superfamily from marine and soil microorganisms. BIOTECHNOL BIOPROC E 2015. [DOI: 10.1007/s12257-014-0830-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
32
|
Wan W, Tharp JM, Liu WR. Pyrrolysyl-tRNA synthetase: an ordinary enzyme but an outstanding genetic code expansion tool. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1844:1059-70. [PMID: 24631543 DOI: 10.1016/j.bbapap.2014.03.002] [Citation(s) in RCA: 317] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 03/01/2014] [Accepted: 03/05/2014] [Indexed: 11/16/2022]
Abstract
The genetic incorporation of the 22nd proteinogenic amino acid, pyrrolysine (Pyl) at amber codon is achieved by the action of pyrrolysyl-tRNA synthetase (PylRS) together with its cognate tRNA(Pyl). Unlike most aminoacyl-tRNA synthetases, PylRS displays high substrate side chain promiscuity, low selectivity toward its substrate α-amine, and low selectivity toward the anticodon of tRNA(Pyl). These unique but ordinary features of PylRS as an aminoacyl-tRNA synthetase allow the Pyl incorporation machinery to be easily engineered for the genetic incorporation of more than 100 non-canonical amino acids (NCAAs) or α-hydroxy acids into proteins at amber codon and the reassignment of other codons such as ochre UAA, opal UGA, and four-base AGGA codons to code NCAAs.
Collapse
Affiliation(s)
- Wei Wan
- Department of Chemistry, Texas A&M University, College Station, TX 77845, USA
| | - Jeffery M Tharp
- Department of Chemistry, Texas A&M University, College Station, TX 77845, USA
| | - Wenshe R Liu
- Department of Chemistry, Texas A&M University, College Station, TX 77845, USA.
| |
Collapse
|
33
|
Mazumdar S, Bang J, Oh MK. L-lactate production from seaweed hydrolysate of Laminaria japonica using metabolically engineered Escherichia coli. Appl Biochem Biotechnol 2014; 172:1938-52. [PMID: 24297185 DOI: 10.1007/s12010-013-0653-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Accepted: 11/22/2013] [Indexed: 10/26/2022]
Abstract
Renewable and carbon neutral, marine algal biomass could be an attractive alternative substrate for the production of biofuel and various biorefinery products. Thus, the feasibility of brown seaweed (Laminaria japonica) hydrolysate as a carbon source was investigated here for L-lactate production. This work reports the homofermentative route for L-lactate production by introducing Streptococcus bovis/equinus L-lactate dehydrogenase in an engineered Escherichia coli strain where synthesis of the competing by-product was blocked. The engineered strain utilized both glucose and mannitol present in the hydrolysate under microaerobic condition and produced 37.7 g/L of high optical purity L-lactate at 80 % of the maximum theoretical value. The result shown in this study implies that algal biomass would be as competitive with lignocellulosic biomass in terms of lactic acid production and that brown seaweed can be used as a feedstock for the industrial production of other chemicals.
Collapse
Affiliation(s)
- Suman Mazumdar
- Department of Chemical and Biological Engineering, Korea University, Seoul, 136-713, Republic of Korea
| | | | | |
Collapse
|
34
|
Glyoxal detoxification in Escherichia coli K-12 by NADPH dependent aldo-keto reductases. J Microbiol 2013; 51:527-30. [PMID: 23990306 DOI: 10.1007/s12275-013-3087-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 03/21/2013] [Indexed: 10/26/2022]
Abstract
Glyoxal (GO) and methylglyoxal (MG) are reactive carbonyl compounds that are accumulated in vivo through various pathways. They are presumably detoxified through multiple pathways including glutathione (GSH)-dependent/independent glyoxalase systems and NAD(P)H dependent reductases. Previously, we reported an involvement of aldo-ketoreductases (AKRs) in MG detoxification. Here, we investigated the role of various AKRs (YqhE, YafB, YghZ, YeaE, and YajO) in GO metabolism. Enzyme activities of the AKRs to GO were measured, and GO sensitivities of the corresponding mutants were compared. In addition, we examined inductions of the AKR genes by GO. The results indicate that AKRs efficiently detoxify GO, among which YafB, YghZ, and YeaE are major players.
Collapse
|
35
|
Mazumdar S, Blankschien MD, Clomburg JM, Gonzalez R. Efficient synthesis of L-lactic acid from glycerol by metabolically engineered Escherichia coli. Microb Cell Fact 2013; 12:7. [PMID: 23347598 PMCID: PMC3616864 DOI: 10.1186/1475-2859-12-7] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Accepted: 01/20/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Due to its abundance and low-price, glycerol has become an attractive carbon source for the industrial production of value-added fuels and chemicals. This work reports the engineering of E. coli for the efficient conversion of glycerol into L-lactic acid (L-lactate). RESULTS Escherichia coli strains have previously been metabolically engineered for the microaerobic production of D-lactic acid from glycerol in defined media by disrupting genes that minimize the synthesis of succinate, acetate, and ethanol, and also overexpressing the respiratory route of glycerol dissimilation (GlpK/GlpD). Here, further rounds of rationale design were performed on these strains for the homofermentative production of L-lactate, not normally produced in E. coli. Specifically, L-lactate production was enabled by: 1), replacing the native D-lactate specific dehydrogenase with Streptococcus bovis L-lactate dehydrogenase (L-LDH), 2) blocking the methylglyoxal bypass pathways to avoid the synthesis of a racemic mixture of D- and L-lactate and prevent the accumulation of toxic intermediate, methylglyoxal, and 3) the native aerobic L-lactate dehydrogenase was blocked to prevent the undesired utilization of L-lactate. The engineered strain produced 50 g/L of L-lactate from 56 g/L of crude glycerol at a yield 93% of the theoretical maximum and with high optical (99.9%) and chemical (97%) purity. CONCLUSIONS This study demonstrates the efficient conversion of glycerol to L-lactate, a microbial process that had not been reported in the literature prior to our work. The engineered biocatalysts produced L-lactate from crude glycerol in defined minimal salts medium at high chemical and optical purity.
Collapse
Affiliation(s)
- Suman Mazumdar
- Department of Chemical and Biomolecular Engineering, Rice University, 6100 Main Street, MS-362, Houston, TX 77005, USA
| | | | | | | |
Collapse
|
36
|
Liu H, Ramos KRM, Valdehuesa KNG, Nisola GM, Lee WK, Chung WJ. Biosynthesis of ethylene glycol in Escherichia coli. Appl Microbiol Biotechnol 2012; 97:3409-17. [PMID: 23233208 DOI: 10.1007/s00253-012-4618-7] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Revised: 10/31/2012] [Accepted: 11/23/2012] [Indexed: 11/26/2022]
Abstract
Ethylene glycol (EG) is an important platform chemical with steadily expanding global demand. Its commercial production is currently limited to fossil resources; no biosynthesis route has been delineated. Herein, a biosynthesis route for EG production from D-xylose is reported. This route consists of four steps: D-xylose → D-xylonate → 2-dehydro-3-deoxy-D-pentonate → glycoaldehyde → EG. Respective enzymes, D-xylose dehydrogenase, D-xylonate dehydratase, 2-dehydro-3-deoxy-D-pentonate aldolase, and glycoaldehyde reductase, were assembled. The route was implemented in a metabolically engineered Escherichia coli, in which the D-xylose → D-xylulose reaction was prevented by disrupting the D-xylose isomerase gene. The most efficient construct produced 11.7 g L(-1) of EG from 40.0 g L(-1) of D-xylose. Glycolate is a carbon-competing by-product during EG production in E. coli; blockage of glycoaldehyde → glycolate reaction was also performed by disrupting the gene encoding aldehyde dehydrogenase, but from this approach, EG productivity was not improved but rather led to D-xylonate accumulation. To channel more carbon flux towards EG than the glycolate pathway, further systematic metabolic engineering and fermentation optimization studies are still required to improve EG productivity.
Collapse
Affiliation(s)
- Huaiwei Liu
- Energy and Environment Fusion Technology Center (E2FTC), Department of Energy Science and Technology (DEST), Myongji University, Room 8807, Engineering College Building 2, San 38-2, Namdong, Cheoin-gu, Yongin, Gyeonggi 449-728, South Korea.
| | | | | | | | | | | |
Collapse
|
37
|
Borisova SA, Christman HD, Metcalf MEM, Zulkepli NA, Zhang JK, van der Donk WA, Metcalf WW. Genetic and biochemical characterization of a pathway for the degradation of 2-aminoethylphosphonate in Sinorhizobium meliloti 1021. J Biol Chem 2011; 286:22283-90. [PMID: 21543322 DOI: 10.1074/jbc.m111.237735] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A variety of microorganisms have the ability to use phosphonic acids as sole sources of phosphorus. Here, a novel pathway for degradation of 2-aminoethylphosphonate in the bacterium Sinorhizobium meliloti 1021 is proposed based on the analysis of the genome sequence. Gene deletion experiments confirmed the involvement of the locus containing phnW, phnA, and phnY genes in the conversion of 2-aminoethylphosphonate to inorganic phosphate. Biochemical studies of the recombinant PhnY and PhnA proteins verified their roles as phosphonoacetaldehyde dehydrogenase and phosphonoacetate hydrolase, respectively. This pathway is likely not limited to S. meliloti as suggested by the presence of homologous gene clusters in other bacterial genomes.
Collapse
Affiliation(s)
- Svetlana A Borisova
- Institute for Genomic Biology, Howard Hughes Medical Institute University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Gene cloning and biochemical characterization of a NAD(P)+ -dependent aldehyde dehydrogenase from Bacillus licheniformis. Mol Biotechnol 2010; 46:157-67. [PMID: 20495892 DOI: 10.1007/s12033-010-9290-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
A putative aldehyde dehydrogenase (ALDH) gene, ybcD (gene locus b1467), was identified in the genome sequence of Bacillus licheniformis ATCC 14580. B. licheniformis ALDH (BlALDH) encoded by ybcD consists of 488 amino acid residues with a molecular mass of approximately 52.7 kDa. The coding sequence of ybcD gene was cloned in pQE-31, and functionally expressed in recombinant Escherichia coli M15. BlALDH had a subunit molecular mass of approximately 53 kDa and the molecular mass of the native enzyme was determined to be 220 kDa by FPLC, reflecting that the oilgomeric state of this enzyme is tetrameric. The temperature and pH optima for BlALDH were 37 degrees C and 7.0, respectively. In the presence of either NAD(+) or NADP(+), the enzyme could oxidize a number of aliphatic aldehydes, particularly C3- and C5-aliphatic aldehyde. Steady-state kinetic study revealed that BlALDH had a K (M) value of 0.46 mM and a k (cat) value of 49.38/s when propionaldehyde was used as the substrate. BlALDH did not require metal ions for its enzymatic reaction, whereas the dehydrogenase activity was enhanced by the addition of disulfide reductants, 2-mercaptoethanol and dithiothreitol. Taken together, this study lays a foundation for future structure-function studies with BlALDH, a typical member of NAD(P)(+)-dependent aldehyde dehydrogenases.
Collapse
|
39
|
Ding JY, Lai MC. The biotechnological potential of the extreme halophilic archaea Haloterrigena sp. H13 in xenobiotic metabolism using a comparative genomics approach. ENVIRONMENTAL TECHNOLOGY 2010; 31:905-914. [PMID: 20662380 DOI: 10.1080/09593331003734210] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Extreme halophilic archaea are thriving and dominant populations within hypersaline environments. Because of the extreme properties of the enzymes of halophilic archaea and similar metabolic abilities to their bacterial counterparts, our interests focus on their potential biotechnological applications. In this study, the partial genome of a newly isolated extreme halophilic archaeon, Haloterrigena sp. H13, was investigated. The genome size was estimated to be about 3.9 MB, and a genomic shotgun library was constructed. A total of 1479 clones from the library were sequenced once, and 1186 contigs were obtained. From these contigs, 580 open reading frames (ORFs) were identified, and 394 ORFs were annotated. From the partial genome of strain H13, we identified genes that may be involved in 1,2-dichloroethane degradation, naphthalene/anthracene degradation, gamma-hexachlorocyclohexane degradation, 1-/2-methylnaphthalene degradation and benzoate degradation via CoA ligation. Among the identified ORFs, gene homologs of (S)-2-haloacid dehalogenase (EC 3.8.1.2) and salicylate hydroxylase (EC 1.14.13.1), which might be involved in the degradation of dichloroethane, gamma-hexachlorocyclohexane and naphthalene, were found in the partial genome sequence of strain H13. According to the current genome annotation of peripheral metabolic pathways and the putative xenobiotic-degrading enzymes, the potential of extreme haloarchaea in bioremediation applications is proposed.
Collapse
Affiliation(s)
- Jiun-Yan Ding
- Department of Life Sciences, National Chung Hsing University, Taichung, 40227 Taiwan, ROC
| | | |
Collapse
|
40
|
Li X, Li Y, Wei D, Li P, Wang L, Feng L. Characterization of a broad-range aldehyde dehydrogenase involved in alkane degradation in Geobacillus thermodenitrificans NG80-2. Microbiol Res 2010; 165:706-12. [PMID: 20171064 DOI: 10.1016/j.micres.2010.01.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2009] [Revised: 01/18/2010] [Accepted: 01/24/2010] [Indexed: 11/26/2022]
Abstract
An aldehyde dehydrogenase (ALDH) involved in alkane degradation in crude oil-degrading Geobacillus thermodenitrificans NG80-2 was characterized in vitro. The ALDH was expressed heterologously in Escherichia coli and purified as a His-tagged homotetrameric protein with a subunit of 57 kDa based on SDS-PAGE and Native-PAGE analysis. The purified ALDH-oxidized alkyl aldehydes ranging from formaldehyde (C₁) to eicosanoic aldehyde (C₂₀) with the highest activity on C₁. It also oxidized several aromatic aldehydes including benzaldehyde, phenylacetaldehyde, o-chloro-benzaldehyde and o-phthalaldehyde. The ALDH uses only NAD(+) as the cofactor, and has no reductive activity on acetate or hexadecanoic acid. Therefore, it is an irreversible NAD(+)-dependent aldehyde dehydrogenase. Kinetic parameters, temperature and pH optimum of the enzyme, and effects of metal ions, EDTA and Triton X-100 on the enzyme activity were investigated. Physiological roles of the ALDH for the survival of NG80-2 in oil reservoirs are discussed.
Collapse
Affiliation(s)
- Xiaomin Li
- TEDA School of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, TEDA, Tianjin 300457, PR China
| | | | | | | | | | | |
Collapse
|
41
|
Simon G, Bouzon M, Charmantray F, Hélaine V, Légeret B, Marlière P, Hecquet L. Amino acid precursors for the detection of transketolase activity in Escherichia coli auxotrophs. Bioorg Med Chem Lett 2009; 19:3767-70. [DOI: 10.1016/j.bmcl.2009.04.111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2009] [Revised: 04/21/2009] [Accepted: 04/22/2009] [Indexed: 10/20/2022]
|
42
|
Watanabe S, Makino K. Novel modified version of nonphosphorylated sugar metabolism - an alternative l-rhamnose pathway of Sphingomonas sp. FEBS J 2009; 276:1554-67. [DOI: 10.1111/j.1742-4658.2009.06885.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
43
|
Watanabe S, Piyanart S, Makino K. Metabolic fate of l-lactaldehyde derived from an alternative l-rhamnose pathway. FEBS J 2008; 275:5139-49. [DOI: 10.1111/j.1742-4658.2008.06645.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
44
|
Jo JE, Mohan Raj S, Rathnasingh C, Selvakumar E, Jung WC, Park S. Cloning, expression, and characterization of an aldehyde dehydrogenase from Escherichia coli K-12 that utilizes 3-Hydroxypropionaldehyde as a substrate. Appl Microbiol Biotechnol 2008; 81:51-60. [PMID: 18668238 DOI: 10.1007/s00253-008-1608-x] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2008] [Revised: 07/06/2008] [Accepted: 07/07/2008] [Indexed: 10/21/2022]
Abstract
3-Hydroxypropionaldehyde (3-HPA), an intermediary compound of glycerol metabolism in bacteria, serves as a precursor to 3-Hydroxypropionic acid (3-HP), a commercially valuable platform chemical. To achieve the effective conversion of 3-HPA to 3-HP, an aldH gene encoding an aldehyde dehydrogenase in Escherichia coli K-12 (AldH) was cloned, expressed, and characterized for its properties. The recombinant AldH exhibited broad substrate specificity for various aliphatic and aromatic aldehydes. AldH preferred NAD+ over NADP+ as a cofactor for the oxidation of most aliphatic aldehydes tested. Among the aldehydes used, the specific activity was highest (38.1 U mg(-1) protein) for 3-HPA at pH 8.0 and 37 degrees C. The catalytic efficiency (kcat) and the specificity constant (kcat/Km) for 3-HPA in the presence of NAD+ were 28.5 s(-1) and 58.6x10(3) M(-1) s(-1), respectively. The AldH activity was enhanced in the presence of disulfide reductants such as dithiothreitol (DTT) or 2-mercaptoethanol, while several metal ions, particularly Hg2+, Ag+, Cu2+, and Zn2+, inhibited AldH activity. This study illustrates that AldH is a potentially useful enzyme in converting 3-HPA to 3-HP.
Collapse
Affiliation(s)
- Ji-Eun Jo
- Department of Chemical and Biochemical Engineering, Pusan National University, Busan, 609-735, Republic of Korea
| | | | | | | | | | | |
Collapse
|
45
|
Han KY, Park JS, Seo HS, Ahn KY, Lee J. Multiple Stressor-Induced Proteome Responses of Escherichia coli BL21(DE3). J Proteome Res 2008; 7:1891-903. [DOI: 10.1021/pr700631c] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Kyung-Yeon Han
- Department of Chemical and Biological Engineering, Korea University, Anam-Dong 5-1, Sungbuk-Ku, Seoul 136-713, South Korea
| | - Jin-Seung Park
- Department of Chemical and Biological Engineering, Korea University, Anam-Dong 5-1, Sungbuk-Ku, Seoul 136-713, South Korea
| | - Hyuk-Seong Seo
- Department of Chemical and Biological Engineering, Korea University, Anam-Dong 5-1, Sungbuk-Ku, Seoul 136-713, South Korea
| | - Keum-Young Ahn
- Department of Chemical and Biological Engineering, Korea University, Anam-Dong 5-1, Sungbuk-Ku, Seoul 136-713, South Korea
| | - Jeewon Lee
- Department of Chemical and Biological Engineering, Korea University, Anam-Dong 5-1, Sungbuk-Ku, Seoul 136-713, South Korea
| |
Collapse
|
46
|
Rodríguez-Zavala JS. Enhancement of coenzyme binding by a single point mutation at the coenzyme binding domain of E. coli lactaldehyde dehydrogenase. Protein Sci 2008; 17:563-70. [PMID: 18218709 DOI: 10.1110/ps.073277108] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Phenylacetaldehyde dehydrogenase (PAD) and lactaldehyde dehydrogenase (ALD) share some structural and kinetic properties. One difference is that PAD can use NAD+ and NADP+, whereas ALD only uses NAD+. An acidic residue has been involved in the exclusion of NADP+ from the active site in pyridine nucleotide-dependent dehydrogenases. However, other factors may participate in NADP+ exclusion. In the present work, analysis of the sequence of the region involved in coenzyme binding showed that residue F180 of ALD might participate in coenzyme specificity. Interestingly, F180T mutation rendered an enzyme (ALD-F180T) with the ability to use NADP+. This enzyme showed an activity of 0.87 micromol/(min * mg) and K(m) for NADP+ of 78 microM. Furthermore, ALD-F180T exhibited a 16-fold increase in the V(m) /K(m) ratio with NAD+ as the coenzyme, from 12.8 to 211. This increase in catalytic efficiency was due to a diminution in K(m) for NAD+ from 47 to 7 microM and a higher V(m) from 0.51 to 1.48 micromol/(min * mg). In addition, an increased K(d) for NADH from 175 (wild-type) to 460 microM (mutant) indicates a faster product release and possibly a change in the rate-limiting step. For wild-type ALD it is described that the rate-limiting step is shared between deacylation and coenzyme dissociation. In contrast, in the present report the rate-limiting step in ALD-F180T was determined to be exclusively deacylation. In conclusion, residue F180 participates in the exclusion of NADP+ from the coenzyme binding site and disturbs the binding of NAD+.
Collapse
|
47
|
Hristova KR, Schmidt R, Chakicherla AY, Legler TC, Wu J, Chain PS, Scow KM, Kane SR. Comparative transcriptome analysis of Methylibium petroleiphilum PM1 exposed to the fuel oxygenates methyl tert-butyl ether and ethanol. Appl Environ Microbiol 2007; 73:7347-57. [PMID: 17890343 PMCID: PMC2168209 DOI: 10.1128/aem.01604-07] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
High-density whole-genome cDNA microarrays were used to investigate substrate-dependent gene expression of Methylibium petroleiphilum PM1, one of the best-characterized aerobic methyl tert-butyl ether (MTBE)-degrading bacteria. Differential gene expression profiling was conducted with PM1 grown on MTBE and ethanol as sole carbon sources. Based on microarray high scores and protein similarity analysis, an MTBE regulon located on the megaplasmid was identified for further investigation. Putative functions for enzymes encoded in this regulon are described with relevance to the predicted MTBE degradation pathway. A new unique dioxygenase enzyme system that carries out the hydroxylation of tert-butyl alcohol to 2-methyl-2-hydroxy-1-propanol in M. petroleiphilum PM1 was discovered. Hypotheses regarding the acquisition and evolution of MTBE genes as well as the involvement of IS elements in these complex processes were formulated. The pathways for toluene, phenol, and alkane oxidation via toluene monooxygenase, phenol hydroxylase, and propane monooxygenase, respectively, were upregulated in MTBE-grown cells compared to ethanol-grown cells. Four out of nine putative cyclohexanone monooxygenases were also upregulated in MTBE-grown cells. The expression data allowed prediction of several hitherto-unknown enzymes of the upper MTBE degradation pathway in M. petroleiphilum PM1 and aided our understanding of the regulation of metabolic processes that may occur in response to pollutant mixtures and perturbations in the environment.
Collapse
Affiliation(s)
- Krassimira R Hristova
- Department of Land Air and Water Resources, Plant and Environmental Sciences Building, University of California, Davis, Davis, CA 95616.
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Egea L, Aguilera L, Giménez R, Sorolla MA, Aguilar J, Badía J, Baldoma L. Role of secreted glyceraldehyde-3-phosphate dehydrogenase in the infection mechanism of enterohemorrhagic and enteropathogenic Escherichia coli: Interaction of the extracellular enzyme with human plasminogen and fibrinogen. Int J Biochem Cell Biol 2007; 39:1190-203. [PMID: 17449317 DOI: 10.1016/j.biocel.2007.03.008] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2006] [Revised: 03/08/2007] [Accepted: 03/09/2007] [Indexed: 11/16/2022]
Abstract
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) (EC 1.2.1.12) is an anchorless, multifunctional protein displayed on the surface of several fungi and Gram-positive pathogens, which contributes to their adhesion and virulence. To date a role for extracellular GAPDH in the pathogenesis of Gram-negative bacteria has not been described. The aim of this study was to analyze the extracellular localization of GAPDH in enterohemorrhagic (EHEC) and enteropathogenic (EPEC) Escherichia coli strains and to examine its interaction with host components that could be related to the infection mechanism. Recombinant E. coli GAPDH was purified and polyclonal antibodies were obtained. Western blotting and immunoelectron microscopy showed that GAPDH is located on the bacterial surface and released to the culture medium of EHEC and EPEC strains. GAPDH export in these Gram-negative pathogens depends on the external medium, is not mediated by vesicles and leads to an extracellular active enzyme. Non-pathogenic E. coli strains do not secrete GAPDH. Two-dimensional electrophoresis analysis showed that in E. coli GAPDH is present at least in two major forms with different isoelectric points. Of these forms, the more basic is secreted. Purified GAPDH was found to bind human plasminogen and fibrinogen in Far-Western blot and ELISA-based assays. In addition, GAPDH remained associated with colonic Caco-2 epithelial cells after adhesion of EHEC or EPEC. These observations indicate that exported GAPDH may act as a virulence factor which could contribute to EHEC and EPEC pathogenesis. This is the first description of an extracellular localization for this enzyme, with a function other than its glycolytic role in Gram-negative pathogens.
Collapse
Affiliation(s)
- L Egea
- Department of Biochemistry, School of Pharmacy, University of Barcelona, Av. Diagonal, 643. E-08028-Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
49
|
Di Costanzo L, Gomez GA, Christianson DW. Crystal structure of lactaldehyde dehydrogenase from Escherichia coli and inferences regarding substrate and cofactor specificity. J Mol Biol 2006; 366:481-93. [PMID: 17173928 PMCID: PMC1866264 DOI: 10.1016/j.jmb.2006.11.023] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2006] [Revised: 11/03/2006] [Accepted: 11/04/2006] [Indexed: 11/18/2022]
Abstract
Aldehyde dehydrogenases catalyze the oxidation of aldehyde substrates to the corresponding carboxylic acids. Lactaldehyde dehydrogenase from Escherichia coli (aldA gene product, P25553) is an NAD(+)-dependent enzyme implicated in the metabolism of l-fucose and l-rhamnose. During the heterologous expression and purification of taxadiene synthase from the Pacific yew, lactaldehyde dehydrogenase from E. coli was identified as a minor (</=5%) side-product subsequent to its unexpected crystallization. Accordingly, we now report the serendipitous crystal structure determination of unliganded lactaldehyde dehydrogenase from E. coli determined by the technique of multiple isomorphous replacement using anomalous scattering at 2.2 A resolution. Additionally, we report the crystal structure of the ternary enzyme complex with products lactate and NADH at 2.1 A resolution, and the crystal structure of the enzyme complex with NADPH at 2.7 A resolution. The structure of the ternary complex reveals that the nicotinamide ring of the cofactor is disordered between two conformations: one with the ring positioned in the active site in the so-called hydrolysis conformation, and another with the ring extended out of the active site into the solvent region, designated the out conformation. This represents the first crystal structure of an aldehyde dehydrogenase-product complex. The active site pocket in which lactate binds is more constricted than that of medium-chain dehydrogenases such as the YdcW gene product of E. coli. The structure of the binary complex with NADPH reveals the first view of the structural basis of specificity for NADH: the negatively charged carboxylate group of E179 destabilizes the binding of the 2'-phosphate group of NADPH sterically and electrostatically, thereby accounting for the lack of enzyme activity with this cofactor.
Collapse
Affiliation(s)
- Luigi Di Costanzo
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | | | | |
Collapse
|
50
|
Grochowski LL, Xu H, White RH. Identification of lactaldehyde dehydrogenase in Methanocaldococcus jannaschii and its involvement in production of lactate for F420 biosynthesis. J Bacteriol 2006; 188:2836-44. [PMID: 16585745 PMCID: PMC1447007 DOI: 10.1128/jb.188.8.2836-2844.2006] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2006] [Accepted: 02/07/2006] [Indexed: 11/20/2022] Open
Abstract
One of the early steps in the biosynthesis of coenzyme F(420) in Methanocaldococcus jannaschii requires generation of 2-phospho-L-lactate, which is formed by the phosphorylation of L-lactate. Preliminary studies had shown that L-lactate in M. jannaschii is not derived from pyruvate, and thus an alternate pathway(s) for its formation was examined. Here we report that L-lactate is formed by the NAD(+)-dependent oxidation of l-lactaldehyde by the MJ1411 gene product. The lactaldehyde, in turn, was found to be generated either by the NAD(P)H reduction of methylglyoxal or by the aldol cleavage of fuculose-1-phosphate by fuculose-1-phosphate aldolase, the MJ1418 gene product.
Collapse
Affiliation(s)
- Laura L Grochowski
- Department of Biochemistry (0308), Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | | | | |
Collapse
|