1
|
Park AKJ, Francis JM, Park WY, Park JO, Cho J. Constitutive asymmetric dimerization drives oncogenic activation of epidermal growth factor receptor carboxyl-terminal deletion mutants. Oncotarget 2016; 6:8839-50. [PMID: 25826094 PMCID: PMC4496187 DOI: 10.18632/oncotarget.3559] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 02/12/2015] [Indexed: 12/16/2022] Open
Abstract
Genomic alterations targeting the Epidermal Growth Factor Receptor (EGFR) gene have been strongly associated with cancer pathogenesis. The clinical effectiveness of EGFR targeted therapies, including small molecules directed against the kinase domain such as gefitinib, erlotinib and afatinib, have been proven successful in treating non-small cell lung cancer patients with tumors harboring EGFR kinase domain mutations. Recent large-scale genomic studies in glioblastoma and lung cancer have identified an additional class of oncogenic mutations caused by the intragenic deletion of carboxy-terminal coding regions. Here, we report that combinations of exonic deletions of exon 25 to 28 lead to the oncogenic activation of EGF receptor in the absence of ligand and consequent cellular transformation, indicating a significant role of C-terminal domain in modulating EGFR activation. Furthermore, we show that the oncogenic activity of the resulting C-terminal deletion mutants are efficiently inhibited by EGFR-targeted drugs including erlotinib, afatinib, dacomitinib as well as cetuximab, expanding the therapeutic rationale of cancer genome-based EGFR targeted approaches. Finally, in vivo and in vitro preclinical studies demonstrate that constitutive asymmetric dimerization in mutant EGFR is a key mechanism for oncogenic activation and tumorigenesis by C-terminal deletion mutants. Therefore, our data provide compelling evidence for oncogenic activation of C-terminal deletion mutants at the molecular level and we propose that C-terminal deletion status of EGFR can be considered as a potential genomic marker for EGFR-targeted therapy.
Collapse
Affiliation(s)
- Angela K J Park
- Samsung Genome Institute, Samsung Medical Center, Seoul, Republic of Korea.,Samsung Advanced Institute for Health Sciences and Technology, SungKyunKwan University, Seoul, Republic of Korea
| | - Joshua M Francis
- The Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
| | - Woong-Yang Park
- Samsung Genome Institute, Samsung Medical Center, Seoul, Republic of Korea.,Samsung Advanced Institute for Health Sciences and Technology, SungKyunKwan University, Seoul, Republic of Korea
| | - Joon-Oh Park
- Division of Hematology-Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jeonghee Cho
- Samsung Genome Institute, Samsung Medical Center, Seoul, Republic of Korea.,Samsung Advanced Institute for Health Sciences and Technology, SungKyunKwan University, Seoul, Republic of Korea
| |
Collapse
|
2
|
Mellinghoff IK, Schultz N, Mischel PS, Cloughesy TF. Will kinase inhibitors make it as glioblastoma drugs? Curr Top Microbiol Immunol 2012; 355:135-69. [PMID: 22015553 PMCID: PMC3784987 DOI: 10.1007/82_2011_178] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Kinase inhibitors have emerged as effective cancer therapeutics in a variety of human cancers. Glioblastoma (GBM), the most common malignant brain tumor in adults, represents a compelling disease for kinase inhibitor therapy because the majority of these tumors harbor genetic alterations that result in aberrant activation of growth factor signaling pathways. Attempts to target the Ras-Phosphatidylinositol 3-kinase (PI3K)-mammalian Target of Rapamycin (mTOR) axis in GBM with first generation receptor tyrosine kinase (RTK) inhibitors and rapalogs have been disappointing. However, there is reason for renewed optimism given the now very detailed knowledge of the cancer genome in GBM and a wealth of novel compounds entering the clinic, including next generation RTK inhibitors, class I PI3K inhibitors, mTOR kinase inhibitors (TORKinibs), and dual PI3(K)/mTOR inhibitors. This chapter reviews common genetic alterations in growth factor signaling pathways in GBM, their validation as therapeutic targets in this disease, and strategies for future clinical development of kinase inhibitors for high grade glioma.
Collapse
Affiliation(s)
- Ingo K Mellinghoff
- Department and Neurology, Memorial Sloan-Kettering Cancer Center, New York, NY, USA.
| | | | | | | |
Collapse
|
3
|
Ban HS, Tanaka Y, Nabeyama W, Hatori M, Nakamura H. Enhancement of EGFR tyrosine kinase inhibition by C-C multiple bonds-containing anilinoquinazolines. Bioorg Med Chem 2009; 18:870-9. [PMID: 19969465 DOI: 10.1016/j.bmc.2009.11.035] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2009] [Revised: 11/17/2009] [Accepted: 11/17/2009] [Indexed: 11/27/2022]
Abstract
A series of 4-anilinoquinazolines with C-C multiple bond substitutions at the 6-position were synthesized and investigated for their potential to inhibit epidermal growth factor receptor (EGFR) tyrosine kinase activity. Among the compounds synthesized, alkyne 6d and allenes 7d and 7f significantly inhibited EGFR tyrosine kinase activity. These compounds inhibited EGF-mediated phosphorylation of EGFR in A431 cells, resulting in cell-cycle arrest and apoptosis induction. The C-C multiple bonds substituted at the C-6 position of the anilinoquinazoline framework were essential for the significant inhibitory activity. Compounds with long carbon chains (n=3-6), such as 6c-f, 7c-f, 11, and 12, displayed prolonged inhibitory activity.
Collapse
Affiliation(s)
- Hyun Seung Ban
- Department of Chemistry, Faculty of Science, Gakushuin University, Tokyo 171-8588, Japan
| | | | | | | | | |
Collapse
|
4
|
Ban HS, Usui T, Nabeyama W, Morita H, Fukuzawa K, Nakamura H. Discovery of boron-conjugated 4-anilinoquinazoline as a prolonged inhibitor of EGFR tyrosine kinase. Org Biomol Chem 2009; 7:4415-27. [DOI: 10.1039/b909504g] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
5
|
Wang Q, Zhu F, Wang Z. Identification of EGF receptor C-terminal sequences 1005–1017 and di-leucine motif 1010LL1011 as essential in EGF receptor endocytosis. Exp Cell Res 2007; 313:3349-63. [PMID: 17643422 DOI: 10.1016/j.yexcr.2007.06.014] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2007] [Revised: 06/15/2007] [Accepted: 06/19/2007] [Indexed: 11/15/2022]
Abstract
Most studies regarding the role of epidermal growth factor (EGF) receptor (EGFR) C-terminal domain in EGFR internalization are done in the context of EGFR kinase activation. We recently showed that EGF-induced EGFR internalization is directly controlled by receptor dimerization, rather than kinase activation. Here we studied the role of EGFR C-terminus in EGF-induced EGFR internalization with or without EGFR kinase activation. We showed that graduate truncation of EGFR from C-terminus to 1044 did not affect EGF-induced EGFR endocytosis with or without kinase activation. However, truncation to 991 or further completely inhibited EGFR endocytosis. Graduate truncation within 991-1044 progressively lower EGF-induced EGFR endocytosis with most significant effects observed for residues 1005-1017. The endocytosis patterns of mutant EGFRs are independent of EGFR kinase activation. The residues 1005-1017 were also required for EGFR internalization triggered by non-ligand-induced receptor dimerization. This indicates that residues 1005-1017 function as an internalization motif, rather than a dimerization motif, to mediate EGFR internalization. Furthermore, we showed that the di-leucine motif 1010LL1011 within this region is essential in mediating EGF-induced rapid EGFR internalization independent of kinase activation. We conclude that EGFR C-terminal sequences 1005-1017 and the 1010LL1011 motif are essential for EGF-induced EGFR endoytosis independent of EGFR kinase activation and autophosphorylation.
Collapse
Affiliation(s)
- Qian Wang
- Department of Cell Biology and Signal Transduction Research Group, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| | | | | |
Collapse
|
6
|
Batenjany M, Bartnicki D, Ambuel Y, Wiepz G, Bertics P, Hayes S. Rapid, ELISA-based measurement of protein tyrosine kinase activity using the K-LISA™ Kit. Nat Methods 2005. [DOI: 10.1038/nmeth788] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
7
|
Beebe JA, Wiepz GJ, Guadarrama AG, Bertics PJ, Burke TJ. A carboxyl-terminal mutation of the epidermal growth factor receptor alters tyrosine kinase activity and substrate specificity as measured by a fluorescence polarization assay. J Biol Chem 2003; 278:26810-6. [PMID: 12746449 DOI: 10.1074/jbc.m301397200] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The expression of certain COOH-terminal truncation mutants of the epidermal growth factor receptor (EGFR) can lead to cell transformation, and with ligand stimulation, a broader spectrum of phosphorylated proteins appears compared with EGF-treated cells expressing wild-type EGFR. Accordingly, it has been proposed that elements within the COOH terminus may determine substrate specificity of the EGFR tyrosine kinase (Decker, S. J., Alexander, C., and Habib, T. (1992) J. Biol. Chem. 267, 1104-1108; Walton, G. M., Chen, W. S., Rosenfeld, M. G., and Gill, G. N. (1990) J. Biol. Chem. 265, 1750-1754). To address this hypothesis, we analyzed in vitro the steady-state kinetic parameters for phosphorylation of several substrates by both wild-type EGFR and an oncogenic EGFR mutant (the ct1022 mutant) truncated at residue 1022. The substrates included: (i) a phospholipase C-gamma fragment (residues 530-850); (ii) the 46-kDa isoform of the Shc adapter protein; (iii) a 13-residue peptide mimic for the region around the major autophosphorylation tyrosine and the Shc binding site (the Y1173 peptide); (iv) a poly(Glu,Tyr) 4:1 copolymer; and (v) the 8-residue peptide, angiotensin II. Our data demonstrate that the steady-state kinetic parameters for the ct1022 mutant differ from those of the wild-type enzyme, and the differences are substrate-dependent. These results support the concept that this oncogenic truncation/mutation alters EGFR substrate specificity, rather than causing a general alteration of activity. We performed the experiments using a non-radioactive fluorescence polarization assay that quantifies the degree of phosphorylation of peptide as well as natural substrates. The results are consistent with those from the traditional [gamma-32P]ATP/filtration assay.
Collapse
|
8
|
Huang G, Chantry A, Epstein RJ. Overexpression of ErbB2 impairs ligand-dependent downregulation of epidermal growth factor receptors via a post-transcriptional mechanism. J Cell Biochem 1999. [DOI: 10.1002/(sici)1097-4644(19990701)74:1<23::aid-jcb3>3.0.co;2-l] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
9
|
Wang Z, Zhang L, Yeung TK, Chen X. Endocytosis deficiency of epidermal growth factor (EGF) receptor-ErbB2 heterodimers in response to EGF stimulation. Mol Biol Cell 1999; 10:1621-36. [PMID: 10233167 PMCID: PMC30486 DOI: 10.1091/mbc.10.5.1621] [Citation(s) in RCA: 155] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Epidermal growth factor (EGF) stimulates the homodimerization of EGF receptor (EGFR) and the heterodimerization of EGFR and ErbB2. The EGFR homodimers are quickly endocytosed after EGF stimulation as a means of down-regulation. However, the results from experiments on the ability of ErbB2 to undergo ligand-induced endocytosis are very controversial. It is unclear how the EGFR-ErbB2 heterodimers might behave. In this research, we showed by subcellular fractionation, immunoprecipitation, Western blotting, indirect immunofluorescence, and microinjection that, in the four breast cancer cell lines MDA453, SKBR3, BT474, and BT20, the EGFR-ErbB2 heterodimerization levels were positively correlated with the ratio of ErbB2/EGFR expression levels. ErbB2 was not endocytosed in response to EGF stimulation. Moreover, in MDA453, SKBR3, and BT474 cells, which have very high levels of EGFR-ErbB2 heterodimerization, EGF-induced EGFR endocytosis was greatly inhibited compared with that in BT20 cells, which have a very low level of EGFR-ErbB2 heterodimerization. Microinjection of an ErbB2 expression plasmid into BT20 cells significantly inhibited EGF-stimulated EGFR endocytosis. Coexpression of ErbB2 with EGFR in 293T cells also significantly inhibited EGF-stimulated EGFR endocytosis. EGF did not stimulate the endocytosis of ectopically expressed ErbB2 in BT20 and 293T cells. These results indicate that ErbB2 and the EGFR-ErbB2 heterodimers are impaired in EGF-induced endocytosis. Moreover, when expressed in BT20 cells by microinjection, a chimeric receptor composed of the ErbB2 extracellular domain and the EGFR intracellular domain underwent normal endocytosis in response to EGF, and this chimera did not block EGF-induced EGFR endocytosis. Thus, the endocytosis deficiency of ErbB2 is due to the sequence of its intracellular domain.
Collapse
Affiliation(s)
- Z Wang
- Department of Medicine, University of Ottawa, and Division of Tumor Biology, Northeastern Ontario Regional Cancer Centre, Sudbury, Ontario P3E 5J1, Canada.
| | | | | | | |
Collapse
|
10
|
Ouyang X, Gulliford T, Huang G, Epstein RJ. Transforming growth factor-alpha short-circuits downregulation of the epidermal growth factor receptor. J Cell Physiol 1999; 179:52-7. [PMID: 10082132 DOI: 10.1002/(sici)1097-4652(199904)179:1<52::aid-jcp7>3.0.co;2-m] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Transforming growth factor-alpha (TGFalpha) is an epidermal growth factor receptor (EGFR) ligand which is distinguished from EGF by its acid-labile structure and potent transforming function. We recently reported that TGFalpha induces less efficient EGFR heterodimerization and downregulation than does EGF (Gulliford et al., 1997, Oncogene, 15:2219-2223). Here we use isoform-specific EGFR and ErbB2 antibodies to show that the duration of EGFR signalling induced by a single TGFalpha exposure is less than that induced by equimolar EGF. The protein trafficking inhibitor brefeldin A (BFA) reduces the duration of EGF signalling to an extent similar to that seen with TGFalpha alone; the effects of TGFalpha and BFA on EGFR degradation are opposite, however, with TGFalpha sparing EGFR from downregulation but BFA accelerating EGF-dependent receptor loss. This suggests that BFA blocks EGFR recycling and thus shortens EGF-dependent receptor signalling, whereas TGFalpha shortens receptor signalling and thus blocks EGFR downregulation. Consistent with this, repeated application of TGFalpha is accompanied by prolonged EGFR expression and signalling, whereas similar application of EGF causes receptor downregulation and signal termination. These findings indicate that constitutive secretion of pH-labile TGFalpha may perpetuate EGFR signalling by permitting early oligomer dissociation and dephosphorylation within acidic endosomes, thereby extinguishing a phosphotyrosine-based downregulation signal and creating an irreversible autocrine growth loop.
Collapse
Affiliation(s)
- X Ouyang
- Department of Metabolic Medicine, Imperial College School of Medicine, London, United Kingdom
| | | | | | | |
Collapse
|
11
|
Abstract
Epidermal growth factor receptor (EGFR) signaling was analyzed in mammalian cells conditionally defective for receptor-mediated endocytosis. EGF-dependent cell proliferation was enhanced in endocytosis-defective cells. However, early EGF-dependent signaling events were not uniformly up-regulated. A subset of signal transducers required the normal endocytic trafficking of EGFR for full activation. Thus, endocytic trafficking of activated EGFR plays a critical role not only in attenuating EGFR signaling but also in establishing and controlling specific signaling pathways.
Collapse
Affiliation(s)
- A V Vieira
- Department of Cell Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | | | | |
Collapse
|
12
|
Sasaoka T, Ishihara H, Sawa T, Ishiki M, Morioka H, Imamura T, Usui I, Takata Y, Kobayashi M. Functional importance of amino-terminal domain of Shc for interaction with insulin and epidermal growth factor receptors in phosphorylation-independent manner. J Biol Chem 1996; 271:20082-7. [PMID: 8702728 DOI: 10.1074/jbc.271.33.20082] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Shc has two distinct domains, amino-terminal and SH2 domain, which can interact with activated growth factor receptors. Shc interacts with insulin receptor via Shc-amino-terminal (N) domain, whereas Shc associates with epidermal growth factor (EGF) receptor through both Shc-N and -SH2 domains. In accordance with the different functional roles between insulin and EGF receptors, EGF stimulated tyrosine phosphorylation of Shc faster than insulin. To clarify the functional importance of three distinct Shc domains on insulin and EGF signaling, we microinjected glutathione S-transferase (GST) fusion proteins containing the amino terminus plus collagen homology domain (NCH), collagen homology domain (CH), and Src homology 2 domain (SH2) into Rat1 fibroblasts expressing insulin receptors (HIRc). Bromodeoxyuridine (BrdUrd) incorporation into newly synthesized DNA was subsequently studied to assess the importance of the three distinct domains of Shc. Microinjection of the NCH-GST fusion protein inhibited BrdUrd incorporation induced by both EGF and insulin, whereas microinjection of the SH2-GST fusion protein inhibited EGF, but not insulin stimulation of DNA synthesis. Neither EGF- nor insulin-induced BrdUrd incorporation was inhibited by the CH-GST fusion protein. Following EGF or insulin stimulation, Shc is phosphorylated on single Tyr-317 residue serving as a docking site for Grb2. Microinjection of Shc-N+CH GST fusion protein with Tyr-317 --> Phe replacement (Y317F) also inhibited insulin stimulation of DNA synthesis. Next, we stably overexpressed wild-type Shc or Y317F mutant Shc into HIRc cells. Insulin-induced tyrosine phosphorylation of IRS-1 was compared among the transfected cell lines, since IRS-1 and Shc could competitively interact with insulin receptor. Insulin-stimulated tyrosine phosphorylation of IRS-1 was decreased in both WT-Shc and Y317F-Shc cells compared with that in HIRc cells. Furthermore, overexpression of the Shc-SH2 domain or Shc-N+CH domain with Y317F mutation interfered with EGF-stimulated endogenous Shc phosphorylation. These results suggest that the amino terminus domain of Shc is functionally important in insulin- and EGF-induced cell cycle progression and that the phosphorylation of Shc Tyr-317 residue is independent of Shc interaction with these receptors.
Collapse
Affiliation(s)
- T Sasaoka
- First Department of Medicine, Toyama Medical and Pharmaceutical University, Toyama, 930-01 Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
Activated epidermal growth factor (EGF) receptors induce the formation of various complexes of intracellular signaling proteins that are mediated by SRC homology 2 (SH2) and SH3 domains. The activated receptors are also rapidly internalized into the endocytotic compartment and degraded in lysosomes. EGF stimulation of canine epithelial cells induced a rapid and transient association of the SH3-SH2-SH3 protein GRB2 with dynamin, a guanosine triphosphatase that regulates endocytosis. Disruption of GRB2 interactions by microinjection of a peptide corresponding to the GRB2 SH2 domain or its phosphopeptide ligand blocked EGF receptor endocytosis; other SH2 domains that bind EGF receptors or antibodies that neutralize RAS did not. Both activation and termination of EGF signaling appear to be regulated by the diverse interactions of GRB2.
Collapse
Affiliation(s)
- Z Wang
- Banting and Best Department of Medical Research, University of Toronto, Canada
| | | |
Collapse
|
14
|
Sasaoka T, Langlois WJ, Bai F, Rose DW, Leitner JW, Decker SJ, Saltiel A, Gill GN, Kobayashi M, Draznin B, Olefsky JM. Involvement of ErbB2 in the signaling pathway leading to cell cycle progression from a truncated epidermal growth factor receptor lacking the C-terminal autophosphorylation sites. J Biol Chem 1996; 271:8338-44. [PMID: 8626530 DOI: 10.1074/jbc.271.14.8338] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
To investigate the mechanisms underlying the enhanced mitogenic activity of the truncated epidermal growth factor receptor (EGFR) lacking the C-terminal autophosphorylation sites (Delta973-EGFR), we studied the intracellular signaling pathways in NR6 cells expressing human wild type EGFR and Delta973-EGFR. Microinjection of dominant/negative p21ras(N17) completely inhibited EGF-induced DNA synthesis in both cell types. EGF stimulated Shc phosphorylation as well as the formation of wild type EGFR.Shc complexes. In contrast, EGF stimulated Shc phosphorylation without formation of Delta973-EGFR.Shc complexes. Tyrosine-phosphorylated Shc formed complexes with Grb2.Sos, and microinjection of anti-Shc antibody and Shc-SH2 GST fusion protein inhibited EGF stimulation of DNA synthesis in both cell lines. EGF markedly increased ErbB2 tyrosine phosphorylation in wild type EGFR cells. In Delta973-EGFR cells, ErbB2 was tyrosine phosphorylated in the basal state and EGFR stimulated further phosphorylation of ErbB2. In addition to ErbB2, additional proteins were tyrosine phosphorylated in Delta973-EGFR cells, mostly in the molecular mass range of 120 170 kDa. Taken together with our findings indicating coupling of ErbB2 to Shc, these data suggest the importance of an alternative signaling pathway in Delta973-EGFR cells mediated by the formation of heterodimeric structures between the truncated EGFR and ErbB2, followed by coupling through Shc to Grb2.Sos and the p21ras pathway, ultimately leading to mitogenesis.
Collapse
Affiliation(s)
- T Sasaoka
- First Department of Medicine, Toyama Medical and Pharmaceutical University, Toyama, 930-01, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Klarlund JK, Cherniack AD, Czech MP. Divergent mechanisms for homologous desensitization of p21ras by insulin and growth factors. J Biol Chem 1995; 270:23421-8. [PMID: 7559502 DOI: 10.1074/jbc.270.40.23421] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Previous work suggested that desensitization of p21ras in response to growth factors such as epidermal growth factor (EGF) results from receptor down-regulation. Here we show that p21ras is desensitized by insulin in 3T3-L1 adipocytes in the continued presence of activated insulin receptors, while loss of epidermal growth factor and platelet-derived growth factor (PDGF) receptors in response to their ligands correlates with p21ras desensitization. Furthermore, elevated amounts of Grb2/Shc complexes persisted throughout p21ras desensitization by insulin. However, immunoblotting of anti-Son-of-sevenless (Sos) 1 and 2 immunoprecipitates with anti-Grb2 antisera revealed that p21ras desensitization in response to insulin and PDGF, but not EGF, is associated with a marked decrease in cellular complexes containing Sos and Grb2 proteins. Nonetheless, the desensitization of p21ras in response to these stimuli was homologous, in that each peptide could reactivate [32P]GTP loading of p21ras after desensitization by any of the others. Taken together, these data indicate that insulin, EGF, and PDGF all cause disassembly of Sos proteins from signaling complexes during p21ras desensitization, but at least two mechanisms are involved. Insulin elicits dissociation of Sos from Grb2 SH3 domains, whereas EGF signaling is reversed by receptor down-regulation and Shc dephosphorylation, releasing Grb2 SH2 domains. PDGF action triggers both mechanisms of Grb2 disassembly, which probably operate in concert with GAP to attenuate p21ras signaling.
Collapse
Affiliation(s)
- J K Klarlund
- Program in Molecular Medicine, University of Massachusetts Medical Center, Worcester 01605, USA
| | | | | |
Collapse
|
16
|
Mansbridge JN, Ausserer WA, Knapp MA, Sutherland RM. Adaptation of EGF receptor signal transduction to three-dimensional culture conditions: changes in surface receptor expression and protein tyrosine phosphorylation. J Cell Physiol 1994; 161:374-82. [PMID: 7962122 DOI: 10.1002/jcp.1041610223] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A431 cells grown as three-dimensional spheroids show growth stimulation in response to nanomolar concentrations of EGF in contrast to monolayer cultures that show inhibition. In investigating the alterations in EGF signal transduction that underlie this modification of the proliferative response, we have compared the expression of EGF receptors on A431 cells under these conditions and related our findings to tyrosine phosphorylation and the growth response. EGF receptors were measured by 125I-EGF binding to trypsin-dispersed cells. Unexpectedly, dispersion of the monolayers caused an 80% decrease in surface EGF receptor, although, after dispersion, EGF receptor was digested by trypsin with a half-life of 69 +/- 32 min. No evidence for a comparable loss of cellular EGF receptor was seen on trypsin dispersion of spheroids. After allowing for this effect, we found that the receptor density on nondispersed monolayers (5 x 10(6) per cell) was twentyfold greater than that on spheroids (0.25 x 10(6) per cell). EGF-induced tyrosine phosphorylation was confined to the outermost cells of the spheroid, although the presence of surface-expressed EGF binding sites could be demonstrated throughout the structure and the number of EGF receptors/cell on dispersed spheroid cells showed a single distribution peak by flow cytometry, with no evidence for more than one population. Using RCM-lysozyme as a substrate, tyrosine phosphatase activity in spheroids lay within the range observed in monolayer cultures. Autophosphorylation of the EGF receptor following EGF stimulation in monolayer cultures of A431 cells rose rapidly in the first 10 seconds and then slowly increased for at least 3 h. In spheroids, it reached a maximum within 10 seconds and then declined over 3 h. Since the microenvironment within a tumor resembles that in a spheroid, a similar reduction in surface EGF receptor expression may be expected in tumors relative to monolayer cultures, together with corresponding growth stimulation in response to EGF.
Collapse
|
17
|
Gregoriou M, Willis AC, Pearson MA, Crawford C. The calpain cleavage sites in the epidermal growth factor receptor kinase domain. EUROPEAN JOURNAL OF BIOCHEMISTRY 1994; 223:455-64. [PMID: 8055914 DOI: 10.1111/j.1432-1033.1994.tb19013.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The proteolysis of the human epidermal growth factor receptor cytoplasmic domain by calpain has been studied in vitro using purified recombinant cytoplasmic domain expressed in insect cells. Limited proteolysis produced kinase that was truncated at either N- or C-termini, as well as in the hinge region. We identified seven sites of calpain proteolysis by N-terminal sequencing of purified fragments. Calpain cleaved between the catalytic and autophosphorylation domains at two sites in the sequence Gln996-Asp1059, in the hinge region. Three new sites were also found in the autophosphorylation domain, preceding each of the major autophosphorylation sites. A fourth new site was located in the juxta-membrane domain, C-terminal to the regulatory Thr654. We purified an active 42-kDa fragment generated by calpain proteolysis between Leu659-Gln660 in the juxta-membrane domain, and in the hinge region. A fifth new site of calpain cleavage was found between the nucleotide binding motif Gly-Xaa-Gly-Xaa-Xaa-Gly and the essential Lys721 in the catalytic core of the kinase. Since both of these features are required for catalysis, calpain cleavage at this site may potentially provide a mechanism for down-regulation of kinase activity in vivo, under conditions of calpain activation. Thus the distribution of calpain cleavage sites along the kinase domain is consistent with a role for calpain both as a processing and as a degradative protease in epidermal growth factor receptor signalling.
Collapse
Affiliation(s)
- M Gregoriou
- Department of Biochemistry, University of Oxford, England
| | | | | | | |
Collapse
|
18
|
Filhol O, Chambaz EM, Gill GN, Cochet C. Epidermal growth factor stimulates a protein tyrosine kinase which is separable from the epidermal growth factor receptor. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(19)74206-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
19
|
Soler C, Beguinot L, Sorkin A, Carpenter G. Tyrosine phosphorylation of ras GTPase-activating protein does not require association with the epidermal growth factor receptor. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(20)80641-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
20
|
Sierke SL, Koland JG. SH2 domain proteins as high-affinity receptor tyrosine kinase substrates. Biochemistry 1993; 32:10102-8. [PMID: 7691170 DOI: 10.1021/bi00089a028] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Activation of a growth factor receptor tyrosine kinase (RTK) is accompanied by a rapid autophosphorylation of the receptor on tyrosine residues. Receptor activation has been shown to promote the association of signal-transducing proteins containing SH2 domains (second domain of src homology). These receptor-associated proteins can, in turn, be phosphorylated by the RTK, an event which presumably regulates their activities. It has been suggested that SH2 domains in signal-transducing proteins target these proteins as substrates of the activated RTK. To test this hypothesis, recombinant proteins were generated that contained tyrosine phosphorylation sites of the erbB3 receptor and/or the SH2 domain of c-src. Incorporation of the SH2 domain led to a decrease in KM and an increase in Vmax for the substrate. The KM determined for one chimeric SH2/erbB3 substrate was among the lowest reported for epidermal growth factor RTK substrates. Experiments with a truncated kinase lacking C-terminal autophosphorylation sites indicated that the reduction in KM for these substrates was mediated by interactions between the substrate SH2 domain and phosphotyrosine residues of the RTK. These interactions could also inhibit RTK activity. These results demonstrate that the SH2 domain can effectively target substrates to a RTK and that SH2 domain proteins can regulate RTK activity.
Collapse
Affiliation(s)
- S L Sierke
- Department of Pharmacology, The University of Iowa, Iowa City 52242-1109
| | | |
Collapse
|
21
|
Ligand-induced internalization of the epidermal growth factor receptor is mediated by multiple endocytic codes analogous to the tyrosine motif found in constitutively internalized receptors. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(19)36515-9] [Citation(s) in RCA: 109] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
22
|
Abstract
EGFR is a member of the tyrosine kinase family of cell surface receptors with a wide range of expression throughout development and in a variety of different cell types. The receptor can transmit signals to cells: i) upon interaction with ligands such as EGF, TGF alpha, amphiregulin or heparin binding EGF, ii) upon truncation or mutation of extracellular and/or intracellular domains, iii) upon amplification of a basal receptor activity (in the absence of ligand) through cooperation with other cellular signaling pathways or nuclear events (e.g. expression of v-erbA). The activated EGFR can exert pleiotropic functions on cells, depending on their tissue origin and state of differentiation. Under certain conditions it can also contribute to neoplasia and development of metastases. Such conditions can exist upon aberrant receptor/ligand expression and activation (e.g. in the wrong cell; at the wrong time; in the wrong amounts). Aberrant signalling can also occur through constitutive EGFR activation. Oncogenic potential of EGFR has been demonstrated in a wide range of experimental animals. EGFR is also implicated in human cancer, where it may contribute both to the initiation (glioblastoma) and progression (epithelial tumors) of the disease. EGFR may influence key steps in the processes of tumor invasion and dissemination. Involvement of EGFR in tumor spread may indicate a potential use of this receptor as a target for antimetastatic therapy.
Collapse
Affiliation(s)
- K Khazaie
- Deutsches Krebsforschungszentrum, Heidelberg, Germany
| | | | | |
Collapse
|
23
|
Decker S. Transmembrane signaling by epidermal growth factor receptors lacking autophosphorylation sites. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)98330-4] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
24
|
Zhu G, Decker S, Mayer B, Saltiel A. Direct analysis of the binding of the abl Src homology 2 domain to the activated epidermal growth factor receptor. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)53920-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
25
|
Peters KG, Marie J, Wilson E, Ives HE, Escobedo J, Del Rosario M, Mirda D, Williams LT. Point mutation of an FGF receptor abolishes phosphatidylinositol turnover and Ca2+ flux but not mitogenesis. Nature 1992; 358:678-81. [PMID: 1379697 DOI: 10.1038/358678a0] [Citation(s) in RCA: 303] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Stimulation of certain receptor tyrosine kinases results in the tyrosine phosphorylation and activation of phospholipase C gamma (PLC gamma), an enzyme that catalyses the hydrolysis of phosphatidylinositol (PtdIns). This hydrolysis generates diacylglycerol and free inositol phosphate, which in turn activate protein kinase C and increase intracellular Ca2+, respectively. PLC gamma physically associates with activated receptor tyrosine kinases, suggesting that it is a substrate for direct phosphorylation by these kinases. Here we report that a fibroblast growth factor (FGF) receptor with a single point mutation at residue 766 replacing tyrosine with phenylalanine fails to associate with PLC gamma in response to FGF. This mutant receptor also failed to mediate PtdIns hydrolysis and Ca2+ mobilization after FGF stimulation. However, the mutant receptor phosphorylated itself and several other cellular proteins, and it mediated mitogenesis in response to FGF. These findings show that a point mutation in the FGF receptor selectively eliminates activation of PLC gamma and that neither Ca2+ mobilization nor PtdIns hydrolysis are required for FGF-induced mitogenesis.
Collapse
Affiliation(s)
- K G Peters
- Program of Excellence in Molecular Biology, University of California, San Francisco 94143-0724
| | | | | | | | | | | | | | | |
Collapse
|