1
|
Solís-Sánchez A, Hernández-Chiñas U, Navarro-Ocaña A, De la Mora J, Xicohtencatl-Cortes J, Eslava-Campos C. Genetic characterization of ØVC8 lytic phage for Vibrio cholerae O1. Virol J 2016; 13:47. [PMID: 27000701 PMCID: PMC4802629 DOI: 10.1186/s12985-016-0490-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 02/18/2016] [Indexed: 11/10/2022] Open
Abstract
Background Epidemics and pandemics of cholera, a diarrheal disease, are attributed to Vibrio cholerae serogroups O1 and O139. In recent years, specific lytic phages of V. cholerae have been proposed to be important factors in the cyclic occurrence of cholera in endemic areas. However, the role and potential participation of lytic phages during long interepidemic periods of cholera in non-endemic regions have not yet been described. The purpose of this study was to isolate and characterize specific lytic phages of V. cholerae O1 strains. Methods Sixteen phages were isolated from wastewater samples collected at the Endhó Dam in Hidalgo State, Mexico, concentrated with PEG/NaCl, and purified by density gradient. The lytic activity of the purified phages was tested using different V. cholerae O1 and O139 strains. Phage morphology was visualized by transmission electron microscopy (TEM), and phage genome sequencing was performed using the Genome Analyzer IIx System. Genome assembly and bioinformatics analysis were performed using a set of high-throughput programs. Phage structural proteins were analyzed by mass spectrometry. Results Sixteen phages with lytic and lysogenic activity were isolated; only phage ØVC8 showed specific lytic activity against V. cholerae O1 strains. TEM images of ØVC8 revealed a phage with a short tail and an isometric head. The ØVC8 genome comprises linear double-stranded DNA of 39,422 bp with 50.8 % G + C. Of the 48 annotated ORFs, 16 exhibit homology with sequences of known function and several conserved domains. Bioinformatics analysis showed multiple conserved domains, including an Ig domain, suggesting that ØVC8 might adhere to different mucus substrates such as the human intestinal epithelium. The results suggest that ØVC8 genome utilize the “single-stranded cohesive ends” packaging strategy of the lambda-like group. The two structural proteins sequenced and analyzed are proteins of known function. Conclusions ØVC8 is a lytic phage with specific activity against V. cholerae O1 strains and is grouped as a member of the VP2-like phage subfamily. The encoding of an Ig domain by ØVC8 makes this phage a good candidate for use in phage therapy and an alternative tool for monitoring V. cholerae populations. Electronic supplementary material The online version of this article (doi:10.1186/s12985-016-0490-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alejandro Solís-Sánchez
- Departamento de Salud Pública, Facultad de Medicina, Universidad Nacional Autónoma de México, Circuito Escolar S/N, Ciudad Universitaria, Delegación Coyoacán, 04510, México, D.F, México.,Laboratorio de Patogenicidad Bacteriana, Unidad de Hemato-Oncología e Investigación, Hospital Infantil de México Federico Gómez/Facultad de Medicina, UNAM. Dr. Márquez No. 162, Col Doctores, Delegación Cuauhtémoc, 06720, México, D.F, México
| | - Ulises Hernández-Chiñas
- Departamento de Salud Pública, Facultad de Medicina, Universidad Nacional Autónoma de México, Circuito Escolar S/N, Ciudad Universitaria, Delegación Coyoacán, 04510, México, D.F, México.,Laboratorio de Patogenicidad Bacteriana, Unidad de Hemato-Oncología e Investigación, Hospital Infantil de México Federico Gómez/Facultad de Medicina, UNAM. Dr. Márquez No. 162, Col Doctores, Delegación Cuauhtémoc, 06720, México, D.F, México
| | - Armando Navarro-Ocaña
- Departamento de Salud Pública, Facultad de Medicina, Universidad Nacional Autónoma de México, Circuito Escolar S/N, Ciudad Universitaria, Delegación Coyoacán, 04510, México, D.F, México
| | - Javier De la Mora
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad Universitaria, Delegación Coyoacán, 04510, México, D.F, México
| | - Juan Xicohtencatl-Cortes
- Laboratorio de Investigación en Bacteriología Intestinal, Unidad de Hemato-Oncología e Investigación Hospital Infantil de México Federico Gómez, Dr. Márquez No. 162, Col. Doctores, Delegación Cuauhtémoc, 06720, México, D.F, México
| | - Carlos Eslava-Campos
- Departamento de Salud Pública, Facultad de Medicina, Universidad Nacional Autónoma de México, Circuito Escolar S/N, Ciudad Universitaria, Delegación Coyoacán, 04510, México, D.F, México. .,Laboratorio de Patogenicidad Bacteriana, Unidad de Hemato-Oncología e Investigación, Hospital Infantil de México Federico Gómez/Facultad de Medicina, UNAM. Dr. Márquez No. 162, Col Doctores, Delegación Cuauhtémoc, 06720, México, D.F, México.
| |
Collapse
|
2
|
|
3
|
Sun H, Li N, Wang X, Chen T, Shi L, Zhang L, Wang J, Wan T, Cao X. Molecular cloning and characterization of a novel muscle adenylosuccinate synthetase, AdSSL1, from human bone marrow stromal cells. Mol Cell Biochem 2005; 269:85-94. [PMID: 15786719 DOI: 10.1007/s11010-005-2539-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Vertebrates have muscle and non-muscle isozymes of adenylosuccinate synthetase (AdSS, EC 6.3.4.4), which catalyzes the first committed step in AMP synthesis. A novel muscle isozyme of adenylosuccinate synthetase, human AdSSL1, is identified from human bone marrow stromal cells. AdSSL1 is 98% identical to mouse muscle type AdSS1 and contains conserved sequence and structural features of adenylosuccinate synthetase. Human AdSSL1 gene is mapped to chromosome 14p32.33. After stimulation, leukemia cells express AdSSL1 in a time-dependent manner different from that of non-muscle adenylosuccinate synthetase. The human AdSSL1 is predominantly expressed in skeletal muscle and cardiac tissue consistent with the potential role for the enzyme in muscle metabolism. Overexpressed AdSSL1 protein in COS-7 cells locates in cytoplasm. Recombinant AdSSL1 protein possesses typical enzymatic activity to catalyze adenylosuccinate formation. The identification of human AdSSL1 with predominant expression in muscle tissue will facilitate future genetic and biochemical analysis of the enzyme in muscle physiology.
Collapse
Affiliation(s)
- Hongying Sun
- Institute of Immunology, Zhejiang University, Hangzhou, Zhejiang, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Jayalakshmi R, Sumathy K, Balaram H. Purification and characterization of recombinant Plasmodium falciparum adenylosuccinate synthetase expressed in Escherichia coli. Protein Expr Purif 2002; 25:65-72. [PMID: 12071700 DOI: 10.1006/prep.2001.1610] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Most parasitic protozoa lack the de novo purine biosynthetic pathway and rely exclusively on the salvage pathway for their purine nucleotide requirements. Enzymes of the salvage pathway are, therefore, candidate drug targets. We have cloned the Plasmodium falciparum adenylosuccinate synthetase gene. In the parasite, adenylosuccinate synthetase is involved in the synthesis of AMP from IMP formed during the salvage of the purine base, hypoxanthine. The gene was shown to code for a functionally active protein by functional complementation in a purA mutant strain of Escherichia coli, H1238. This paper reports the conditions for hyperexpression of the recombinant protein in E. coli BL21(DE3) and purification of the protein to homogeneity. The enzyme was found to require the presence of dithiothreitol during the entire course of the purification for activity. Glycerol and EDTA were found to stabilize enzyme activity during storage. The specific activity of the purified protein was 1143.6 +/- 36.8 mUnits/mg. The K(M)s for the three substrates, GTP, IMP, and aspartate, were found to be 4.8 microM, 22.8 microM, and 1.4 mM, respectively. The enzyme was a dimer on gel filtration in buffers of low ionic strength but equilibrated between a monomer and a dimer in buffers of increased ionic strength.
Collapse
Affiliation(s)
- R Jayalakshmi
- Jawaharlal Nehru Center for Advanced Scientific Research, Jakkur, Bangalore, 560 064, India
| | | | | |
Collapse
|
5
|
Cann IK, Kanai S, Toh H, Ishino Y. Adenylosuccinate synthetase genes: molecular cloning and phylogenetic analysis of a highly conserved archaeal gene. Syst Appl Microbiol 1998; 21:478-86. [PMID: 9924815 DOI: 10.1016/s0723-2020(98)80059-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Adenylosuccinate synthetase (PurA) catalyzes the first step in the de novo AMP synthesis and has been extensively studied in both Bacteria and Eukarya. We cloned the purA gene from the hyperthermophilic archaeon, Pyrococcus furiosus. The gene appears to be individually transcribed and encodes a protein of 339 amino acids. The amino acid sequence comparison with other archael PurAs found from recent genome analyses indicated that two deletions, one central and the other C-terminal, are a common feature of archaeal PurAs. None of the 21 PurA homologues analyzed from Eukarya and Bacteria exhibited this feature. Amino acid sequences of PurAs in Archaea showed 64% average identities which were significantly higher than the 50% and 55% calculated for Bacteria and Eukarya, respectively. Several residues conserved in PurAs of both Eukarya and Bacteria and shown to be of catalytic importance are missing in the archaeal PurAs. Phylogenetic analysis using PurA as the marker grouped life into 3 domains, hence it was consistent with results derived from 16-18S ribosomal RNA sequences. The topology within the three domains, in general, portrayed the hitherto accepted evolutionary relationship among the organisms utilized. PurA can, thus, serve as an additional marker to evaluate phylogenetic inferences drawn from sequence data from rRNA and other conserved genes. The presence of two unique deletions in both euryarchaeal and crenarchaeal PurAs, but not in those of Bacteria and Eukarya, is a strong evidence confirming the common lineage of these two subdomains of Archaea.
Collapse
Affiliation(s)
- I K Cann
- Department of Molecular Biology, Biomolecular Engineering Research Institute (BERI), Japan
| | | | | | | |
Collapse
|
6
|
Wang W, Gorrell A, Hou Z, Honzatko RB, Fromm HJ. Ambiguities in mapping the active site of a conformationally dynamic enzyme by directed mutation. Role of dynamics in structure-function correlations in Escherichia coli adenylosuccinate synthetase. J Biol Chem 1998; 273:16000-4. [PMID: 9632649 DOI: 10.1074/jbc.273.26.16000] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
On the basis of ligated crystal structures, Asn21, Asn38, Thr42, and Arg419 are not involved in the chemical mechanism of adenylosuccinate synthetase from Escherichia coli, yet these residues are well conserved across species. Purified mutants (Asp21 --> Ala, Asn38 --> Ala, Asn38 --> Asp, Asn38 --> Glu, Thr42 --> Ala, and Arg419 --> Leu) were studied by kinetics, circular dichroism spectroscopy, and equilibrium ultracentrifugation. Asp21 and Arg419 are not part of the active site, yet mutations at positions 21 and 419 lower kcat 20- and 10-fold, respectively. Thr42 interacts only through its backbone amide with the guanine nucleotide, yet its mutation to alanine significantly increases Km for all substrates. Asn38 hydrogen-bonds directly to the 5'-phosphoryl group of IMP, yet its mutation to alanine and glutamate has no effect on Km values, but reduces kcat by 100-fold. The mutation Asn38 --> Asp causes 10-57-fold increases in Km for all substrates along with a 30-fold decrease in kcat. At pH 5.6, however, the Asn38 --> Asp mutant is more active, yet binds IMP 100-fold more weakly, than the wild-type enzyme. Proposed mechanisms of ligand-induced conformational change and subunit aggregation can account for the properties of mutant enzymes reported here. The results underscore the difficulty of using directed mutations alone as a means of mapping the active site of an enzyme.
Collapse
Affiliation(s)
- W Wang
- Department of Biochemistry and Biophysics, Iowa State University, Ames, Iowa 50011, USA
| | | | | | | | | |
Collapse
|
7
|
Wang W, Hou Z, Honzatko RB, Fromm HJ. Relationship of conserved residues in the IMP binding site to substrate recognition and catalysis in Escherichia coli adenylosuccinate synthetase. J Biol Chem 1997; 272:16911-6. [PMID: 9202000 DOI: 10.1074/jbc.272.27.16911] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Gln34, Gln224, Leu228, and Ser240 are conserved residues in the vicinity of bound IMP in the crystal structure of Escherichia coli adenylosuccinate synthetase. Directed mutations were carried out, and wild-type and mutant enzymes were purified to homogeneity. Circular dichroism spectroscopy indicated no difference in secondary structure between the mutants and the wild-type enzyme in the absence of substrates. Mutants L228A and S240A exhibited modest changes in their initial rate kinetics relative to the wild-type enzyme, suggesting that neither Leu228 nor Ser240 play essential roles in substrate binding or catalysis. The mutants Q224M and Q224E exhibited no significant change in KmGTP and KmASP and modest changes in KmIMP relative to the wild-type enzyme. However, kcat decreased 13-fold for the Q224M mutant and 10(4)-fold for the Q224E mutant relative to the wild-type enzyme. Furthermore, the Q224E mutant showed an optimum pH at 6.2, which is 1.5 pH units lower than that of the wild-type enzyme. Tryptophan emission fluorescence spectra of Q224M, Q224E, and wild-type proteins under denaturing conditions indicate comparable stabilities. Mutant Q34E exhibits a 60-fold decrease in kcat compared with that of the wild-type enzyme, which is attributed to the disruption of the Gln34 to Gln224 hydrogen bond observed in crystal structures. Presented here is a mechanism for the synthetase, whereby Gln224 works in concert with Asp13 to stabilize the 6-oxyanion of IMP.
Collapse
Affiliation(s)
- W Wang
- Department of Biochemistry and Biophysics, Iowa State University, Ames, Iowa 50011, USA
| | | | | | | |
Collapse
|
8
|
Wang W, Gorrell A, Honzatko RB, Fromm HJ. A study of Escherichia coli adenylosuccinate synthetase association states and the interface residues of the homodimer. J Biol Chem 1997; 272:7078-84. [PMID: 9054400 DOI: 10.1074/jbc.272.11.7078] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The state of aggregation of adenylosuccinate synthetase from Escherichia coli is a point of controversy, with crystal structures indicating a dimer and some solution studies indicating a monomer. Crystal structures implicate Arg143 and Asp231 in stabilizing the dimer, with Arg143 interacting directly with bound IMP of the 2-fold related subunit. Residue Arg143 was changed to Lys and Leu, and residue Asp231 was changed to Ala. Matrix-assisted laser desorption ionization mass spectroscopy and analytical ultracentrifugation of the wild-type and the mutant enzymes indicate a mixture of monomers and dimers, with a majority of the enzyme in the monomeric state. In the presence of active site ligands, the wild-type enzyme exists almost exclusively as a dimer, whereas the mutant enzymes show only slightly decreased dissociation constants for the dimerization. Initial rate kinetic studies of the wild-type and mutant enzymes show similar kcat and Km values for aspartate. However, increases in the Km values of GTP and IMP are observed for the mutant. Changes in dissociation constants for IMP are comparable with changes in Km values. Our results suggest that IMP binding induces enzyme dimerization and that two residues in the interface region, Arg143 and Asp231, play significant roles in IMP and GTP binding.
Collapse
Affiliation(s)
- W Wang
- Department of Biochemistry and Biophysics, Iowa State University, Ames, Iowa 50011, USA
| | | | | | | |
Collapse
|
9
|
Moe OA, Baker-Malcolm JF, Wang W, Kang C, Fromm HJ, Colman RF. Involvement of arginine 143 in nucleotide substrate binding at the active site of adenylosuccinate synthetase from Escherichia coli. Biochemistry 1996; 35:9024-33. [PMID: 8703905 DOI: 10.1021/bi960426j] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Adenylosuccinate synthetase from Escherichia coli is inactivated in a biphasic reaction by guanosine 5'-O-[S-(4-bromo-2,3-dioxobutyl)thio]phosphate (GMPSBDB) at pH 7.1 and 25 degrees C. Reaction of the enzyme with [8-3H]GMPSBDB results in the incorporation of 2 mol of the reagent/mol of subunit; in the presence of active site ligands the incorporation is reduced to 1 mol of reagent/mol of subunit. GMPSBDB reacts with Cys-291 in the initial rapid reaction which is accompanied by loss of 50% of the enzymatic activity; this reaction is not affected by the presence of active site ligands. In the slower reaction, GMPSBDB inactivates the enzyme by reacting with Arg-143. The inactivation kinetics of the slower phase are consistent with the formation of an enzyme--GMPSBDB complex having a Kd of 42 microM. Active site nucleotides, either adenylosuccinate or IMP + GTP, prevent both slower phase inactivation and labeling of Arg-143. Replacement of Arg-143 with a Leu by site-directed mutagenesis does not change the catalytic constant or the K(m) for aspartate but does significantly impair nucleotide binding: the Michaelis constants for IMP and GTP increase by 60-fold and 10-fold, respectively, in the R143L mutant. The crystal structure of the E. coli enzyme [Poland, B.W., Silva, M.M., Serra, M.A., Cho, Y., Kim, K. H., Harris, E.M.S., & Honzatko, R.B. (1993) J. Biol. Chem. 268, 25334--25342] shows that Arg-143 from one subunit projects into the putative active site of the other subunit. These results indicate that both subunits of dimeric adenylosuccinate synthetase contribute to each active site and that Arg-143 plays an important role in nucleotide binding.
Collapse
Affiliation(s)
- O A Moe
- Department of Chemistry and Biochemistry, University of Delaware, Newark 19716, USA
| | | | | | | | | | | |
Collapse
|
10
|
Poland BW, Hou Z, Bruns C, Fromm HJ, Honzatko RB. Refined crystal structures of guanine nucleotide complexes of adenylosuccinate synthetase from Escherichia coli. J Biol Chem 1996; 271:15407-13. [PMID: 8663109 DOI: 10.1074/jbc.271.26.15407] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Structures of adenylosuccinate synthetase from Escherichia coli complexed with guanosine-5'-(beta,gamma-imido) triphosphate and guanosine-5'-(beta,gamma-methylene)triphosphate in the presence and the absence of Mg2+ have been refined to R-factors below 0.2 against data to a nominal resolution of 2.7 A. Asp333 of the synthetase hydrogen bonds to the exocyclic 2-amino and endocyclic N1 groups of the guanine nucleotide base, whereas the hydroxyl of Ser414 and the backbone amide of Lys331 hydrogen bond to the 6-oxo position. The side chains of Lys331 and Pro417 pack against opposite faces of the guanine nucleotide base. The synthetase recognizes neither the N7 position of guanine nucleotides nor the ribose group. Electron density for the guanine-5'-(beta,gamma-imido) triphosphate complex is consistent with a mixture of the triphosphate nucleoside and its hydrolyzed diphosphate nucleoside bound to the active site. The base, ribose, and alpha-phosphate positions overlap, but the beta-phosphates occupy different binding sites. The binding of guanosine-5'-(beta,gamma-methylene)triphosphate to the active site is comparable with that of guanosine-5'-(beta, gamma-imido)triphosphate. No electron density, however, for the corresponding diphosphate nucleoside is observed. In addition, electron density for bound Mg2+ is absent in these nucleotide complexes. The guanine nucleotide complexes of the synthetase are compared with complexes of other GTP-binding proteins and to a preliminary structure of the complex of GDP, IMP, Mg2+, and succinate with the synthetase. The enzyme, under conditions reported here, does not undergo a conformational change in response to the binding of guanine nucleotides, and minimally IMP and/or Mg2+ must be present in order to facilitate the complete recognition of the guanine nucleotide by the synthetase.
Collapse
Affiliation(s)
- B W Poland
- Department of Biochemistry and Biophysics, Iowa State University, Ames, Iowa 50011, USA
| | | | | | | | | |
Collapse
|
11
|
Kang C, Fromm HJ. Identification of an essential second metal ion in the reaction mechanism of Escherichia coli adenylosuccinate synthetase. J Biol Chem 1995; 270:15539-44. [PMID: 7797548 DOI: 10.1074/jbc.270.26.15539] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
This study reports that two Mg2+ ions are required for Escherichia coli adenylosuccinate synthetase activity. The first metal ion is presumably coordinated with beta- and gamma-phosphoryl groups of GTP to provide an electron sink, and the second one seems to interact with aspartate in the enzyme active site. Regarding the latter metal ion, kinetic studies show that aspartate and the second Mg2+ ion bind to the enzyme active site randomly with a kcat value of 1.47 s-1 and with Km values for aspartate and Mg2+ of 225 and 114 microM, respectively. The dissociation constants for aspartate and Mg2+ of the enzyme.GTP.IMP.(aspartate or Mg2+) complex are 79.2 and 40.0 microM, respectively. However, variable amounts of aspartate or Mg2+ did not show any significant changes in the Km values for GTP and IMP. Kinetic studies using Mn2+ and Ca2+ ions indicate that the kcat values (0.930 and 0.235 s-1, respectively) were slightly decreased compared with the value obtained using Mg2+; however, the Km values for aspartate and GTP in the presence of Mn2+ and Ca2+ were significantly decreased compared with those obtained using Mg2+ ion (4.5 and 4.6 times for Mn2+ ion and 5.6 and 5.8 times for Ca2+ ion, respectively). On the other hand, the Km values for IMP were not significantly changed (1.9 and 1.8 times for Mn2+ and Ca2+ ions, respectively). Taken together, these kinetic results imply that aspartate may interact with Mg2+ to form a Mg.aspartate complex in the enzyme active site. An inhibition study of the enzyme with ZnCl2 (its Ki value is 29 nM) also suggested that Zn2+ competes with aspartate as well as Mg2+, implying that Zn2+ might form a complex with aspartate in the active site. On the basis of these results, it is suggested that Mg.aspartate complex formation in the active site of adenylosuccinate synthetase may be important in activation of the protonated amino group of aspartate, enhancement of the enzyme's binding affinity, and its specificity for aspartate.
Collapse
Affiliation(s)
- C Kang
- Department of Biochemistry and Biophysics, Iowa State University, Ames 50011, USA
| | | |
Collapse
|
12
|
Wang W, Poland BW, Honzatko RB, Fromm HJ. Identification of arginine residues in the putative L-aspartate binding site of Escherichia coli adenylosuccinate synthetase. J Biol Chem 1995; 270:13160-3. [PMID: 7768911 DOI: 10.1074/jbc.270.22.13160] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Three arginine residues in the putative aspartate binding site of Escherichia coli adenylosuccinate synthetase were changed to leucines by site-directed mutagenesis. The mutant enzymes R303L, R304L, and R305L were purified to homogeneity on the basis of sodium dodecyl sulfate polyacrylamide gel electrophoresis and characterized by CD spectrometry and initial rate kinetics. CD spectral analysis indicated no differences in secondary structure between the mutants and the wild-type enzyme in the absence of substrates. The Km values for GTP and IMP for the mutants and the wild-type enzyme were comparable. However, the mutant enzymes exhibited 50-200-fold increases in their values of Km for the substrate aspartate relative to the wild-type enzyme. Although the kcat values for the mutant enzymes decreased, the changes were not as dramatic as those observed for the Km of aspartate. The modeling of aspartate in the crystal structure of the complex of adenylosuccinate synthetase with IMP and MgGDP-1 is consistent with the results of mutagenesis, placing the alpha- and beta-carboxylates of aspartate near the side chains of Arg-131, -303, and -305.
Collapse
Affiliation(s)
- W Wang
- Department of Biochemistry and Biophysics, Iowa State University, Ames 50011, USA
| | | | | | | |
Collapse
|
13
|
Guicherit OM, Cooper BF, Rudolph FB, Kellems RE. The muscle and nonmuscle isozymes of adenylosuccinate synthetase are encoded by separate genes with differential patterns of expression. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1995; 370:585-90. [PMID: 7660974 DOI: 10.1007/978-1-4615-2584-4_122] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- O M Guicherit
- Department of Biochemistry, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
14
|
Kang C, Sun N, Honzatko R, Fromm H. Replacement of Asp333 with Asn by site-directed mutagenesis changes the substrate specificity of Escherichia coli adenylosuccinate synthetase from guanosine 5‘-triphosphate to xanthosine 5‘-triphosphate. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(19)51045-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
15
|
Amplification of an adenylosuccinate synthetase gene in alanosine-resistant murine T-lymphoma cells. Molecular cloning of a cDNA encoding the “non-muscle” isozyme. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)41805-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
16
|
Poland BW, Silva MM, Serra MA, Cho Y, Kim KH, Harris EM, Honzatko RB. Crystal structure of adenylosuccinate synthetase from Escherichia coli. Evidence for convergent evolution of GTP-binding domains. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(19)74396-8] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
17
|
Zeidler R, Hobert O, Johannes L, Faulhammer H, Krauss G. Characterization of two novel single-stranded DNA-specific autonomously replicating sequence-binding proteins from Saccharomyces cerevisiae, one of which is adenylosuccinate synthetase. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(20)80713-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
18
|
Mäntsälä P, Zalkin H. Cloning and sequence of Bacillus subtilis purA and guaA, involved in the conversion of IMP to AMP and GMP. J Bacteriol 1992; 174:1883-90. [PMID: 1312531 PMCID: PMC205792 DOI: 10.1128/jb.174.6.1883-1890.1992] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Bacillus subtilis genes purA, encoding adenylosuccinate synthetase, and guaA, coding for GMP synthetase, appear to be lethal when cloned in multicopy plasmids in Escherichia coli. The nucleotide sequences of purA and guaA were determined from a series of gene fragments isolated by polymerase chain reaction amplification, library screening, and plasmid rescue techniques. Identifications were based on amino acid sequence alignments with enzymes from other organisms. Comparison of the 5'-flanking regions of purA and guaA with the pur operon suggests similarities in mechanisms for gene regulation. Nucleotide sequences are now available for all genes involved in the 14-step pathway for de novo purine nucleotide synthesis in B. subtilis.
Collapse
Affiliation(s)
- P Mäntsälä
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907-1153
| | | |
Collapse
|
19
|
Site-directed mutagenesis of the phosphate-binding consensus sequence in Escherichia coli adenylosuccinate synthetase. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)45891-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
20
|
Zalkin H, Dixon JE. De novo purine nucleotide biosynthesis. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1992; 42:259-87. [PMID: 1574589 DOI: 10.1016/s0079-6603(08)60578-4] [Citation(s) in RCA: 82] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- H Zalkin
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907
| | | |
Collapse
|
21
|
Guicherit O, Rudolph F, Kellems R, Cooper B. Molecular cloning and expression of a mouse muscle cDNA encoding adenylosuccinate synthetase. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)54611-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
22
|
|
23
|
Dong Q, Liu F, Myers A, Fromm H. Evidence for an arginine residue at the substrate binding site of Escherichia coli adenylosuccinate synthetase as studied by chemical modification and site-directed mutagenesis. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)98886-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|