1
|
Shen YC, Hsu T, Ling LB, You WC, Liu CW. Identification of low-molecular-weight vitellogenin 1 (Vg1)-like proteins as nucleotide excision repair (NER) factors in developing zebrafish (Danio rerio) using a transcription-based DNA repair assay. FISH PHYSIOLOGY AND BIOCHEMISTRY 2017; 43:663-676. [PMID: 28074418 DOI: 10.1007/s10695-016-0321-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 11/28/2016] [Indexed: 06/06/2023]
Abstract
Nucleotide excision repair (NER) removes helix-distorting DNA lesions such as UV-induced pyrimidine dimers and cisplatin-induced strand crosslinking. Our earlier studies have identified low-molecular-weight proteins homologous to the 150-kDa vitellogenin 1 (Vg1) as UV-damaged DNA-binding factors expressed in developing zebrafish (Danio rerio). This present study explored if Vg1-like proteins also participated in NER in zebrafish. Immunoblot analysis of affinity-captured 12 h post-fertilization (hpf) zebrafish extract proteins showed a transient binding of a 30-kDa Vg1-like polypeptide to UV-damaged DNA. A transcription-based in vitro repair assay revealed a significant up-regulation of UVC or cisplatin-suppressed transcriptional activity of a marker cDNA driven by a SP6 RNA polymerase-regulated promotor after incubating the damaged plasmid with the extracts of 12 hpf embryos or 96 hpf larvae. The up-regulation of UV or cisplatin-suppressed transcription was abolished in the presence of a monoclonal anti-zebrafish Vg1 antibody. The differential sensitivity of UV-induced repair in 12 and 96 hpf zebrafish extracts to exogenous ATP suggested a development-dependent expression of Vg1-like NER factors. A T4 endonuclease V digestion assay showed no inhibition of the anti-Vg1 antibody on the excision of UV-induced cyclobutane pyrimidine dimers. Our results identified the participation of Vg1-like factors in NER in developing zebrafish, and these factors may function at post-incison steps of NER.
Collapse
Affiliation(s)
- Yung-Chi Shen
- Department of Internal Medicine, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Keelung, 204, Taiwan
- Department of Bioscience and Biotechnology and Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, 20224, Taiwan
| | - Todd Hsu
- Department of Bioscience and Biotechnology and Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, 20224, Taiwan.
| | - Li-Bin Ling
- Department of Bioscience and Biotechnology and Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, 20224, Taiwan
| | - Wen-Chian You
- Department of Bioscience and Biotechnology and Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, 20224, Taiwan
| | - Chia-Wei Liu
- Department of Bioscience and Biotechnology and Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, 20224, Taiwan
| |
Collapse
|
2
|
Yokoi M, Hanaoka F. Two mammalian homologs of yeast Rad23, HR23A and HR23B, as multifunctional proteins. Gene 2017; 597:1-9. [DOI: 10.1016/j.gene.2016.10.027] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 10/18/2016] [Indexed: 10/20/2022]
|
3
|
Abstract
In eukaryotic cells, DNA associates with histones and exists in the form of a chromatin hierarchy. Thus, it is generally believed that many eukaryotic cellular DNA processing events such as replication, transcription, recombination and DNA repair are influenced by the packaging of DNA into chromatin. This mini-review covers the current knowledge of DNA damage and repair in chromatin based on in vitro studies. Specifically, nucleosome assembly affects DNA damage formation in both random sequences and sequences with strong nucleosome-positioning signals such as 5S rDNA. At least three systems have been used to analyze the effect of nucleosome folding on nucleotide excision repair (NER) in vitro: (a) human cell extracts that have to rely on labeling of repair synthesis to monitor DNA repair, due to very low repair efficacy; (b) Xenopus oocyte nuclear extracts, that have very robust DNA repair efficacy, have been utilized to follow direct removal of DNA damage; (c) six purified human DNA repair factors (RPA, XPA, XPC, TFIIH, XPG, and XPF-ERCC1) that have been used to reconstitute excision repair in vitro. In general, the results have shown that nucleosome folding inhibits NER and, therefore, its activity must be enhanced by chromatin remodeling factors like SWI/SNF. In addition, binding of transcription factors such as TFIIIA to the 5S rDNA promoter also modulates NER efficacy.
Collapse
Affiliation(s)
- Xiaoqi Liu
- Department of Biochemistry and Center for Cancer Research, Purdue University, 175 S. University Street, West Lafayette, IN 47907, United States.
| |
Collapse
|
4
|
Kamileri I, Karakasilioti I, Garinis GA. Nucleotide excision repair: new tricks with old bricks. Trends Genet 2012; 28:566-73. [PMID: 22824526 DOI: 10.1016/j.tig.2012.06.004] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Revised: 06/05/2012] [Accepted: 06/19/2012] [Indexed: 12/22/2022]
Abstract
Nucleotide excision repair (NER) is a major DNA repair pathway that ensures that the genome remains functionally intact and is faithfully transmitted to progeny. However, defects in NER lead, in addition to cancer and aging, to developmental abnormalities whose clinical heterogeneity and varying severity cannot be fully explained by the DNA repair deficiencies. Recent work has revealed that proteins in NER play distinct roles, including some that go well beyond DNA repair. NER factors are components of protein complexes known to be involved in nucleosome remodeling, histone ubiquitination, and transcriptional activation of genes involved in nuclear receptor signaling, stem cell reprogramming, and postnatal mammalian growth. Together, these findings add new pieces to the puzzle for understanding NER and the relevance of NER defects in development and disease.
Collapse
Affiliation(s)
- Irene Kamileri
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Nikolaou Plastira 100, 70013, Heraklion, Crete, Greece
| | | | | |
Collapse
|
5
|
Lans H, Marteijn JA, Vermeulen W. ATP-dependent chromatin remodeling in the DNA-damage response. Epigenetics Chromatin 2012; 5:4. [PMID: 22289628 PMCID: PMC3275488 DOI: 10.1186/1756-8935-5-4] [Citation(s) in RCA: 140] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Accepted: 01/30/2012] [Indexed: 12/31/2022] Open
Abstract
The integrity of DNA is continuously challenged by metabolism-derived and environmental genotoxic agents that cause a variety of DNA lesions, including base alterations and breaks. DNA damage interferes with vital processes such as transcription and replication, and if not repaired properly, can ultimately lead to premature aging and cancer. Multiple DNA pathways signaling for DNA repair and DNA damage collectively safeguard the integrity of DNA. Chromatin plays a pivotal role in regulating DNA-associated processes, and is itself subject to regulation by the DNA-damage response. Chromatin influences access to DNA, and often serves as a docking or signaling site for repair and signaling proteins. Its structure can be adapted by post-translational histone modifications and nucleosome remodeling, catalyzed by the activity of ATP-dependent chromatin-remodeling complexes. In recent years, accumulating evidence has suggested that ATP-dependent chromatin-remodeling complexes play important, although poorly characterized, roles in facilitating the effectiveness of the DNA-damage response. In this review, we summarize the current knowledge on the involvement of ATP-dependent chromatin remodeling in three major DNA repair pathways: nucleotide excision repair, homologous recombination, and non-homologous end-joining. This shows that a surprisingly large number of different remodeling complexes display pleiotropic functions during different stages of the DNA-damage response. Moreover, several complexes seem to have multiple functions, and are implicated in various mechanistically distinct repair pathways.
Collapse
Affiliation(s)
- Hannes Lans
- Department of Genetics, Medical Genetics Center, Erasmus MC, PO Box 2040, 3000 CA Rotterdam, The Netherlands.
| | | | | |
Collapse
|
6
|
Reed SH. Nucleotide excision repair in chromatin: damage removal at the drop of a HAT. DNA Repair (Amst) 2011; 10:734-42. [PMID: 21600858 DOI: 10.1016/j.dnarep.2011.04.029] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
In an earlier review of our understanding of the mechanism of nucleotide excision repair (NER) we examined the process with respect to how it occurs in chromatin [1]. We described how much of our mechanistic understanding of NER was derived from biochemical studies that analysed the repair reaction in DNA substrates not representative of that which exists in the living cell. We pointed out that our efforts to understand how NER operates in chromatin had been hampered in part because of the well-known inhibition of NER that occurs when DNA is assembled into nucleosomes and used as the substrate to examine the repair reaction in vitro. Despite this technical bottleneck, we summarized the biochemical, genetic and cell-based studies which have provided insights into the molecular mechanism of NER in the cellular context. More recently, we revisited the topic of how UV induced DNA damage is repaired in chromatin. In this review we examined the commonly held view that depicts a struggle in which the DNA repair machinery battles to overcome the inhibitory effect of chromatin during the repair process. We suggested that in this interpretation of events, the DNA repair mechanisms might be described as 'tilting at windmills': fighting an imaginary foe [2]. We surmised that this scenario was overly simplistic, and we described an emerging picture in which the DNA repair process and chromatin remodeling were mechanistically linked and were in fact functioning cooperatively to organize the efficient removal of DNA damage from the genome. Here we discuss the latest findings, which contribute to the idea that DNA damage induced changes to chromatin represent an important way in which the DNA repair process is initiated and organized throughout the genome to promote the efficient removal of damage in response to UV radiation.
Collapse
Affiliation(s)
- Simon H Reed
- Department of Medical Genetics, Haematology and Pathology, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK.
| |
Collapse
|
7
|
Irizar A, Yu Y, Reed SH, Louis EJ, Waters R. Silenced yeast chromatin is maintained by Sir2 in preference to permitting histone acetylations for efficient NER. Nucleic Acids Res 2010; 38:4675-86. [PMID: 20385597 PMCID: PMC2919727 DOI: 10.1093/nar/gkq242] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Very little is currently known about how nucleotide excision repair (NER) functions at the ends of chromosomes. To examine this, we introduced the URA3 gene into either transcriptionally active or repressed subtelomeric regions of the yeast genome. This enabled us to examine the repair of ultraviolet (UV)-induced cyclobutane pyrimidine dimers (CPDs) in identical sequences under both circumstances. We found that NER is significantly more efficient in the non-repressed subtelomere than the repressed one. At the non-repressed subtelomere, UV radiation stimulates both histones H3 and H4 acetylation in a similar fashion to that seen at other regions of the yeast genome. These modifications occur regardless of the presence of the Sir2 histone deacetylase. On the other hand, at the repressed subtelomere, where repair is much less efficient, UV radiation is unable to stimulate histone H4 or H3 acetylation in the presence of Sir2. In the absence of Sir2 both of these UV-induced modifications are detected, resulting in a significant increase in NER efficiency in the region. Our experiments reveal that there are instances in the yeast genome where the maintenance of the existing chromatin structures dominates over the action of chromatin modifications associated with efficient NER.
Collapse
Affiliation(s)
- Agurtzane Irizar
- Department of Pathology, School of Medicine, Cardiff University, Cardiff, UK
| | | | | | | | | |
Collapse
|
8
|
Tremblay M, Toussaint M, D'Amours A, Conconi A. Nucleotide excision repair and photolyase repair of UV photoproducts in nucleosomes: assessing the existence of nucleosome and non-nucleosome rDNA chromatin in vivo. Biochem Cell Biol 2009; 87:337-46. [PMID: 19234545 DOI: 10.1139/o08-128] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The genome is organized into nuclear domains, which create microenvironments that favor distinct chromatin structures and functions (e.g., highly repetitive sequences, centromeres, telomeres, noncoding sequences, inactive genes, RNA polymerase II and III transcribed genes, and the nucleolus). Correlations have been drawn between gene silencing and proximity to a heterochromatic compartment. At the other end of the scale are ribosomal genes, which are transcribed at a very high rate by RNA polymerase I (~60% of total transcription), have a loose chromatin structure, and are clustered in the nucleolus. The rDNA sequences have 2 distinct structures: active rRNA genes, which have no nucleosomes; and inactive rRNA genes, which have nucleosomes. Like DNA transcription and replication, DNA repair is modulated by the structure of chromatin, and the kinetics of DNA repair vary among the nuclear domains. Although research on DNA repair in all chromosomal contexts is important to understand the mechanisms of genome maintenance, this review focuses on nucleotide excision repair and photolyase repair of UV photoproducts in the first-order packing of DNA in chromatin: the nucleosome. In addition, it summarizes the studies that have demonstrated the existence of the 2 rDNA chromatins, and the way this feature of the rDNA locus allows for direct comparison of DNA repair in 2 very different structures: nucleosome and non-nucleosome DNA.
Collapse
Affiliation(s)
- Maxime Tremblay
- Departement de Microbiologie et Infectiologie, Faculte de Medecine, Universite de Sherbrooke, Sherbrooke, QCJ1H5N4, Canada
| | | | | | | |
Collapse
|
9
|
Lux ex tenebris: nucleotide resolution DNA repair and nucleosome mapping. Methods 2009; 48:23-34. [PMID: 19269326 DOI: 10.1016/j.ymeth.2009.02.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2009] [Accepted: 02/25/2009] [Indexed: 11/21/2022] Open
Abstract
In recent years a great deal of progress has been made in understanding how the various DNA repair mechanisms function when DNA is assembled into chromatin. In the case of nucleotide excision repair, a core group of DNA repair proteins is required in vitro to observe DNA repair activity in damaged DNA devoid of chromatin structure. This group of proteins is not sufficient to promote repair in the same DNA when assembled into nucleosomes; the first level of chromatin compaction. Clearly other factors are required for efficient DNA repair of chromatin. For some time chromatin has been considered a barrier to be overcome, and inhibitory to DNA metabolic processes including DNA repair. However, an emerging picture suggests a fascinating link at the interface of chromatin metabolism and DNA repair. In this view these two fundamental processes are mechanistically intertwined and function in concert to bring about regulated DNA repair throughout the genome. Light from the darkness has come as a result of many elegant studies performed by a number of research groups. Here we describe two techniques developed in our laboratories which we hope have contributed to our understanding in this arena.
Collapse
|
10
|
Nag R, Smerdon MJ. Altering the chromatin landscape for nucleotide excision repair. Mutat Res 2009; 682:13-20. [PMID: 19167517 DOI: 10.1016/j.mrrev.2009.01.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2008] [Revised: 12/19/2008] [Accepted: 01/05/2009] [Indexed: 12/15/2022]
Abstract
DNA acts as a 'workbench' for various nuclear processes that occur inside living cells. In eukaryotic cells, DNA is highly compacted in a structural hierarchy with histones and other proteins into chromatin. This compaction affects DNA structure and coordinates the accessibility to site-specific nuclear factors during DNA processing events. DNA repair is no exception to this general rule and several reviews have appeared recently that discuss this topic in detail [1-3]. Here, we focus on recent findings correlating changes in DNA repair with subtle variations in the chromatin landscape.
Collapse
Affiliation(s)
- Ronita Nag
- Biochemistry and Biophysics, School of Molecular Biosciences, Washington State University, Pullman, WA 99164-4660, United States
| | | |
Collapse
|
11
|
Waters R, Teng Y, Yu Y, Yu S, Reed SH. Tilting at windmills? The nucleotide excision repair of chromosomal DNA. DNA Repair (Amst) 2008; 8:146-52. [PMID: 19041427 DOI: 10.1016/j.dnarep.2008.11.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2008] [Indexed: 10/21/2022]
Abstract
A typical view of how DNA repair functions in chromatin usually depicts a struggle in which the DNA repair machinery battles to overcome the inhibitory effect of chromatin on the repair process. It may be that in this current interpretation the repair mechanisms are 'tilting at windmills', fighting an imaginary foe. An emerging picture suggests that we should not consider chromatin as an inhibitory force to be overcome like some quixotic giant by the DNA repair processes. Instead we should now recognize that DNA repair and chromatin metabolism are inextricably and mechanistically linked. Here we discuss the latest findings which are beginning to reveal how changes in chromatin dynamics integrate with the DNA repair process in response to UV induced DNA damage, with an emphasis on events in the yeast Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- Raymond Waters
- Department of Pathology, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK.
| | | | | | | | | |
Collapse
|
12
|
Gong F, Kwon Y, Smerdon MJ. Nucleotide excision repair in chromatin and the right of entry. DNA Repair (Amst) 2007; 4:884-96. [PMID: 15961354 DOI: 10.1016/j.dnarep.2005.04.007] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/18/2005] [Indexed: 11/22/2022]
Abstract
DNA is packaged with histones and other accessory proteins into chromatin in eukaryotic cells. It is well established that the assembly of DNA into chromatin affects induction of DNA damage as well as repair of the damage. How the DNA repair machinery detects a lesion and 'fixes it' in chromatin has been an intriguing question since the dawn of understanding DNA packaging in chromatin. Direct recognition/binding by damaged DNA binding proteins is one obvious tactic to detect a lesion. Rearrangement of chromatin structure during DNA repair was reported more than two decades ago. This early observation suggests that unfolding of chromatin structure may be required to facilitate DNA repair after lesions are detected. Cells can also exploit DNA processing events to assist DNA repair. Transcription coupled repair (TCR) is such an example. During TCR, an RNA polymerase blocked by a lesion, may act as a signal to recruit DNA repair machinery. Possible roles of histone modification enzymes, ATP-dependent chromatin remodeling complexes and chromatin assembly factors in DNA repair are discussed.
Collapse
Affiliation(s)
- Feng Gong
- Biochemistry and Biophysics, School of Molecular Biosciences, Washington State University, Pullman, WA 99164-4660, USA
| | | | | |
Collapse
|
13
|
Teng Y, Yu Y, Ferreiro JA, Waters R. Histone acetylation, chromatin remodelling, transcription and nucleotide excision repair in S. cerevisiae: studies with two model genes. DNA Repair (Amst) 2007; 4:870-83. [PMID: 15950549 DOI: 10.1016/j.dnarep.2005.04.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/18/2005] [Indexed: 11/23/2022]
Abstract
We describe the technology and two model systems in yeast designed to study nucleotide excision repair (NER) in relation to transcription and chromatin modifications. We employed the MFA2 and MET16 genes as models. How transcription-coupled (TCR) and global genome repair (GGR) operate at the transcriptionally active and/or repressed S. cerevisiae MFA2 locus, and how this relates to nucleosome positioning are considered. We discuss the role of the Gcn5p histone acetyltransferase, also associated with MFA2's transcriptional activation, in facilitating efficient NER at the transcriptionally active and inactive genes. The effect of Gcn5p's absence in reducing NER was local and UV stimulates Gcn5p-mediated histone acetylation at the repressed MFA2 promoter. After UV irradiation Swi2p is partly responsible for facilitating access to restriction of DNA in the cores of the nucleosomes at the MFA2 promoter. The data suggest similarities between chromatin remodelling for NER and transcription, yet differences must exist to ensure this gene remains repressed in alpha cells during NER. For MET16, we consider experiments examining chromatin structure, transcription and repair in wild type and cbf1Delta cells under repressing or derepressing conditions. Cbf1p is a sequence specific DNA binding protein required for MET16 chromatin remodelling and transcription.
Collapse
Affiliation(s)
- Yumin Teng
- Department of Pathology, University Wales College of Medicine, Heath Park, Cardiff CF14 4XN, UK
| | | | | | | |
Collapse
|
14
|
Gillet LCJ, Schärer OD. Molecular mechanisms of mammalian global genome nucleotide excision repair. Chem Rev 2006; 106:253-76. [PMID: 16464005 DOI: 10.1021/cr040483f] [Citation(s) in RCA: 466] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Ludovic C J Gillet
- Institute for Molecular Cancer Research, University of Zürich, Switzerland
| | | |
Collapse
|
15
|
Svedruzić ZM, Wang C, Kosmoski JV, Smerdon MJ. Accommodation and repair of a UV photoproduct in DNA at different rotational settings on the nucleosome surface. J Biol Chem 2005; 280:40051-7. [PMID: 16210312 DOI: 10.1074/jbc.m509478200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cyclobutane-thymine dimers (CTDs), the most common DNA lesion induced by UV radiation, cause 30 degrees bending and 9 degrees unwinding of the DNA helix. We prepared site-specific CTDs within a short sequence bracketed by strong nucleosome-positioning sequences. The rotational setting of CTDs over one turn of the helix near the dyad center on the histone surface was analyzed by hydroxyl radical footprinting. Surprisingly, the position of CTDs over one turn of the helix does not affect the rotational setting of DNA on the nucleosome surface. Gel-shift analysis indicates that one CTD destabilizes histone-DNA interactions by 0.6 or 1.1 kJ/mol when facing away or toward the histone surface, respectively. Thus, 0.5 kJ/mol energy penalty for a buried CTD is not enough to change the rotational setting of sequences with strong rotational preference. The effect of rotational setting on CTD removal by nucleotide excision repair (NER) was examined using Xenopus oocyte nuclear extracts. The NER rates are only 2-3 times lower in nucleosomes and change by only 1.5-fold when CTDs face away or toward the histone surface. Therefore, in Xenopus nuclear extracts, the rotational orientation of CTDs on nucleosomes has surprisingly little effect on rates of repair. These results indicate that nucleosome dynamics and/or chromatin remodeling may facilitate NER in gaining access to DNA damage in nucleosomes.
Collapse
Affiliation(s)
- Zeljko M Svedruzić
- Department of Biochemistry and Biophysics, School of Molecular Biosciences, Washington State University, Pullman, Washington 99164-4660, USA
| | | | | | | |
Collapse
|
16
|
Reed SH. Nucleotide excision repair in chromatin: The shape of things to come. DNA Repair (Amst) 2005; 4:909-18. [PMID: 15905137 DOI: 10.1016/j.dnarep.2005.04.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/18/2005] [Indexed: 11/26/2022]
Abstract
Much of our mechanistic understanding of nucleotide excision repair (NER) has been derived from biochemical studies that have analysed the reaction as it occurs on DNA substrates that are not representative of DNA as it exists in the living cell. These studies have been extremely useful in deciphering the core mechanism of the NER reaction, but efforts to understand how NER operates in chromatin have been hampered in part because assembling DNA into nucleosomes, the first level of chromatin compaction, is inhibitory to NER in vitro. However, recent research using biochemical, genetic and cell-based studies is now providing us with the first insights into the molecular mechanism of NER as it occurs in the cellular context. A number of recent studies have provided glimpses of a chromatin--NER connection. Here I review this literature and evaluate how it might aid our understanding, and shape our future research into NER.
Collapse
Affiliation(s)
- Simon H Reed
- Department of Pathology, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK.
| |
Collapse
|
17
|
Yu Y, Teng Y, Liu H, Reed SH, Waters R. UV irradiation stimulates histone acetylation and chromatin remodeling at a repressed yeast locus. Proc Natl Acad Sci U S A 2005; 102:8650-5. [PMID: 15939881 PMCID: PMC1150825 DOI: 10.1073/pnas.0501458102] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Chromatin immunoprecipitation with anti-acetyl histone H3 (K9 and K14) and anti-acetyl histone H4 (K5, K8, K12, and K16) antibodies shows that Lys-9 and/or Lys-14 of histone H3, but not the relevant sites of histone H4 in nucleosomes at the repressed MFA2 promoter, are hyperacetylated after UV irradiation. This level of histone hyperacetylation diminishes gradually as repair proceeds. Accompanying this, chromatin in the promoter becomes more accessible to restriction enzymes after UV irradiation and returns to the pre-UV state gradually. UV-related histone hyperacetylation and chromatin remodeling in the MFA2 promoter depend on Gcn5p and partially on Swi2p, respectively. Deletion of GCN5, but not of SWI2, impairs repair of DNA damage in the MFA2 promoter. The post-UV histone modifications and chromatin remodeling at the repressed MFA2 promoter do not activate MFA2 transcriptionally, nor do they require damage recognition by Rad4p or Rad14p. Furthermore, we show that UV irradiation triggers genome-wide histone hyperacetylation at both histone H3 and H4. These experiments indicate that chromatin at a yeast repressed locus undergoes active change after UV radiation treatment and that failure to achieve histone H3 hyperacetylation impairs the repair of DNA damage.
Collapse
Affiliation(s)
- Yachuan Yu
- Department of Pathology, School of Medicine, Cardiff University, Cardiff CF14 4XN, United Kingdom
| | | | | | | | | |
Collapse
|
18
|
Reardon JT, Sancar A. Nucleotide Excision Repair. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2005; 79:183-235. [PMID: 16096029 DOI: 10.1016/s0079-6603(04)79004-2] [Citation(s) in RCA: 224] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Joyce T Reardon
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, USA
| | | |
Collapse
|
19
|
Abbott DW, Laszczak M, Lewis JD, Su H, Moore SC, Hills M, Dimitrov S, Ausió J. Structural characterization of macroH2A containing chromatin. Biochemistry 2004; 43:1352-9. [PMID: 14756572 DOI: 10.1021/bi035859i] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
MacroH2A (mH2A) is one of the most recently identified members of the heteromorphous histone variant family. It is unique among the members of this group because it contains an unusually large non-histone C-terminal end, from where its name derives, and appears to be restricted to subphylum vertebrata. Although a concerted effort has been carried out in order to characterize the physiological relevance of mH2A, little is known in comparison about the structural importance of the molecule. Elucidating the biophysical and conformational proprieties of mH2A in chromatin may provide clues into the links between this histone variant and its unique function(s). In this paper, we look first at the heterogeneous tissue-specific distribution of this protein in different vertebrate classes. This is followed by a structural comparison between mH2A and H2A protein and by the characterization of the nucleosome core particles with which these histone subtypes are associated. We find that the highly alpha-helical C-terminus of mH2A confers an asymmetric conformation to nucleosomes and that this variant is tightly bound to chromatin fragments in a way that does not depend on the overall extent of acetylation of the other core histones.
Collapse
Affiliation(s)
- D Wade Abbott
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada, V8W 3P6
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Selby CP, Sancar A. Characterization of transcription-repair coupling factors in E. coli and humans. Methods Enzymol 2004; 371:300-24. [PMID: 14712710 DOI: 10.1016/s0076-6879(03)71023-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2023]
Affiliation(s)
- C P Selby
- Department of Biochemistry and Biophysics, University of North Carolina, School of Medicine, Chapel Hill, North Carolina 27599-7260, USA
| | | |
Collapse
|
21
|
Sancar A, Reardon JT. Nucleotide excision repair in E. coli and man. ADVANCES IN PROTEIN CHEMISTRY 2004; 69:43-71. [PMID: 15588839 DOI: 10.1016/s0065-3233(04)69002-4] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Aziz Sancar
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | | |
Collapse
|
22
|
Affiliation(s)
- Brian C Beard
- Department of Biochemistry and Biophysics, School of Molecular Biosciences, Washington State University, Pullman, Washington 99164-4660, USA
| | | |
Collapse
|
23
|
Hara R, Sancar A. The SWI/SNF chromatin-remodeling factor stimulates repair by human excision nuclease in the mononucleosome core particle. Mol Cell Biol 2002; 22:6779-87. [PMID: 12215535 PMCID: PMC134043 DOI: 10.1128/mcb.22.19.6779-6787.2002] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To investigate the role of chromatin remodeling in nucleotide excision repair, we prepared mononucleosomes with a 200-bp duplex containing an acetylaminofluorene-guanine (AAF-G) adduct at a single site. DNase I footprinting revealed a well-phased nucleosome structure with the AAF-G adduct near the center of twofold symmetry of the nucleosome core. This mononucleosome substrate was used to examine the effect of the SWI/SNF remodeling complex on the activity of human excision nuclease reconstituted from six purified excision repair factors. We found that the three repair factors implicated in damage recognition, RPA, XPA, and XPC, stimulate the remodeling activity of SWI/SNF, which in turn stimulates the removal of the AAF-G adduct from the nucleosome core by the excision nuclease. This is the first demonstration of the stimulation of nucleotide excision repair of a lesion in the nucleosome core by a chromatin-remodeling factor and contrasts with the ACF remodeling factor, which stimulates the removal of lesions from internucleosomal linker regions but not from the nucleosome core.
Collapse
Affiliation(s)
- Ryujiro Hara
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina, Chapel Hill, 27599, USA
| | | |
Collapse
|
24
|
Uchida A, Sugasawa K, Masutani C, Dohmae N, Araki M, Yokoi M, Ohkuma Y, Hanaoka F. The carboxy-terminal domain of the XPC protein plays a crucial role in nucleotide excision repair through interactions with transcription factor IIH. DNA Repair (Amst) 2002; 1:449-61. [PMID: 12509233 DOI: 10.1016/s1568-7864(02)00031-9] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The xeroderma pigmentosum group C (XPC) protein specifically involved in genome-wide damage recognition for nucleotide excision repair (NER) was purified as a tight complex with HR23B, one of the two mammalian homologs of RAD23 in budding yeast. This XPC-HR23B complex exhibits strong binding affinity for single-stranded DNA, as well as preferential binding to various types of damaged DNA. To examine the structure-function relationship of XPC, a series of truncated mutant proteins were generated and assayed for various binding activities. The two domains participating in binding to HR23B and damaged DNA, respectively, were mapped within the carboxy-terminal half of XPC, which also contains an evolutionary conserved amino acid sequence homologous to the yeast RAD4 protein. We established that the carboxy-terminal 125 amino acids are dispensable for both HR23B and damaged DNA binding, while interactions with transcription factor IIH (TFIIH) are significantly impaired by truncation of this domain. Furthermore, deletion of the extreme carboxy-terminal domain totally abolished XPC activity in the cell-free NER reaction. These results suggest that following initial damage recognition, the carboxy terminus of XPC may be essential for the recruitment of TFIIH, and that most truncation mutations identified in XP-C patients result in non-functional proteins.
Collapse
Affiliation(s)
- Akio Uchida
- Institute for Molecular and Cellular Biology, Osaka University, 1-3 Yamada-oka, Suita, 565-0871, Osaka, Japan
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
The organization of DNA within eukaryotic cell nuclei poses special problems and opportunities for the cell. For example, assembly of DNA into chromatin is thought to be a principle mechanism by which adventitious general transcription is repressed. However, access to genomic DNA for events such as DNA repair must be facilitated by energy-intensive processes that either directly alter chromatin structure or impart post-translational modifications, leading to increased DNA accessibility. The assembly of DNA into chromatin affects both the incidence of damage to DNA and repair of that damage. Correction of most damage to DNA caused by UV irradiation occurs via the nucleotide excision repair (NER) process. NER requires extensive involvement of large multiprotein complexes with relatively large stretches of DNA. Here, we review recent evidence suggesting that at least some steps of NER require ATP-dependent chromatin remodeling activities while perhaps others do not.
Collapse
Affiliation(s)
- Kiyoe Ura
- Division of Gene Therapy Science, Osaka University School of Medicine, Suita, Japan
| | | |
Collapse
|
26
|
Teng Y, Yu Y, Waters R. The Saccharomyces cerevisiae histone acetyltransferase Gcn5 has a role in the photoreactivation and nucleotide excision repair of UV-induced cyclobutane pyrimidine dimers in the MFA2 gene. J Mol Biol 2002; 316:489-99. [PMID: 11866513 DOI: 10.1006/jmbi.2001.5383] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
How DNA repair enzymes or complexes gain access to chromatin is still not understood. Here, we have studied the role of the S. cerevisiae histone acetyltransferase Gcn5 in photoreactivation (PR) and nucleotide excision repair (NER) at the level of the genome, the MFA2 and RPB2 genes, and at specific nucleotides within MFA2. The deletion of GCN5 markedly reduced the PR and NER of UV-induced cyclobutane pyrimidine dimers in MFA2 but much less so in RPB2, whereas no detectable defect was seen for repair of the genome overall. In Delta(gcn5), the MFA2 mRNA level is reduced by fourfold, while transcription from RPB2 is reduced only to 80 %. These changes in transcription correlate with the changes in NER and PR found in the Delta(gcn5) mutant. However, changes in MFA2 transcription cannot account for the decrease in NER in the non-transcribed strand and the control region of MFA2 where global genome repair (GGR) operates. We conclude that the histone acetyltransferase Gcn5 influences PR and NER at MFA2 in both its transcribed and non-transcribed DNA, yet it has little effect on these processes for most of the yeast genome. As a result, we speculate that histone acetylation allows efficient access of the repair machinery to chromosomal DNA damages either indirectly via influencing transcription or directly via modifying chromatin structure irrespective of transcription.
Collapse
Affiliation(s)
- Yumin Teng
- School of Biological Sciences, University of Wales Swansea, Singleton Park, Swansea, SA2 8PP, UK
| | | | | |
Collapse
|
27
|
Abstract
In eukaryotic cells, the inheritance of both the DNA sequence and its organization into chromatin is critical to maintain genome stability. This maintenance is challenged by DNA damage. To fully understand how the cell can tolerate genotoxic stress, it is necessary to integrate knowledge of the nature of DNA damage, its detection and its repair within the chromatin environment of a eukaryotic nucleus. The multiplicity of the DNA damage and repair processes, as well as the complex nature of chromatin, have made this issue difficult to tackle. Recent progress in each of these areas enables us to address, both at a molecular and a cellular level, the importance of inter-relationships between them. In this review we revisit the 'access, repair, restore' model, which was proposed to explain how the conserved process of nucleotide excision repair operates within chromatin. Recent studies have identified factors potentially involved in this process and permit refinement of the basic model. Drawing on this model, the chromatin alterations likely to be required during other processes of DNA damage repair, particularly double-strand break repair, are discussed and recently identified candidates that might perform such alterations are highlighted.
Collapse
Affiliation(s)
- Catherine M Green
- UMR 218, Pavillion Pasteur, Institut Curie section de recherche, 26, rue d'Ulm, 75248 Paris cedex 05, France
| | | |
Collapse
|
28
|
Araki M, Masutani C, Takemura M, Uchida A, Sugasawa K, Kondoh J, Ohkuma Y, Hanaoka F. Centrosome protein centrin 2/caltractin 1 is part of the xeroderma pigmentosum group C complex that initiates global genome nucleotide excision repair. J Biol Chem 2001; 276:18665-72. [PMID: 11279143 DOI: 10.1074/jbc.m100855200] [Citation(s) in RCA: 266] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nucleotide excision repair (NER) is carried out by xeroderma pigmentosum (XP) factors. Before the excision reaction, DNA damage is recognized by a complex originally thought to contain the XP group C responsible gene product (XPC) and the human homologue of Rad23 B (HR23B). Here, we show that centrin 2/caltractin 1 (CEN2) is also a component of the XPC repair complex. We demonstrate that nearly all XPC complexes contain CEN2, that CEN2 interacts directly with XPC, and that CEN2, in cooperation with HR23B, stabilizes XPC, which stimulates XPC NER activity in vitro. CEN2 has been shown to play an important role in centrosome duplication. Thus, those findings suggest that the XPC-CEN2 interaction may reflect coupling of cell division and NER.
Collapse
Affiliation(s)
- M Araki
- Institute for Molecular and Cellular Biology and The Graduate School of Pharmaceutical Sciences, Osaka University and CREST, Japan
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Kusumoto R, Masutani C, Sugasawa K, Iwai S, Araki M, Uchida A, Mizukoshi T, Hanaoka F. Diversity of the damage recognition step in the global genomic nucleotide excision repair in vitro. Mutat Res 2001; 485:219-27. [PMID: 11267833 DOI: 10.1016/s0921-8777(00)00082-3] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The XPC-HR23B complex, a mammalian factor specifically involved in global genomic nucleotide excision repair (NER) has been shown to bind various forms of damaged DNA and initiate DNA repair in cell-free reactions. To characterize the binding specificity of this factor in more detail, a method based on immunoprecipitation was developed to assess the relative affinity of XPC-HR23B for defined lesions on DNA. Here we show that XPC-HR23B preferentially binds to UV-induced (6-4) photoproducts (6-4PPs) as well as to cholesterol, but not to the cyclobutane pyrimidine dimer (CPD), 8-oxoguanine (8-oxo-G), O6-methylguanine (O6-Me-G), or a single mismatch. Human whole cell extracts could efficiently excise 6-4PPs and cholesterol in an XPC-HR23B-dependent manner, but not 8-oxo-G, O6-Me-G or mismatches. Thus, there was good correlation between the binding specificity of XPC-HR23B for certain types of lesion and the ability of human cell extracts to excise these lesions, supporting the model that XPC-HR23B initiates global genomic NER. Although, XPC-HR23B does not preferentially bind to CPDs, the excision of CPDs in human whole cell extracts was found to be absolutely dependent on XPC-HR23B, in agreement with the in vivo observation that CPDs are not removed from the global genome in XP-C mutant cells. These results suggest that, in addition to the excision repair pathway initiated by XPC-HR23B, there exists another sub-pathway for the global genomic NER that still requires XPC-HR23B but is not initiated by XPC-HR23B. Possible mechanisms will be discussed.
Collapse
Affiliation(s)
- R Kusumoto
- Institute for Molecular and Cellular Biology, Osaka University, 1-3 Yamada-oka, Suita, 565-0871, Osaka, Japan
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Hara R, Mo J, Sancar A. DNA damage in the nucleosome core is refractory to repair by human excision nuclease. Mol Cell Biol 2000; 20:9173-81. [PMID: 11094069 PMCID: PMC102175 DOI: 10.1128/mcb.20.24.9173-9181.2000] [Citation(s) in RCA: 145] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To investigate the effect of nucleosomes on nucleotide excision repair in humans, we prepared a mononucleosome containing a (6-4) photoproduct in the nucleosome core and examined its repair with the reconstituted human excision nuclease system and with cell extracts. Nucleosomal DNA is repaired at a rate of about 10% of that for naked DNA in both systems. These results are in agreement with in vivo data showing a considerably slower rate of repair of overall genomic DNA relative to that for transcriptionally active DNA. Furthermore, our results indicate that the first-order packing of DNA in nucleosomes is a primary determinant of slow repair of DNA in chromatin.
Collapse
Affiliation(s)
- R Hara
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, USA
| | | | | |
Collapse
|
31
|
Hsu T, Sheu R, Lai Y. Possible involvement of a 72-kDa polypeptide in nucleotide excision repair of Chlorella pyrenoidosa identified by affinity adsorption and repair synthesis assay. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2000; 156:95-102. [PMID: 10908809 DOI: 10.1016/s0168-9452(00)00238-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
A DNA repair synthesis assay monitoring nucleotide excision repair (NER) was established in cell-free extracts of unicellular alga Chlorella pyrenoidosa using cisplatin- or mitomycin C-damaged plasmid DNA as the repair substrate. The algal extracts promoted a damage-dependent increase in 32P-dATP incorporation after normalization against an internal control. To identify the proteins responsible for NER, a biotin-labeled duplex 27 mer (2 µg) irradiated with or without UV (27 kJ m(-2)) was immobilized on streptavidin-conjugated agarose beads and incubated with C. pyrenoidosa extracts (50 µg) to pull down repair proteins. The extracts post incubation with beads carrying unirradiated 27 mer promoted an eightfold increase in repair synthesis in plasmid DNA (1 µg) damaged by 16.8 pmol of cisplatin. The extracts obtained after affinity adsorption with UV-damaged DNA ligand, however, failed to repair plasmid DNA treated with cisplatin, reflecting that some proteins crucial to NER had been sequestered by the damaged 27 mer. A polypeptide approximately 70-72 kDa in molecular mass was found to bind much more strongly to the damaged DNA than to the control DNA after analyzing the proteins bound to the beads by SDS-PAGE, and this polypeptide is believed to play a role in NER in C. pyrenoidosa.
Collapse
Affiliation(s)
- T Hsu
- Institute of Marine Biotechnology, National Taiwan Ocean University, 20224, Keelung, Taiwan, ROC
| | | | | |
Collapse
|
32
|
Araki M, Masutani C, Maekawa T, Watanabe Y, Yamada A, Kusumoto R, Sakai D, Sugasawa K, Ohkuma Y, Hanaoka F. Reconstitution of damage DNA excision reaction from SV40 minichromosomes with purified nucleotide excision repair proteins. Mutat Res 2000; 459:147-60. [PMID: 10725665 DOI: 10.1016/s0921-8777(99)00067-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
We previously constructed the cell-free nucleotide excision repair (NER) assay system with UV-irradiated SV40 minichromosomes to analyze the mechanism of NER reaction on chromatin DNA. Here we investigate the factor that acts especially on nucleosomal DNA during the damage excision reaction, and reconstitute the damage excision reaction on SV40 minichromosomes. NER-proficient HeLa whole cell extracts were fractionated, and the amounts of known NER factors involved in the column fractions were determined by immunoblot analyses. The column fractions were quantitatively and systematically replaced by highly purified NER factors. Finally, damage DNA excision reaction on SV40 minichromosomes was reconstituted with six highly purified NER factors, XPA, XPC-HR23B, XPF-ERCC1, XPG, RPA and TFIIH, as those essential for the reaction with naked DNA. Further analysis showed that the damages on chromosomal DNA were excised as the same efficiency as those on naked DNA for short incubation. At longer incubation time, however, the damage excision efficiency on nucleosomal DNA was decreased whereas naked DNA was still vigorously repaired. These observations suggest that although the six purified NER factors have a potential to eliminate the damage DNA from SV40 minichromosomes, the chromatin structure may still have some repressive effects on NER.
Collapse
Affiliation(s)
- M Araki
- Institute for Molecular and Cellular Biology (IMCB), Osaka University, 1-3 Yamada-oka, Suita, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Lambert MW, Lambert WC. DNA repair and chromatin structure in genetic diseases. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1999; 63:257-310. [PMID: 10506834 DOI: 10.1016/s0079-6603(08)60725-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Interaction of DNA repair proteins with damaged DNA in eukaryotic cells is influenced by the packaging of DNA into chromatin. The basic repeating unit of chromatin, the nucleosome, plays an important role in regulating accessibility of repair proteins to sites of damage in DNA. There are a number of different pathways fundamental to the DNA repair process. Elucidation of the proteins involved in these pathways and the mechanisms they utilize for interacting with damaged nucleosomal and nonnucleosomal DNA has been aided by studies of genetic diseases where there are defects in the DNA repair process. Two of these diseases are xeroderma pigmentosum (XP) and Fanconi anemia (FA). Cells from patients with these disorders are similar in that they have defects in the initial steps of the repair process. However, there are a number of important differences in the nature of these defects. One of these is in the ability of repair proteins from XP and FA cells to interact with damaged nucleosomal DNA. In XP complementation group A (XPA) cells, for example, endonucleases present in a chromatin-associated protein complex involved in the initial steps in the repair process are defective in their ability to incise damaged nucleosomal DNA, but, like the normal complexes, can incise damaged naked DNA. In contrast, in FA complementation group A (FA-A) cells, these complexes are equally deficient in their ability to incise damaged naked and similarly damaged nucleosomal DNA. This ability to interact with damaged nucleosomal DNA correlates with the mechanism of action these endonucleases use for locating sites of damage. Whereas the FA-A and normal endonucleases act by a processive mechanism of action, the XPA endonucleases locate sites of damage distributively. Thus the mechanism of action utilized by a DNA repair enzyme may be of critical importance in its ability to interact with damaged nucleosomal DNA.
Collapse
Affiliation(s)
- M W Lambert
- Department of Pathology, UMDNJ-New Jersey Medical School, Newark 07103, USA
| | | |
Collapse
|
34
|
Affiliation(s)
- J G Moggs
- Section de Recherche, Unité Mixte du CNRS, Institut Curie, Paris, France
| | | |
Collapse
|
35
|
Abstract
The removal of DNA damage from the eukaryotic genome requires DNA repair enzymes to operate within the complex environment of chromatin. We review the evidence for chromatin rearrangements during nucleotide excision repair and discuss the extent and possible molecular mechanisms of these rearrangements, focusing on events at the nucleosome level of chromatin structure.
Collapse
Affiliation(s)
- J G Moggs
- Dynamique de la Chromatine, Institut Curie, Section de Recherche, UMR 144, Paris, France
| | | |
Collapse
|
36
|
Abstract
Telomeres play an important role in the immortalization of proliferating cells. The long tandem repeats of 5'-TTAGGG-3' sequences in human telomeres are potential targets for the anticancer drug cisplatin, which forms mainly intrastrand d(GpG) and d(ApG) cross-links on DNA. The present study reveals that telomeres in cisplatin-treated HeLa cells are markedly shortened and degraded. A dose that killed 61% of the cells but allowed one round of cell division resulted in shortened telomeres before the induction of apoptosis. Higher doses of cisplatin halted cell cycle progression during the first S phase and triggered apoptosis followed by degradation of telomere repeats. A model in which both cell division with incomplete replication and induction of apoptosis by cisplatin could occur was devised to explain the drug-induced telomere loss.
Collapse
Affiliation(s)
- T Ishibashi
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | |
Collapse
|
37
|
Selby CP, Sancar A. Cockayne syndrome group B protein enhances elongation by RNA polymerase II. Proc Natl Acad Sci U S A 1997; 94:11205-9. [PMID: 9326587 PMCID: PMC23417 DOI: 10.1073/pnas.94.21.11205] [Citation(s) in RCA: 236] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Cockayne syndrome (CS) is characterized by impaired physical and mental development. Two complementation groups, CSA and CSB, have been identified. Here we report that the CSB gene product enhances elongation by RNA polymerase II. CSB stimulated the rate of elongation on an undamaged template by a factor of about 3. A thymine-thymine cyclobutane dimer located in the template strand is known to be a strong block to transcription. Addition of CSB to the blocked polymerase resulted in addition of one nucleotide to the nascent transcript. Finally, addition of transcription factor IIS is known to cause polymerase blocked at a thymine-thymine cyclobutane dimer to digest its nascent transcript, and CSB counteracted this transcript shortening action of transcription factor IIS. Thus a deficiency in transcription elongation may contribute to the CS phenotype.
Collapse
Affiliation(s)
- C P Selby
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, NC 27599-7260, USA
| | | |
Collapse
|
38
|
Selby CP, Drapkin R, Reinberg D, Sancar A. RNA polymerase II stalled at a thymine dimer: footprint and effect on excision repair. Nucleic Acids Res 1997; 25:787-93. [PMID: 9016630 PMCID: PMC146523 DOI: 10.1093/nar/25.4.787] [Citation(s) in RCA: 148] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Bulky lesions in the template strand block the progression of RNA polymerase II (RNAP II) and are repaired more rapidly than lesions in the non-transcribed strand, which do not block transcription. In order to better understand the basis of this transcription-coupled repair we developed an in vitro system with purified transcription and nucleotide excision repair proteins and a plasmid containing the adenovirus major late promoter and a thymine dimer in the template strand downstream of the transcription start site. The footprint of RNAP II stalled at the thymine dimer, obtained using DNase I, lambda exonuclease and T4 polymerase 3'-->5'exonuclease, covers approximately 40 nt and is nearly symmetrical around the dimer. The ternary complex formed at the lesion site is rather stable, with a half-life of approximately 20 h. Surprisingly, addition of human repair proteins results in repair of transcription-blocking dimers in the ternary complex. The blocked polymerase neither inhibits nor stimulates repair and repair is observed in the absence of CSB protein, the putative human transcription-repair coupling factor.
Collapse
Affiliation(s)
- C P Selby
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill 27599, USA
| | | | | | | |
Collapse
|
39
|
Gaillard PHL, Martini EM, Kaufman PD, Stillman B, Moustacchi E, Almouzni G. Chromatin assembly coupled to DNA repair: a new role for chromatin assembly factor I. Cell 1996; 86:887-96. [PMID: 8808624 DOI: 10.1016/s0092-8674(00)80164-6] [Citation(s) in RCA: 277] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
DNA repair in the eukaryotic cell disrupts local chromatin organization. To investigate whether the resetting of nucleosomal arrays can be linked to the repair process, we developed model systems, with both Xenopus egg extract and human cell extracts, to follow repair and chromatin assembly in parallel on circular DNA templates. Both systems were able to carry out nucleotide excision repair of DNA lesions. We observed that UV-dependent DNA synthesis occurs simultaneously with chromatin assembly, strongly indicating a mechanistic coupling between the two processes. A complementation assay established that chromatin assembly factor I (CAF1) is necessary for this repair associated chromatin formation.
Collapse
|
40
|
Ma L, Hoeijmakers JH, van der Eb AJ. Mammalian nucleotide excision repair. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1242:137-63. [PMID: 7492568 DOI: 10.1016/0304-419x(95)00008-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- L Ma
- Department of Medical Biochemistry, Leiden University, The Netherlands
| | | | | |
Collapse
|
41
|
Shimamoto T, Tanimura T, Yoneda Y, Kobayakawa Y, Sugasawa K, Hanaoka F, Oka M, Okada Y, Tanaka K, Kohno K. Expression and functional analyses of the Dxpa gene, the Drosophila homolog of the human excision repair gene XPA. J Biol Chem 1995; 270:22452-9. [PMID: 7673233 DOI: 10.1074/jbc.270.38.22452] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Xeroderma pigmentosum (XP) is a human hereditary disease characterized by a defect in DNA repair after exposure to ultraviolet light. Among the seven groups of XP, group A (XP-A) patients show the most severe deficiency in excision repair and a wide variety of cutaneous and neurological disorders. We have cloned homologs of the human XPA gene from chicken, Xenopus, and Drosophila, and sequence analysis revealed that these genes are highly conserved throughout evolution. Here, we report characterization of the Drosophila homolog of the human XPA gene (Dxpa). The Dxpa gene product shows DNA repair activities in an in vitro repair system, and Dxpa cDNA has been shown to complement a mutant allele of human XP-A cells by transfection. Polytene chromosome in situ hybridization mapped Dxpa to 3F6-8 on the X chromosome, where no mutant defective in excision repair was reported. Northern blot analysis showed that the gene is continuously expressed in all stages of fly development. Interestingly, the Dxpa protein is strongly expressed in the central nervous system and muscles as revealed by immunohistochemical analysis using anti-Dxpa antibodies, consistent with the results obtained in transgenic flies expressing a Dxpa-beta-galactosidase fusion gene driven by the Dxpa promoter.
Collapse
Affiliation(s)
- T Shimamoto
- Institute for Molecular and Cellular Biology, Osaka University, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
DNA repair defect in xeroderma pigmentosum group C and complementing factor from HeLa cells. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)31709-x] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
43
|
Masutani C, Sugasawa K, Asahina H, Tanaka K, Hanaoka F. Cell-free repair of UV-damaged simian virus 40 chromosomes in human cell extracts. II. Defective DNA repair synthesis by xeroderma pigmentosum cell extracts. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)52983-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|