1
|
Alcorlo M, Luque-Ortega JR, Gago F, Ortega A, Castellanos M, Chacón P, de Vega M, Blanco L, Hermoso J, Serrano M, Rivas G, Hermoso J. Flexible structural arrangement and DNA-binding properties of protein p6 from Bacillus subtillis phage φ29. Nucleic Acids Res 2024; 52:2045-2065. [PMID: 38281216 PMCID: PMC10899789 DOI: 10.1093/nar/gkae041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/20/2023] [Accepted: 01/11/2024] [Indexed: 01/30/2024] Open
Abstract
The genome-organizing protein p6 of Bacillus subtilis bacteriophage φ29 plays an essential role in viral development by activating the initiation of DNA replication and participating in the early-to-late transcriptional switch. These activities require the formation of a nucleoprotein complex in which the DNA adopts a right-handed superhelix wrapping around a multimeric p6 scaffold, restraining positive supercoiling and compacting the viral genome. Due to the absence of homologous structures, prior attempts to unveil p6's structural architecture failed. Here, we employed AlphaFold2 to engineer rational p6 constructs yielding crystals for three-dimensional structure determination. Our findings reveal a novel fold adopted by p6 that sheds light on its self-association mechanism and its interaction with DNA. By means of protein-DNA docking and molecular dynamic simulations, we have generated a comprehensive structural model for the nucleoprotein complex that consistently aligns with its established biochemical and thermodynamic parameters. Besides, through analytical ultracentrifugation, we have confirmed the hydrodynamic properties of the nucleocomplex, further validating in solution our proposed model. Importantly, the disclosed structure not only provides a highly accurate explanation for previously experimental data accumulated over decades, but also enhances our holistic understanding of the structural and functional attributes of protein p6 during φ29 infection.
Collapse
Affiliation(s)
- Martín Alcorlo
- Department of Crystallography and Structural Biology, Institute of Physical-Chemistry “Blas Cabrera”, CSIC, 28006 Madrid, Spain
| | - Juan Román Luque-Ortega
- Molecular Interactions Facility, Centro de Investigaciones Biológicas “Margarita Salas”, CSIC, 28040Madrid, Spain
| | - Federico Gago
- Departamento de Farmacología and CSIC-IQM Associate Unit, Universidad de Alcalá, Alcalá de Henares, 28871Madrid, Spain
| | - Alvaro Ortega
- Department of Biochemistry and Molecular Biology ‘B’ and Immunology, Faculty of Chemistry, University of Murcia, Regional Campus of International Excellence ‘Campus Mare Nostrum, Murcia, Spain
| | - Milagros Castellanos
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), Nanotechnology for Health-Care, 28049 Madrid, Spain
| | - Pablo Chacón
- Department of Biological Physical-Chemistry, Institute of Physical-Chemistry “Blas Cabrera”, CSIC, 28006Madrid, Spain
| | - Miguel de Vega
- Genome maintenance and instability, Centro de Biología Molecular Severo Ochoa, CSIC-UAM, 28049Cantoblanco, Madrid, Spain
| | - Luis Blanco
- Genome maintenance and instability, Centro de Biología Molecular Severo Ochoa, CSIC-UAM, 28049Cantoblanco, Madrid, Spain
| | - José M Hermoso
- Genome maintenance and instability, Centro de Biología Molecular Severo Ochoa, CSIC-UAM, 28049Cantoblanco, Madrid, Spain
| | - Manuel Serrano
- Institute for Research in Biomedicine (IRB), Barcelona Institute of Science and Technology, Barcelona, Spain
- Cambridge Institute of Science, Altos Labs, Cambridge, UK
| | - Germán Rivas
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas “Margarita Salas”, CSIC, 28040Madrid, Spain
| | - Juan A Hermoso
- Department of Crystallography and Structural Biology, Institute of Physical-Chemistry “Blas Cabrera”, CSIC, 28006 Madrid, Spain
| |
Collapse
|
2
|
Strand Displacement and Unwinding Assays to Study the Concerted Action of the DNA Polymerase and SSB During Phi29 TP-DNA Replication. Methods Mol Biol 2021. [PMID: 33847970 DOI: 10.1007/978-1-0716-1290-3_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
The Bacillus subtilis phage Phi29 has a linear double-stranded DNA with a terminal protein (TP) covalently linked to each 5' end (TP-DNA). Phi29 single-stranded DNA-binding protein (SSB) is encoded by the viral gene 5 and binds the ssDNA generated during the Phi29 genome replication, stimulating the DNA elongation rate. Here, we describe some protocols to evaluate the effect of Phi29 SSB mutants on the DNA elongation rate and their unwinding activity during replication by Phi29 DNA polymerase using as substrate TP-DNA and also singly primed M13 DNA.
Collapse
|
3
|
Oliveira MT, Ciesielski GL. The Essential, Ubiquitous Single-Stranded DNA-Binding Proteins. Methods Mol Biol 2021; 2281:1-21. [PMID: 33847949 DOI: 10.1007/978-1-0716-1290-3_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Maintenance of genomes is fundamental for all living organisms. The diverse processes related to genome maintenance entail the management of various intermediate structures, which may be deleterious if unresolved. The most frequent intermediate structures that result from the melting of the DNA duplex are single-stranded (ss) DNA stretches. These are thermodynamically less stable and can spontaneously fold into secondary structures, which may obstruct a variety of genome processes. In addition, ssDNA is more prone to breaking, which may lead to the formation of deletions or DNA degradation. Single-stranded DNA-binding proteins (SSBs) bind and stabilize ssDNA, preventing the abovementioned deleterious consequences and recruiting the appropriate machinery to resolve that intermediate molecule. They are present in all forms of life and are essential for their viability, with very few exceptions. Here we present an introductory chapter to a volume of the Methods in Molecular Biology dedicated to SSBs, in which we provide a general description of SSBs from various taxa.
Collapse
Affiliation(s)
- Marcos T Oliveira
- Departamento de Tecnologia, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista "Júlio de Mesquita Filho", Jaboticabal, SP, Brazil
| | | |
Collapse
|
4
|
de la Torre I, Quiñones V, Salas M, del Prado A. Tyrosines involved in the activity of φ29 single-stranded DNA binding protein. PLoS One 2019; 14:e0217248. [PMID: 31107918 PMCID: PMC6527236 DOI: 10.1371/journal.pone.0217248] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 05/07/2019] [Indexed: 11/18/2022] Open
Abstract
The genome of Bacillus subtilis phage ϕ29 consists of a linear double-stranded DNA with a terminal protein (TP) covalently linked to each 5’ end (TP-DNA). ϕ29 DNA polymerase is the enzyme responsible for viral DNA replication, due to its distinctive properties: high processivity and strand displacement capacity, being able to replicate the entire genome without requiring the assistance of processivity or unwinding factors, unlike most replicases. ϕ29 single-stranded DNA binding protein (SSB) is encoded by the viral gene 5 and binds the ssDNA generated in the replication of the ϕ29 TP-DNA. It has been described to stimulate the DNA elongation rate during the DNA replication. Previous studies proposed residues Tyr50, Tyr57 and Tyr76 as ligands of ssDNA. The role of two of these residues has been determined in this work by site-directed mutagenesis. Our results showed that mutant derivative Y57A was unable to bind to ssDNA, to stimulate the DNA elongation and to displace oligonucleotides annealed to M13 ssDNA, whereas mutant Y50A behaved like the wild-type SSB.
Collapse
Affiliation(s)
- Iván de la Torre
- Centro de Biología Molecular “Severo Ochoa,” (Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid), Universidad Autónoma, Cantoblanco, Madrid, Spain
| | - Victor Quiñones
- Centro de Biología Molecular “Severo Ochoa,” (Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid), Universidad Autónoma, Cantoblanco, Madrid, Spain
| | - Margarita Salas
- Centro de Biología Molecular “Severo Ochoa,” (Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid), Universidad Autónoma, Cantoblanco, Madrid, Spain
- * E-mail:
| | - Alicia del Prado
- Centro de Biología Molecular “Severo Ochoa,” (Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid), Universidad Autónoma, Cantoblanco, Madrid, Spain
| |
Collapse
|
5
|
Global Transcriptional Analysis of Virus-Host Interactions between Phage ϕ29 and Bacillus subtilis. J Virol 2016; 90:9293-304. [PMID: 27489274 DOI: 10.1128/jvi.01245-16] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 07/29/2016] [Indexed: 12/19/2022] Open
Abstract
UNLABELLED The study of phage-host relationships is essential to understanding the dynamic of microbial systems. Here, we analyze genome-wide interactions of Bacillus subtilis and its lytic phage ϕ29 during the early stage of infection. Simultaneous high-resolution analysis of virus and host transcriptomes by deep RNA sequencing allowed us to identify differentially expressed bacterial genes. Phage ϕ29 induces significant transcriptional changes in about 0.9% (38/4,242) and 1.8% (76/4,242) of the host protein-coding genes after 8 and 16 min of infection, respectively. Gene ontology enrichment analysis clustered upregulated genes into several functional categories, such as nucleic acid metabolism (including DNA replication) and protein metabolism (including translation). Surprisingly, most of the transcriptional repressed genes were involved in the utilization of specific carbon sources such as ribose and inositol, and many contained promoter binding-sites for the catabolite control protein A (CcpA). Another interesting finding is the presence of previously uncharacterized antisense transcripts complementary to the well-known phage ϕ29 messenger RNAs that adds an additional layer to the viral transcriptome complexity. IMPORTANCE The specific virus-host interactions that allow phages to redirect cellular machineries and energy resources to support the viral progeny production are poorly understood. This study provides, for the first time, an insight into the genome-wide transcriptional response of the Gram-positive model Bacillus subtilis to phage ϕ29 infection.
Collapse
|
6
|
Salas M, Holguera I, Redrejo-Rodríguez M, de Vega M. DNA-Binding Proteins Essential for Protein-Primed Bacteriophage Φ29 DNA Replication. Front Mol Biosci 2016; 3:37. [PMID: 27547754 PMCID: PMC4974454 DOI: 10.3389/fmolb.2016.00037] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 07/20/2016] [Indexed: 01/25/2023] Open
Abstract
Bacillus subtilis phage Φ29 has a linear, double-stranded DNA 19 kb long with an inverted terminal repeat of 6 nucleotides and a protein covalently linked to the 5′ ends of the DNA. This protein, called terminal protein (TP), is the primer for the initiation of replication, a reaction catalyzed by the viral DNA polymerase at the two DNA ends. The DNA polymerase further elongates the nascent DNA chain in a processive manner, coupling strand displacement with elongation. The viral protein p5 is a single-stranded DNA binding protein (SSB) that binds to the single strands generated by strand displacement during the elongation process. Viral protein p6 is a double-stranded DNA binding protein (DBP) that preferentially binds to the origins of replication at the Φ29 DNA ends and is required for the initiation of replication. Both SSB and DBP are essential for Φ29 DNA amplification. This review focuses on the role of these phage DNA-binding proteins in Φ29 DNA replication both in vitro and in vivo, as well as on the implication of several B. subtilis DNA-binding proteins in different processes of the viral cycle. We will revise the enzymatic activities of the Φ29 DNA polymerase: TP-deoxynucleotidylation, processive DNA polymerization coupled to strand displacement, 3′–5′ exonucleolysis and pyrophosphorolysis. The resolution of the Φ29 DNA polymerase structure has shed light on the translocation mechanism and the determinants responsible for processivity and strand displacement. These two properties have made Φ29 DNA polymerase one of the main enzymes used in the current DNA amplification technologies. The determination of the structure of Φ29 TP revealed the existence of three domains: the priming domain, where the primer residue Ser232, as well as Phe230, involved in the determination of the initiating nucleotide, are located, the intermediate domain, involved in DNA polymerase binding, and the N-terminal domain, responsible for DNA binding and localization of the TP at the bacterial nucleoid, where viral DNA replication takes place. The biochemical properties of the Φ29 DBP and SSB and their function in the initiation and elongation of Φ29 DNA replication, respectively, will be described.
Collapse
Affiliation(s)
- Margarita Salas
- Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas), Universidad Autónoma de Madrid Madrid, Spain
| | - Isabel Holguera
- Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas), Universidad Autónoma de Madrid Madrid, Spain
| | - Modesto Redrejo-Rodríguez
- Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas), Universidad Autónoma de Madrid Madrid, Spain
| | - Miguel de Vega
- Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas), Universidad Autónoma de Madrid Madrid, Spain
| |
Collapse
|
7
|
Pastrana CL, Carrasco C, Akhtar P, Leuba SH, Khan SA, Moreno-Herrero F. Force and twist dependence of RepC nicking activity on torsionally-constrained DNA molecules. Nucleic Acids Res 2016; 44:8885-8896. [PMID: 27488190 PMCID: PMC5062986 DOI: 10.1093/nar/gkw689] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 07/22/2016] [Indexed: 11/14/2022] Open
Abstract
Many bacterial plasmids replicate by an asymmetric rolling-circle mechanism that requires sequence-specific recognition for initiation, nicking of one of the template DNA strands and unwinding of the duplex prior to subsequent leading strand DNA synthesis. Nicking is performed by a replication-initiation protein (Rep) that directly binds to the plasmid double-stranded origin and remains covalently bound to its substrate 5′-end via a phosphotyrosine linkage. It has been proposed that the inverted DNA sequences at the nick site form a cruciform structure that facilitates DNA cleavage. However, the role of Rep proteins in the formation of this cruciform and the implication for its nicking and religation functions is unclear. Here, we have used magnetic tweezers to directly measure the DNA nicking and religation activities of RepC, the replication initiator protein of plasmid pT181, in plasmid sized and torsionally-constrained linear DNA molecules. Nicking by RepC occurred only in negatively supercoiled DNA and was force- and twist-dependent. Comparison with a type IB topoisomerase in similar experiments highlighted a relatively inefficient religation activity of RepC. Based on the structural modeling of RepC and on our experimental evidence, we propose a model where RepC nicking activity is passive and dependent upon the supercoiling degree of the DNA substrate.
Collapse
Affiliation(s)
- Cesar L Pastrana
- Department of Macromolecular Structures, Centro Nacional de Biotecnología, CSIC, Darwin 3, 28049 Cantoblanco, Madrid, Spain
| | - Carolina Carrasco
- Department of Macromolecular Structures, Centro Nacional de Biotecnología, CSIC, Darwin 3, 28049 Cantoblanco, Madrid, Spain
| | - Parvez Akhtar
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, 450 Technology Drive, Pittsburgh, PA 15219, USA
| | - Sanford H Leuba
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Saleem A Khan
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, 450 Technology Drive, Pittsburgh, PA 15219, USA
| | - Fernando Moreno-Herrero
- Department of Macromolecular Structures, Centro Nacional de Biotecnología, CSIC, Darwin 3, 28049 Cantoblanco, Madrid, Spain
| |
Collapse
|
8
|
Abstract
The requirement of DNA polymerases for a 3'-hydroxyl (3'-OH) group to prime DNA synthesis raised the question about how the ends of linear chromosomes could be replicated. Among the strategies that have evolved to handle the end replication problem, a group of linear phages and eukaryotic and archaeal viruses, among others, make use of a protein (terminal protein, TP) that primes DNA synthesis from the end of their genomes. The replicative DNA polymerase recognizes the OH group of a specific residue in the TP to initiate replication that is guided by an internal 3' nucleotide of the template strand. By a sliding-back mechanism or variants of it the terminal nucleotide(s) is(are) recovered and the TP becomes covalently attached to the genome ends. Bacillus subtilis phage ϕ29 is the organism in which such a mechanism has been studied more extensively, having allowed to lay the foundations of the so-called protein-primed replication mechanism. Here we focus on the main biochemical and structural features of the two main proteins responsible for the protein-primed initiation step: the DNA polymerase and the TP. Thus, we will discuss the structural determinants of the DNA polymerase responsible for its ability to use sequentially a TP and a DNA as primers, as well as for its inherent capacity to couple high processive synthesis to strand displacement. On the other hand, we will review how TP primes initiation followed by a transition step for further DNA-primed replication by the same polymerase molecule. Finally, we will review how replication is compartmentalized in vivo.
Collapse
Affiliation(s)
- M Salas
- Instituto de Biología Molecular "Eladio Viñuela" (CSIC), Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain.
| | - M de Vega
- Instituto de Biología Molecular "Eladio Viñuela" (CSIC), Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain.
| |
Collapse
|
9
|
Ciesielski GL, Bermek O, Rosado-Ruiz FA, Hovde SL, Neitzke OJ, Griffith JD, Kaguni LS. Mitochondrial Single-stranded DNA-binding Proteins Stimulate the Activity of DNA Polymerase γ by Organization of the Template DNA. J Biol Chem 2015; 290:28697-707. [PMID: 26446790 DOI: 10.1074/jbc.m115.673707] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Indexed: 11/06/2022] Open
Abstract
The activity of the mitochondrial replicase, DNA polymerase γ (Pol γ) is stimulated by another key component of the mitochondrial replisome, the mitochondrial single-stranded DNA-binding protein (mtSSB). We have performed a comparative analysis of the human and Drosophila Pols γ with their cognate mtSSBs, evaluating their functional relationships using a combined approach of biochemical assays and electron microscopy. We found that increasing concentrations of both mtSSBs led to the elimination of template secondary structure and gradual opening of the template DNA, through a series of visually similar template species. The stimulatory effect of mtSSB on Pol γ on these ssDNA templates is not species-specific. We observed that human mtSSB can be substituted by its Drosophila homologue, and vice versa, finding that a lower concentration of insect mtSSB promotes efficient stimulation of either Pol. Notably, distinct phases of the stimulation by both mtSSBs are distinguishable, and they are characterized by a similar organization of the template DNA for both Pols γ. We conclude that organization of the template DNA is the major factor contributing to the stimulation of Pol γ activity. Additionally, we observed that human Pol γ preferentially utilizes compacted templates, whereas the insect enzyme achieves its maximal activity on open templates, emphasizing the relative importance of template DNA organization in modulating Pol γ activity and the variation among systems.
Collapse
Affiliation(s)
- Grzegorz L Ciesielski
- From the Institute of Biosciences and Medical Technology, University of Tampere, 33520 Tampere, Finland, the Department of Biochemistry and Molecular Biology and Center for Mitochondrial Science and Medicine, Michigan State University, East Lansing, Michigan 48823, and
| | - Oya Bermek
- the Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27514
| | - Fernando A Rosado-Ruiz
- the Department of Biochemistry and Molecular Biology and Center for Mitochondrial Science and Medicine, Michigan State University, East Lansing, Michigan 48823, and
| | - Stacy L Hovde
- the Department of Biochemistry and Molecular Biology and Center for Mitochondrial Science and Medicine, Michigan State University, East Lansing, Michigan 48823, and
| | - Orrin J Neitzke
- the Department of Biochemistry and Molecular Biology and Center for Mitochondrial Science and Medicine, Michigan State University, East Lansing, Michigan 48823, and
| | - Jack D Griffith
- the Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27514
| | - Laurie S Kaguni
- From the Institute of Biosciences and Medical Technology, University of Tampere, 33520 Tampere, Finland, the Department of Biochemistry and Molecular Biology and Center for Mitochondrial Science and Medicine, Michigan State University, East Lansing, Michigan 48823, and
| |
Collapse
|
10
|
Tone T, Kinoshita M, Hanagata A, Takeuchi A, Makino O. Isolation of suppressors of the temperature-sensitive growth caused by a nonsense mutation in gene 1 of Bacillus subtilis phage ø29 using hydroxylamine. J GEN APPL MICROBIOL 2015; 61:88-92. [PMID: 26227912 DOI: 10.2323/jgam.61.88] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Takahiro Tone
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University
| | | | | | | | | |
Collapse
|
11
|
Ducani C, Bernardinelli G, Högberg B. Rolling circle replication requires single-stranded DNA binding protein to avoid termination and production of double-stranded DNA. Nucleic Acids Res 2014; 42:10596-604. [PMID: 25120268 PMCID: PMC4176320 DOI: 10.1093/nar/gku737] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
In rolling circle replication, a circular template of DNA is replicated as a long single-stranded DNA concatamer that spools off when a strand displacing polymerase traverses the circular template. The current view is that this type of replication can only produce single-stranded DNA, because the only 3'-ends available are the ones being replicated along the circular templates. In contrast to this view, we find that rolling circle replication in vitro generates large amounts of double stranded DNA and that the production of single-stranded DNA terminates after some time. These properties can be suppressed by adding single-stranded DNA-binding proteins to the reaction. We conclude that a model in which the polymerase switches templates to the already produced single-stranded DNA, with an exponential distribution of template switching, can explain the observed data. From this, we also provide an estimate value of the switching rate constant.
Collapse
Affiliation(s)
- Cosimo Ducani
- Department of Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden
| | | | - Björn Högberg
- Department of Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden
| |
Collapse
|
12
|
Single-stranded DNA binding protein Gp5 of Bacillus subtilis phage Φ29 is required for viral DNA replication in growth-temperature dependent fashion. Biosci Biotechnol Biochem 2012; 76:2351-3. [PMID: 23221709 DOI: 10.1271/bbb.120587] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In the absence of viral single-stranded DNA binding protein gp5, Bacillus subtilis phage φ29 failed to grow and to replicate its genome at 45 °C, while it grew and replicated normally at 30 °C and 42 °C. This indicates that gp5 is dispensable for φ29 DNA replication at 42 °C and lower temperatures.
Collapse
|
13
|
Gascón I, Carrascosa JL, Villar L, Lázaro JM, Salas M. Importance of the N-terminal region of the phage GA-1 single-stranded DNA-binding protein for its self-interaction ability and functionality. J Biol Chem 2002; 277:22534-40. [PMID: 11956216 DOI: 10.1074/jbc.m202430200] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The single-stranded DNA-binding protein (SSB) of phage GA-1 displays higher efficiency than the SSBs of the related phages phi 29 and Nf. In this work, the self-interaction ability of GA-1 SSB has been analyzed by visualization of the purified protein by electron microscopy, glycerol gradient sedimentation, and in vivo cross-linking of bacterial cultures infected with phage GA-1. GA-1 SSB contains an insert at its N-terminal region that is not present in the SSBs of phi 29 and Nf. Three deletion mutant proteins have been characterized, Delta N19, Delta N26, and Delta N33, which lack the 19, 26 or 33 amino acids, respectively, that follow the initial methionine of GA-1 SSB. Mutant protein Delta N19 retains the structural and functional behavior of GA-1 SSB, whereas mutant proteins Delta N26 and Delta N33 no longer stimulate viral DNA replication or display helix-destabilizing activity. Analysis of the mutant proteins by ultracentrifugation in glycerol gradients and electron microscopy indicates that deletion of 26 or 33 but not of 19 amino acids of the N-terminal region of GA-1 SSB results in the loss of the oligomerization ability of this protein. Our data support the importance of the N-terminal region of GA-1 SSB for the differential self-interaction ability and functional behavior of this protein.
Collapse
Affiliation(s)
- Irene Gascón
- Centro de Biologia Molecular Severo Ochoa, Consejo Superior de Investigaciones Cientificas-Universidad Autónoma de Madrid, Universidad Autónoma, Cantoblanco, 28049 Madrid, Spain
| | | | | | | | | |
Collapse
|
14
|
Chopin MC, Rouault A, Ehrlich SD, Gautier M. Filamentous phage active on the gram-positive bacterium Propionibacterium freudenreichii. J Bacteriol 2002; 184:2030-3. [PMID: 11889111 PMCID: PMC134938 DOI: 10.1128/jb.184.7.2030-2033.2002] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
We present the first description of a single-stranded DNA filamentous phage able to replicate in a gram-positive bacterium. Phage B5 infects Propionibacterium freudenreichii and has a genome consisting of 5,806 bases coding for 10 putative open reading frames. The organization of the genome is very similar to the organization of the genomes of filamentous phages active on gram-negative bacteria. The putative coat protein exhibits homology with the coat proteins of phages PH75 and Pf3 active on Thermus thermophilus and Pseudomonas aeruginosa, respectively. B5 is, therefore, evolutionarily related to the filamentous phages active on gram-negative bacteria.
Collapse
|
15
|
Affiliation(s)
- T Tsurumi
- Division of Virology, Aichi Cancer Center Research Institute, 1-1, Kanokoden, Chikusa-ku, Nagoya 464-8681, Japan
| |
Collapse
|
16
|
Serna-Rico A, Salas M, Meijer WJJ. The Bacillus subtilis phage phi 29 protein p16.7, involved in phi 29 DNA replication, is a membrane-localized single-stranded DNA-binding protein. J Biol Chem 2002; 277:6733-42. [PMID: 11741949 DOI: 10.1074/jbc.m109312200] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The functional role of the phi 29-encoded integral membrane protein p16.7 in phage DNA replication was studied using a soluble variant, p16.7A, lacking the N-terminal membrane-spanning domain. Because of the protein-primed mechanism of DNA replication, the bacteriophage phi 29 replication intermediates contain long stretches of single-stranded DNA (ssDNA). Protein p16.7A was found to be an ssDNA-binding protein. In addition, by direct and functional analysis we show that protein p16.7A binds to the stretches of ssDNA of the phi 29 DNA replication intermediates. Properties of protein p16.7A were compared with those of the phi 29-encoded single-stranded DNA-binding protein p5. The results obtained show that both proteins have different, non-overlapping functions. The likely role of p16.7 in attaching phi 29 DNA replication intermediates to the membrane of the infected cell is discussed. Homologues of gene 16.7 are present in phi 29-related phages, suggesting that the proposed role of p16.7 is conserved in this family of phages.
Collapse
Affiliation(s)
- Alejandro Serna-Rico
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma, Canto Blanco, 28049 Madrid, Spain
| | | | | |
Collapse
|
17
|
Schaffrath R, Meacock PA. An SSB encoded by and operating on linear killer plasmids from Kluyveromyces lactis. Yeast 2001; 18:1239-47. [PMID: 11561291 DOI: 10.1002/yea.773] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The Kluyveromyces lactis linear plasmids k1 and k2 belong to the family of protein-primed linear DNA genomes, which includes adenoviruses. Here we identify the 18 kDa gene product of k2ORF5 as a novel putative single-stranded DNA binding protein, SSB. As judged from Western analysis using an epitope-tagged fusion protein and ssDNA-agarose affinity chromatography, the Orf5 protein preferentially binds to ssDNA in vitro. Consistently, electrophoretic mobility shift assays demonstrate that ssDNA plasmid probes from k1 and k2 are retarded by this Orf5-associated SSB activity. ORF5 gene shuffle-mediated mutagenesis in vivo results in k1/k2 plasmid instability, pointing towards a role for the Orf5 protein in plasmid replication. Consistently, the Orf5 protein protects ssDNA from exonuclease digestion and stimulates Klenow enzyme. Our findings suggest a functional role for the Orf5 protein as a putative SSB probably required during k1/k2 plasmid DNA synthesis.
Collapse
Affiliation(s)
- R Schaffrath
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240, Longwood Avenue, Boston, MA 02115-5730, USA.
| | | |
Collapse
|
18
|
Abstract
Continuous research spanning more than three decades has made the Bacillus bacteriophage phi29 a paradigm for several molecular mechanisms of general biological processes, such as DNA replication, regulation of transcription, phage morphogenesis, and phage DNA packaging. The genome of bacteriophage phi29 consists of a linear double-stranded DNA (dsDNA), which has a terminal protein (TP) covalently linked to its 5' ends. Initiation of DNA replication, carried out by a protein-primed mechanism, has been studied in detail and is considered to be a model system for the protein-primed DNA replication that is also used by most other linear genomes with a TP linked to their DNA ends, such as other phages, linear plasmids, and adenoviruses. In addition to a continuing progress in unraveling the initiation of DNA replication mechanism and the role of various proteins involved in this process, major advances have been made during the last few years, especially in our understanding of transcription regulation, the head-tail connector protein, and DNA packaging. Recent progress in all these topics is reviewed. In addition to phi29, the genomes of several other Bacillus phages consist of a linear dsDNA with a TP molecule attached to their 5' ends. These phi29-like phages can be divided into three groups. The first group includes, in addition to phi29, phages PZA, phi15, and BS32. The second group comprises B103, Nf, and M2Y, and the third group contains GA-1 as its sole member. Whereas the DNA sequences of the complete genomes of phi29 (group I) and B103 (group II) are known, only parts of the genome of GA-1 (group III) were sequenced. We have determined the complete DNA sequence of the GA-1 genome, which allowed analysis of differences and homologies between the three groups of phi29-like phages, which is included in this review.
Collapse
Affiliation(s)
- W J Meijer
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma, Canto Blanco, 28049 Madrid, Spain
| | | | | |
Collapse
|
19
|
Salas M. Mechanisms of initiation of linear DNA replication in prokaryotes. GENETIC ENGINEERING 2000; 21:159-71. [PMID: 10822496 DOI: 10.1007/978-1-4615-4707-5_8] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- M Salas
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma, Canto Blanco, Madrid, Spain
| |
Collapse
|
20
|
Gonzalez-Huici V, Lázaro JM, Salas M, Hermoso JM. Specific recognition of parental terminal protein by DNA polymerase for initiation of protein-primed DNA replication. J Biol Chem 2000; 275:14678-83. [PMID: 10799555 DOI: 10.1074/jbc.m910058199] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The linear genome of Bacillus subtilis phage phi29 has a protein covalently linked to the 5' ends, called parental terminal protein (TP), and is replicated using a free TP as primer. The initiation of phage phi29 DNA replication requires the formation of a DNA polymerase/TP complex that recognizes the replication origins located at the genome ends. The DNA polymerase catalyzes the formation of the initiation complex TP-dAMP, and elongation proceeds coupled to strand displacement. The same mechanism is used by the related phage Nf. However, DNA polymerase and TP from phi29 do not initiate the replication of Nf TP-DNA. To address the question of the specificity of origin recognition, we took advantage of the initiation reaction enhancement in the presence of Mn(2+), allowing us to detect initiation activity in heterologous systems in which DNA polymerase, TP, and template TP-DNA are not from the same phage. Initiation was selectively stimulated when DNA polymerase and TP-DNA were from the same phage, strongly suggesting that specific recognition of origins is brought through an interaction between DNA polymerase and parental TP.
Collapse
Affiliation(s)
- V Gonzalez-Huici
- Centro de Biologia Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma, Canto Blanco, 28049 Madrid, Spain
| | | | | | | |
Collapse
|
21
|
Fucík V, Beran J, Krásný L, Jonák J. Effect of host bacteria genotype on spontaneous reversions of Bacillus subtilis bacteriophage phi29 sus17 nonsense codon. FEMS Microbiol Lett 2000; 183:143-6. [PMID: 10650217 DOI: 10.1111/j.1574-6968.2000.tb08948.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Gene 17 of Bacillus subtilis bacteriophage Phi29 is an early gene playing a role in DNA replication. Its mutant sus17(112) carries the TAA nonsense triplet at the fifth codon of the gene. We isolated and sequenced 73 spontaneous revertants producing normal-size plaques on bacteria without an informational suppressor gene. In all revertants, the TAA triplet was changed by a one-base substitution and the sequences CAA, AAA, TTA, TAC and TAT were recovered at its place. The spectrum of these mutations was markedly influenced by the genotype of the bacteria in which the revertants arose. In agreement with the results described in Escherichia coli, the ratio of transversions to transitions (CAA being the only transition acceptable) was higher in strains harboring the functional allele recA(+) than in those with recA4. Our results support the idea that also in the Gram-positive B. subtilis, the spectra of spontaneous mutations are specifically modified by an SOS function. It is assumed that the single-stranded DNA chains generated in the course of phage DNA replication might act as an inducing factor.
Collapse
Affiliation(s)
- V Fucík
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, 166 37, Prague, Czech Republic.
| | | | | | | |
Collapse
|
22
|
Canceill D, Viguera E, Ehrlich SD. Replication slippage of different DNA polymerases is inversely related to their strand displacement efficiency. J Biol Chem 1999; 274:27481-90. [PMID: 10488082 DOI: 10.1074/jbc.274.39.27481] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Replication slippage is a particular type of error caused by DNA polymerases believed to occur both in bacterial and eukaryotic cells. Previous studies have shown that deletion events can occur in Escherichia coli by replication slippage between short duplications and that the main E. coli polymerase, DNA polymerase III holoenzyme is prone to such slippage. In this work, we present evidence that the two other DNA polymerases of E. coli, DNA polymerase I and DNA polymerase II, as well as polymerases of two phages, T4 (T4 pol) and T7 (T7 pol), undergo slippage in vitro, whereas DNA polymerase from another phage, Phi29, does not. Furthermore, we have measured the strand displacement activity of the different polymerases tested for slippage in the absence and in the presence of the E. coli single-stranded DNA-binding protein (SSB), and we show that: (i) polymerases having a strong strand displacement activity cannot slip (DNA polymerase from Phi29); (ii) polymerases devoid of any strand displacement activity slip very efficiently (DNA polymerase II and T4 pol); and (iii) stimulation of the strand displacement activity by E. coli SSB (DNA polymerase I and T7 pol), by phagic SSB (T4 pol), or by a mutation that affects the 3' --> 5' exonuclease domain (DNA polymerase II exo(-) and T7 pol exo(-)) is correlated with the inhibition of slippage. We propose that these observations can be interpreted in terms of a model, for which we have shown that high strand displacement activity of a polymerase diminishes its propensity to slip.
Collapse
Affiliation(s)
- D Canceill
- Laboratoire de Génétique Microbienne, Institut National de la Recherche Agronomique, Domaine de Vilvert, 78352 Jouy-en-Josas Cedex, France.
| | | | | |
Collapse
|
23
|
Rochester SC, Traktman P. Characterization of the single-stranded DNA binding protein encoded by the vaccinia virus I3 gene. J Virol 1998; 72:2917-26. [PMID: 9525612 PMCID: PMC109737 DOI: 10.1128/jvi.72.4.2917-2926.1998] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/1997] [Accepted: 12/10/1997] [Indexed: 02/06/2023] Open
Abstract
The 34-kDa protein encoded by the I3 gene of vaccinia virus is expressed at early and intermediate times postinfection and is phosphorylated on serine residues. Recombinant I3 has been expressed in Escherichia coli and purified to near homogeneity, as has the protein from infected cells. Both recombinant and endogenous I3 protein demonstrate a striking affinity for single-stranded, but not for double-stranded, DNA. The interaction with DNA is resistant to salt, exhibits low cooperativity, and appears to involve a binding site of approximately 10 nucleotides. Electrophoretic mobility shift assays indicate that numerous I3 molecules can bind to a template, reflecting the stoichiometric interaction of I3 with DNA. Sequence analysis reveals that a pattern of aromatic and charged amino acids common to many replicative single-stranded DNA binding proteins (SSBs) is conserved in I3. The inability to isolate viable virus containing an interrupted I3 allele provides strong evidence that the I3 protein plays an essential role in the viral life cycle. A likely role for I3 as an SSB involved in DNA replication and/or repair is discussed.
Collapse
Affiliation(s)
- S C Rochester
- Department of Cell Biology, Cornell University Medical College, New York, New York 10021, USA
| | | |
Collapse
|
24
|
Honma Y, Ikema M, Toma C, Ehara M, Iwanaga M. Molecular analysis of a filamentous phage (fsl) of Vibrio cholerae O139. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1362:109-15. [PMID: 9540841 DOI: 10.1016/s0925-4439(97)00055-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A filamentous bacteriophage from Vibrio cholerae O139 strain A1-4450 was isolated (fsl). The phage fsl had a ssDNA genome and dsDNA as a replicative form (RF) in lysogenic host cell. The DNA sequence of fsl RF was determined. It consisted of 6340 bp and had a G + C content of 43.5%. Fifteen possible ORFs were found in fsl. One of them, ORF384, was estimated to encode 384 amino acid residues (44.6 kDa) and had homologous regions with the zot gene of V. cholerae and gene I of the coliphage group. ORF104, located upstream of ORF384, was homologous to gene 93 protein of Pf3 (filamentous phage of Pseudomonas sp.) corresponding to gene VI of coliphage. Other than ORF384 and ORF104, the ORF81, ORF44, ORF29, and ORF193 were speculated to correspond to gene V, gene VII, gene IX, and gene III, respectively, in the order as reported on f1 phage.
Collapse
Affiliation(s)
- Y Honma
- Department of Bacteriology, Faculty of Medicine, University of the Ryukyus, Okinawa, Japan.
| | | | | | | | | |
Collapse
|
25
|
|
26
|
Soengas MS, Mateo CR, Rivas G, Salas M, Acuña AU, Gutiérrez C. Structural features of phi29 single-stranded DNA-binding protein. II. Global conformation of phi29 single-stranded DNA-binding protein and the effects of complex formation on the protein and the single-stranded DNA. J Biol Chem 1997; 272:303-10. [PMID: 8995262 DOI: 10.1074/jbc.272.1.303] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The strand-displacement mechanism of Bacillus subtilis phage phi29 DNA replication occurs through replicative intermediates with high amounts of single-stranded DNA (ssDNA). These ssDNA must be covered by the viral ssDNA-binding protein, phi29 SSB, to be replicated in vivo. To understand the characteristics of phi29 SSB-ssDNA complex that could explain the requirement of phi29 SSB, we have (i) determined the hydrodynamic behavior of phi29 SSB in solution and (ii) monitored the effect of complex formation on phi29 SSB and ssDNA secondary structure. Based on its translational frictional coefficient (3.5 +/- 0.1) x 10(8) gs(-1), and its rotational correlation time, 7.0 +/- 0.5 ns, phi29 SSB was modeled as a nearly spherical ellipsoid of revolution. The axial ratio (p = a/b) could range from 0.8 to 1.0 (oblate model, a < b) or 1.0 to 3.2 (prolate model, a > b). Far-UV CD spectra, indicated that phi29 SSB is highly organized within a wide range of temperatures (15 to 50 degrees C), being mainly constituted by beta-sheet elements (approximately 50%, at pH 7). Complex formation with ssDNA, although inducing minimal changes on the global conformation of phi29 SSB, had a clear stabilizing effect against pH and temperature increase of the solution samples. On the other hand, phi29 SSB binding leads to non-conservative changes of the near-UV CD spectra of ssDNA, which are consistent with different nearest-neighbor interactions of the nucleotide bases upon complex formation. The above results will be compared to those reported for other SSBs and discussed in terms of the functional roles of phi29 SSB.
Collapse
Affiliation(s)
- M S Soengas
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Cantoblanco, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
27
|
Soengas MS, Mateo CR, Salas M, Acuña AU, Gutierrez C. Structural features of phi29 single-stranded DNA-binding protein. I. Environment of tyrosines in terms of complex formation with DNA. J Biol Chem 1997; 272:295-302. [PMID: 8995261 DOI: 10.1074/jbc.272.1.295] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The single-stranded DNA-binding protein (SSB) of Bacillus subtilis phage phi29 is absolutely required for viral DNA replication in vivo. About approximately 95% of the intrinsic tyrosine fluorescence of phi29 SSB is quenched upon binding to ssDNA, making tyrosine residues strong candidates to be directly involved in complex formation with ssDNA. Thus, we have studied the spectroscopic properties of the phi29 SSB tyrosines (Tyr-50, Tyr-57, and Tyr-76) using steady-state and time-resolved fluorescence measurements. phi29 SSB tyrosines do not seem to be highly restricted by strong interactions with neighbor residues, as suggested by (i) the high value of the average quantum yield of the phi29 SSB fluorescence emission (phiF = 0.067 +/- 0.010), (ii) the fast motions of the tyrosine side chains (phi(short) = 0.14 +/- 0.06 ns), and (iii) the lack of tyrosinate emission at neutral pH. Stern-Volmer analysis of the quenching by acrylamide and I- indicates that phi29 SSB tyrosines are surrounded by a negatively charged environment and located in a relatively exposed protein domain, accessible to the solvent and, likely, to ssDNA. Changes in the intrinsic fluorescence upon ssDNA binding allowed us to determine that temperature has an opposite effect on the thermodynamic parameters K (intrinsic binding constant) and omega (cooperativity) defining phi29 SSB-poly(dT) interaction, the effective DNA binding constant, K(eff) = K omega, being largely independent of temperature. Altogether, the fluorescent properties of phi29 SSB tyrosines are consistent with a direct participation in complex formation with ssDNA.
Collapse
Affiliation(s)
- M S Soengas
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Cantoblanco, Madrid, Spain
| | | | | | | | | |
Collapse
|
28
|
Salas M, Freire R, Soengas MS, Esteban JA, Méndez J, Bravo A, Serrano M, Blasco MA, Lázaro JM, Blanco L. Protein-nucleic acid interactions in bacteriophage phi 29 DNA replication. FEMS Microbiol Rev 1995; 17:73-82. [PMID: 7669351 DOI: 10.1111/j.1574-6976.1995.tb00189.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
phi 29 DNA replication starts at both DNA ends by a protein priming mechanism. The formation of the terminal protein-dAMP initiation complex is directed by the second nucleotide from the 3' end of the template. The transition from protein-primed initiation to normal DNA elongation has been proposed to occur by a sliding-back mechanism that is necessary for maintaining the sequences at the phi 29 DNA ends. Structure-function studies have been carried out in the phi 29 DNA polymerase. By site-directed mutagenesis of amino acids conserved among distantly related DNA polymerases we have shown that the N-terminal domain of phi 29 DNA polymerase contains the 3'-5' exonuclease activity and the strand-displacement capacity, whereas the C-terminal domain contains the synthetic activities (protein-primed initiation and DNA polymerization). Viral protein p6 stimulates the initiation of phi 29 DNA replication. The structure of the protein p6-DNA complex has been determined, as well as the main signals at the phi 29 DNA ends recognized by protein p6. The DNA binding domain of protein p6 has been studied. The results indicate that an alpha-helical structure located in the N-terminal region of protein p6 is involved in DNA binding through the minor groove. The phi 29 protein p5 is the single-stranded DNA binding (SSB) protein involved in phi 29 DNA replication, by binding to the displaced single-stranded DNA (ssDNA) in the replication intermediates. In addition, protein p5 is able to unwind duplex DNA. The properties of the phi 29 SSB-ssDNA complex are described. Using the four viral proteins, terminal protein, DNA polymerase, protein p6 and the SSB protein, it was possible to amplify the 19,285-bp phi 29 DNA molecule by a factor of 4000 after 1 h of incubation at 30 degrees C. The infectivity of the in vitro amplified DNA was identical to that of phi 29 DNA obtained from virions.
Collapse
Affiliation(s)
- M Salas
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma, Madrid, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Stassen AP, Folmer RH, Hilbers CW, Konings RN. Single-stranded DNA binding protein encoded by the filamentous bacteriophage M13: structural and functional characteristics. Mol Biol Rep 1995; 20:109-27. [PMID: 7565651 DOI: 10.1007/bf00990543] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The single-stranded DNA binding protein, or gene V protein (gVp), encoded by gene V of the filamentous bacteriophage M13 is a multifunctional protein that not only regulates viral DNA replication but also gene expression at the level of mRNA translation. It furthermore is implicated as a scaffolding and/or chaperone protein during the phage assembly process at the hostcell membrane. The protein is 87 amino acids long and its biological functional entity is a homodimer. In this manuscript a short description of the life cycle of filamentous phages is presented and our current knowledge of the major functional and structural properties and characteristics of gene V protein are reviewed. In addition models of the superhelical complexes gVp forms with ssDNA are described and their (possible) biological meaning in the infection process are discussed. Finally it is described that the 'DNA binding loop' of gVp is a recurring motif in many ssDNA binding proteins and that the fold of gVp is shared by a large family of evolutionarily conserved gene regulatory proteins.
Collapse
Affiliation(s)
- A P Stassen
- Department of Molecular Biology, University of Nijmegen, The Netherlands
| | | | | | | |
Collapse
|
30
|
Affiliation(s)
- J M Lázaro
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma, Madrid, Spain
| | | | | |
Collapse
|
31
|
Hermoso JM, Freire R, Bravo A, Gutiérrez C, Serrano M, Salas M. DNA structure in the nucleoprotein complex that activates replication of phage phi 29. Biophys Chem 1994; 50:183-9. [PMID: 8011933 DOI: 10.1016/0301-4622(94)85030-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Initiation of phage phi 29 DNA replication is activated by the viral protein p6 which forms a nucleoprotein complex at the replication origins, located at the linear genome ends. The complex consists of a DNA right-handed superhelix wrapped around a multimeric protein core. We have determined the superhelical path of the DNA in the complex, measuring the change in linking number induced by the protein, the surface-related helical repeat and the compaction of the DNA. One superhelical turn has approximately 63 bp (2.6 p6 dimers). Furthermore, we have determined that the DNA binding domain of protein p6 is located at the N-terminal region, predicted to form an amphipathic alpha-helix. We have obtained, by site-directed mutagenesis, protein p6 mutants in the polar side of the putative helix in which their DNA binding and replication activation properties were impaired or undetectable, in agreement with in vivo results.
Collapse
Affiliation(s)
- J M Hermoso
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma, Canto Blanco, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
32
|
Serrano M, Gutiérrez C, Freire R, Bravo A, Salas M, Hermoso JM. Phage phi 29 protein p6: a viral histone-like protein. Biochimie 1994; 76:981-91. [PMID: 7748942 DOI: 10.1016/0300-9084(94)90023-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Phage phi 29 protein p6 is one of the most abundant viral proteins in phi 29-infected B subtilis cells, constituting about 4% of the total cellular proteins (about 3 x 10(6) copies/cell) at late infection. Electron microscopic studies showed that, in vitro, protein p6 forms heterogeneously-sized complexes all along phi 29 DNA, suggesting that protein p6 may have a role in genome packaging and organization. The low stability of the protein p6-phi 29 DNA complexes observed in vitro could reflect the dynamic nature of these complexes, to allow replication, transcription, and encapsidation of the genome. The protein p6-DNA complex consists of a DNA right-handed superhelix wrapped around a multimeric protein core. The DNA in this complex is strongly distorted and compacted. Protein p6 recognition signals have been mapped near the ends of the linear phi 29 DNA and act as nucleation sites for complex formation. Protein p6 does not recognize a specific sequence, but sequences with specific bendable properties that would favor the formation of the complex. Protein p6 represses transcription from the phi 29 C2 early promoter, and activates initiation of phi 29 DNA replication that occurs from both DNA ends. The formation of nucleoprotein complexes at the origins of replication, as well as the specific positioning of protein p6 with respect to the DNA ends are required for the activation of replication. This suggests that the proteins involved in the initiation step of phi 29 DNA replication, either directly interact with protein p6, or recognize a conformational change at a specific location in the DNA. The mechanism of activation could be the local and transient unpairing of DNA at specific sites, facilitated by the strong distortion of DNA conformation in the nucleoprotein complex.
Collapse
Affiliation(s)
- M Serrano
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
33
|
Pakula TM, Caldentey J, Gutiérrez C, Olkkonen VM, Salas M, Bamford DH. Overproduction, purification, and characterization of DNA-binding protein P19 of bacteriophage PRD1. Gene 1993; 126:99-104. [PMID: 8472964 DOI: 10.1016/0378-1119(93)90595-t] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The early protein, P19, of bacteriophage PRD1 was purified after overexpression of the cloned gene, XIX, in Escherichia coli DH5 alpha cells. The purified protein binds as multimers to single-stranded DNA (ssDNA), and with a lower affinity to double-stranded DNA (dsDNA), without sequence-specificity. Two distinct P19-ssDNA complexes were discovered in gel- mobility-shift assays at different protein:DNA ratios. P19 was capable of fully protecting ssDNA against nuclease P1. Electron microscopy of protein P19-ssDNA complexes showed DNA molecules which were extensively coated with protein and whose contour length was clearly reduced by P19 binding. The results suggest that P19 binds to ssDNA with moderate cooperativity and are consistent with the DNA being wrapped around the P19 multimers.
Collapse
Affiliation(s)
- T M Pakula
- Department of Genetics, University of Helsinki, Finland
| | | | | | | | | | | |
Collapse
|
34
|
Kim Y, Tabor S, Bortner C, Griffith J, Richardson C. Purification and characterization of the bacteriophage T7 gene 2.5 protein. A single-stranded DNA-binding protein. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)42141-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
35
|
|
36
|
Gutiérrez C, Sogo JM, Salas M. Analysis of replicative intermediates produced during bacteriophage phi 29 DNA replication in vitro. J Mol Biol 1991; 222:983-94. [PMID: 1762160 DOI: 10.1016/0022-2836(91)90589-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Replication of bacteriophage phi 29 DNA initiates at either end of its linear double-stranded DNA molecule and proceeds by a strand-displacement mechanism. In the present paper we have used an in vitro phi 29 DNA replication system to analyse by electron microscopy the replicative intermediates produced at different reaction times. Two types of replicative intermediates were observed: type I (full-length double-stranded phi 29 DNA molecules with one or more single-stranded DNA branches) and type II (full-length phi 29 DNA molecules formed by a double-stranded DNA portion of variable length from one end plus a single-stranded DNA portion spanning to the other end). Thus, the types of replicative intermediates produced in vivo were also formed in the in vitro phi 29 DNA replication system. Analysis of type I intermediates indicated that initiation of DNA replication occurs preferentially at both ends of the same DNA template, in a non-simultaneous manner. Type II intermediates appeared as early as two minutes after the reaction started, well before unit-length single-stranded phi 29 DNA molecules were synthesized. In addition, replication of recombinant phi 29 DNA templates lacking terminal protein at one end did not produce type II intermediates and led to an accumulation of full-length single-stranded phi 29 DNA molecules. These two observations strongly suggest that type II intermediates appear when two growing DNA chains, running from opposite ends, merge.
Collapse
Affiliation(s)
- C Gutiérrez
- Centro de Biología Molecular (CSIC-UAM), Universidad Autónoma de Madrid, Spain
| | | | | |
Collapse
|
37
|
Rojo F, Barthelemy I, Nuez B, Serrano M, Salas M. Transcription regulation in Bacillus subtilis phage phi 29. Res Microbiol 1991; 142:771-7. [PMID: 1784815 DOI: 10.1016/0923-2508(91)90054-e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- F Rojo
- Centro de Biología Molecular (CSIC-UAM), Universidad Autónoma, Cantoblanco, Madrid
| | | | | | | | | |
Collapse
|