1
|
Guo SK, Liu CX, Xu YF, Wang X, Nan F, Huang Y, Li S, Nan S, Li L, Kon E, Li C, Wei MY, Su R, Wei J, Peng S, Ad-El N, Liu J, Peer D, Chen T, Yang L, Chen LL. Therapeutic application of circular RNA aptamers in a mouse model of psoriasis. Nat Biotechnol 2024:10.1038/s41587-024-02204-4. [PMID: 38653797 DOI: 10.1038/s41587-024-02204-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 03/12/2024] [Indexed: 04/25/2024]
Abstract
Efforts to advance RNA aptamers as a new therapeutic modality have been limited by their susceptibility to degradation and immunogenicity. In a previous study, we demonstrated synthesized short double-stranded region-containing circular RNAs (ds-cRNAs) with minimal immunogenicity targeted to dsRNA-activated protein kinase R (PKR). Here we test the therapeutic potential of ds-cRNAs in a mouse model of imiquimod-induced psoriasis. We find that genetic supplementation of ds-cRNAs leads to inhibition of PKR, resulting in alleviation of downstream interferon-α and dsRNA signals and attenuation of psoriasis phenotypes. Delivery of ds-cRNAs by lipid nanoparticles to the spleen attenuates PKR activity in examined splenocytes, resulting in reduced epidermal thickness. These findings suggest that ds-cRNAs represent a promising approach to mitigate excessive PKR activation for therapeutic purposes.
Collapse
Affiliation(s)
- Si-Kun Guo
- Key Laboratory of RNA Innovation, Science and Engineering, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Chu-Xiao Liu
- Key Laboratory of RNA Innovation, Science and Engineering, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yi-Feng Xu
- Key Laboratory of RNA Innovation, Science and Engineering, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xiao Wang
- Key Laboratory of RNA Innovation, Science and Engineering, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Fang Nan
- Center for Molecular Medicine, Children's Hospital of Fudan University and Shanghai Key Laboratory of Medical Epigenetics, International Laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Youkui Huang
- Key Laboratory of RNA Innovation, Science and Engineering, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Siqi Li
- Key Laboratory of RNA Innovation, Science and Engineering, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Shan Nan
- Key Laboratory of RNA Innovation, Science and Engineering, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Ling Li
- Key Laboratory of RNA Innovation, Science and Engineering, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Edo Kon
- Laboratory of Precision Nanomedicine, Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Department of Materials Sciences and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Center for Nanoscience and Nanotechnology, Cancer Biology Research Center, Tel Aviv University, Tel Aviv, Israel
| | - Chen Li
- Key Laboratory of RNA Innovation, Science and Engineering, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Meng-Yuan Wei
- Key Laboratory of RNA Innovation, Science and Engineering, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Rina Su
- Department of Dermatology, Beijing Chao-yang Hospital, Capital Medical University, Beijing, China
| | - Jia Wei
- Center for Molecular Medicine, Children's Hospital of Fudan University and Shanghai Key Laboratory of Medical Epigenetics, International Laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Shiguang Peng
- Department of Dermatology, Beijing Chao-yang Hospital, Capital Medical University, Beijing, China
| | - Nitay Ad-El
- Laboratory of Precision Nanomedicine, Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Department of Materials Sciences and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Center for Nanoscience and Nanotechnology, Cancer Biology Research Center, Tel Aviv University, Tel Aviv, Israel
| | - Jiaquan Liu
- Key Laboratory of RNA Innovation, Science and Engineering, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Dan Peer
- Laboratory of Precision Nanomedicine, Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Department of Materials Sciences and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Center for Nanoscience and Nanotechnology, Cancer Biology Research Center, Tel Aviv University, Tel Aviv, Israel
| | - Ting Chen
- National Institute of Biological Sciences, Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
| | - Li Yang
- Center for Molecular Medicine, Children's Hospital of Fudan University and Shanghai Key Laboratory of Medical Epigenetics, International Laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Ling-Ling Chen
- Key Laboratory of RNA Innovation, Science and Engineering, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
- New Cornerstone Science Laboratory, Shenzhen, China.
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China.
| |
Collapse
|
2
|
Suganuma T, Workman JL. Chromatin balances cell redox and energy homeostasis. Epigenetics Chromatin 2023; 16:46. [PMID: 38017471 PMCID: PMC10683155 DOI: 10.1186/s13072-023-00520-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/30/2023] [Indexed: 11/30/2023] Open
Abstract
Chromatin plays a central role in the conversion of energy in cells: alteration of chromatin structure to make DNA accessible consumes energy, and compaction of chromatin preserves energy. Alteration of chromatin structure uses energy sources derived from carbon metabolism such as ATP and acetyl-CoA; conversely, chromatin compaction and epigenetic modification feedback to metabolism and energy homeostasis by controlling gene expression and storing metabolites. Coordination of these dual chromatin events must be flexibly modulated in response to environmental changes such as during development and exposure to stress. Aging also alters chromatin structure and the coordination of metabolism, chromatin dynamics, and other cell processes. Noncoding RNAs and other RNA species that associate directly with chromatin or with chromatin modifiers contribute to spatiotemporal control of transcription and energy conversion. The time required for generating the large amounts of RNAs and chromatin modifiers observed in super-enhancers may be critical for regulation of transcription and may be impacted by aging. Here, taking into account these factors, we review alterations of chromatin that are fundamental to cell responses to metabolic changes due to stress and aging to maintain redox and energy homeostasis. We discuss the relationship between spatiotemporal control of energy and chromatin function, as this emerging concept must be considered to understand how cell homeostasis is maintained.
Collapse
Affiliation(s)
- Tamaki Suganuma
- Stowers Institute for Medical Research, 1000 E. 50th Street, Kansas City, MO, 64110, USA.
| | - Jerry L Workman
- Stowers Institute for Medical Research, 1000 E. 50th Street, Kansas City, MO, 64110, USA
| |
Collapse
|
3
|
Zhao Q, Zhang R, Qiao C, Miao Y, Yuan Y, Zheng H. Ubiquitination network in the type I IFN-induced antiviral signaling pathway. Eur J Immunol 2023; 53:e2350384. [PMID: 37194705 DOI: 10.1002/eji.202350384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/14/2023] [Accepted: 05/16/2023] [Indexed: 05/18/2023]
Abstract
Type I IFN (IFN-I) is the body's first line of defense against pathogen infection. IFN-I can induce cellular antiviral responses and therefore plays a key role in driving antiviral innate and adaptive immunity. Canonical IFN-I signaling activates the Janus kinase (JAK)/signal transducer and activator of transcription (STAT) pathway, which induces the expression of IFN-stimulated genes and eventually establishes a complex antiviral state in the cells. Ubiquitin is a ubiquitous cellular molecule for protein modifications, and the ubiquitination modifications of protein have been recognized as one of the key modifications that regulate protein levels and/or signaling activation. Despite great advances in understanding the ubiquitination regulation of many signaling pathways, the mechanisms by which protein ubiquitination regulates IFN-I-induced antiviral signaling have not been explored until very recently. This review details the current understanding of the regulatory network of ubiquitination that critically controls the IFN-I-induced antiviral signaling pathway from three main levels, including IFN-I receptors, IFN-I-induced cascade signals, and effector IFN-stimulated genes.
Collapse
Affiliation(s)
- Qian Zhao
- International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, China
| | - Renxia Zhang
- International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, China
| | - Caixia Qiao
- International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, China
| | - Ying Miao
- International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, China
| | - Yukang Yuan
- International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, China
| | - Hui Zheng
- International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, China
| |
Collapse
|
4
|
Samuel CE. Interferonopathy Resulting from Dysregulation of Interferon Production. J Interferon Cytokine Res 2022; 42:655-657. [PMID: 35793522 DOI: 10.1089/jir.2022.0097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- Charles E Samuel
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, California, USA
| |
Collapse
|
5
|
Brombin C, Bagaglio S, Cugnata F, Castagna A, Uberti-Foppa C, Salpietro S, Di Serio C, Morsica G. Modelling the impact of protein-kinase R allelic variant on HIV biomarkers trajectories by means of latent class mixed models. Sci Rep 2022; 12:18575. [PMID: 36329104 PMCID: PMC9633692 DOI: 10.1038/s41598-022-23289-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022] Open
Abstract
This paper is based on a retrospective longitudinal study on people living with HIV under antiretroviral treatment (ART) where allelic variants (either heterozygous CT genotype or homozygous CC genotype) have been evaluated at position -168 of the promoter region of the protein kinase R (-168/PKR). In general, antiviral effects of interferon are partially mediated by a RNA-dependent protein kinase (PKR) that, once activated, inhibits protein synthesis. Indeed, activation of PKR response can inhibit HIV replication. To explore the role of allelic variants in shaping dynamics of commonly monitored HIV biomarkers, CD4 cells, CD8 cells and HIV-load were modelled within a latent class mixed model (LCMM) to account for participants' heterogeneity over time. The estimated models identified two sub-groups from CD4 and HIV-load dynamics, revealing better outcomes for subgroups of participants with the heterozygous CT genotype. Heterozygous CT subjects in one of the two identified subgroups exhibited higher increase of CD4 cells and more marked decrease of HIV-load, over time, with respect to the homozygous CC subjects assigned to the same group.
Collapse
Affiliation(s)
- Chiara Brombin
- University Centre for Statistics in the Biomedical Sciences (CUSSB), Milan, Italy.
- Vita-Salute San Raffaele University, Milan, Italy.
| | - Sabrina Bagaglio
- Department of Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Federica Cugnata
- University Centre for Statistics in the Biomedical Sciences (CUSSB), Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Antonella Castagna
- Vita-Salute San Raffaele University, Milan, Italy
- Department of Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Caterina Uberti-Foppa
- Vita-Salute San Raffaele University, Milan, Italy
- Department of Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Stefania Salpietro
- Department of Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Clelia Di Serio
- University Centre for Statistics in the Biomedical Sciences (CUSSB), Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
- Biomedical Faculty, Università della Svizzera Italiana, 6900, Lugano, Switzerland
| | - Giulia Morsica
- Department of Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
6
|
Zuo W, Wakimoto M, Kozaiwa N, Shirasaka Y, Oh SW, Fujiwara S, Miyachi H, Kogure A, Kato H, Fujita T. PKR and TLR3 trigger distinct signals that coordinate the induction of antiviral apoptosis. Cell Death Dis 2022; 13:707. [PMID: 35970851 PMCID: PMC9378677 DOI: 10.1038/s41419-022-05101-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 07/08/2022] [Accepted: 07/13/2022] [Indexed: 01/21/2023]
Abstract
RIG-I-like receptors (RLRs), protein kinase R (PKR), and endosomal Toll-like receptor 3 (TLR3) sense viral non-self RNA and are involved in cell fate determination. However, the mechanisms by which intracellular RNA induces apoptosis, particularly the role of each RNA sensor, remain unclear. We performed cytoplasmic injections of different types of RNA and elucidated the molecular mechanisms underlying viral dsRNA-induced apoptosis. The results obtained revealed that short 5'-triphosphate dsRNA, the sole ligand of RIG-I, induced slow apoptosis in a fraction of cells depending on IRF-3 transcriptional activity and IFN-I production. However, intracellular long dsRNA was sensed by PKR and TLR3, which activate distinct signals, and synergistically induced rapid apoptosis. PKR essentially induced translational arrest, resulting in reduced levels of cellular FLICE-like inhibitory protein and functioned in the TLR3/TRIF-dependent activation of caspase 8. The present results demonstrated that PKR and TLR3 were both essential for inducing the viral RNA-mediated apoptosis of infected cells and the arrest of viral production.
Collapse
Affiliation(s)
- Wenjie Zuo
- grid.258799.80000 0004 0372 2033Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto, 606-8507 Japan ,grid.258799.80000 0004 0372 2033Laboratory of Regulatory Information, Institute for Frontier Life and Medical Science, Kyoto University, Sakyo-ku, Kyoto, 606-8507 Japan
| | - Mai Wakimoto
- grid.258799.80000 0004 0372 2033Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto, 606-8507 Japan ,grid.258799.80000 0004 0372 2033Laboratory of Regulatory Information, Institute for Frontier Life and Medical Science, Kyoto University, Sakyo-ku, Kyoto, 606-8507 Japan
| | - Noriyasu Kozaiwa
- grid.258799.80000 0004 0372 2033Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto, 606-8507 Japan ,grid.258799.80000 0004 0372 2033Laboratory of Regulatory Information, Institute for Frontier Life and Medical Science, Kyoto University, Sakyo-ku, Kyoto, 606-8507 Japan
| | - Yutaro Shirasaka
- grid.258799.80000 0004 0372 2033Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto, 606-8507 Japan ,grid.258799.80000 0004 0372 2033Laboratory of Regulatory Information, Institute for Frontier Life and Medical Science, Kyoto University, Sakyo-ku, Kyoto, 606-8507 Japan
| | - Seong-Wook Oh
- grid.258799.80000 0004 0372 2033Laboratory of Regulatory Information, Institute for Frontier Life and Medical Science, Kyoto University, Sakyo-ku, Kyoto, 606-8507 Japan
| | - Shiori Fujiwara
- grid.258799.80000 0004 0372 2033Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto, 606-8507 Japan ,grid.258799.80000 0004 0372 2033Laboratory of Regulatory Information, Institute for Frontier Life and Medical Science, Kyoto University, Sakyo-ku, Kyoto, 606-8507 Japan
| | - Hitoshi Miyachi
- grid.258799.80000 0004 0372 2033Institute for Virus Research, Kyoto University, Sakyo-ku, Kyoto, 606-8507 Japan
| | - Amane Kogure
- grid.258799.80000 0004 0372 2033Laboratory of Regulatory Information, Institute for Frontier Life and Medical Science, Kyoto University, Sakyo-ku, Kyoto, 606-8507 Japan
| | - Hiroki Kato
- grid.15090.3d0000 0000 8786 803XInstitute for Cardiovascular Immunology, University Hospital Bonn, Bonn, 53127 Germany
| | - Takashi Fujita
- grid.258799.80000 0004 0372 2033Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto, 606-8507 Japan ,grid.258799.80000 0004 0372 2033Laboratory of Regulatory Information, Institute for Frontier Life and Medical Science, Kyoto University, Sakyo-ku, Kyoto, 606-8507 Japan ,grid.15090.3d0000 0000 8786 803XInstitute for Cardiovascular Immunology, University Hospital Bonn, Bonn, 53127 Germany
| |
Collapse
|
7
|
Beyond Moco Biosynthesis-Moonlighting Roles of MoaE and MOCS2. Molecules 2022; 27:molecules27123733. [PMID: 35744859 PMCID: PMC9228816 DOI: 10.3390/molecules27123733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/02/2022] [Accepted: 06/08/2022] [Indexed: 11/17/2022] Open
Abstract
Molybdenum cofactor (Moco) biosynthesis requires iron, copper, and ATP. The Moco-containing enzyme sulfite oxidase catalyzes terminal oxidation in oxidative cysteine catabolism, and another Moco-containing enzyme, xanthine dehydrogenase, functions in purine catabolism. Thus, molybdenum enzymes participate in metabolic pathways that are essential for cellular detoxication and energy dynamics. Studies of the Moco biosynthetic enzymes MoaE (in the Ada2a-containing (ATAC) histone acetyltransferase complex) and MOCS2 have revealed that Moco biosynthesis and molybdenum enzymes align to regulate signaling and metabolism via control of transcription and translation. Disruption of these functions is involved in the onset of dementia and neurodegenerative disease. This review provides an overview of the roles of MoaE and MOCS2 in normal cellular processes and neurodegenerative disease, as well as directions for future research.
Collapse
|
8
|
Ukhueduan B, Chukwurah E, Patel RC. Regulation of PKR activation and apoptosis during oxidative stress by TRBP phosphorylation. Int J Biochem Cell Biol 2021; 137:106030. [PMID: 34174402 DOI: 10.1016/j.biocel.2021.106030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 06/09/2021] [Accepted: 06/18/2021] [Indexed: 11/25/2022]
Abstract
Transactivation response element RNA-binding protein (TRBP or TARBP2) originally identified as a pro-viral cellular protein in human immunodeficiency virus (HIV) replication is also a regulator of microRNA biogenesis and cellular stress response. TRBP inhibits the catalytic activity of interferon-induced double-stranded RNA (dsRNA)-activated protein kinase (PKR) during viral infections and cell stress thereby regulating stress-induced signaling pathways. During cellular stress, PKR is catalytically activated transiently by its protein activator PACT and TRBP inhibits PKR to bring about a timely cellular recovery. We have previously established that TRBP phosphorylated after oxidative stress binds to and inhibits PKR more efficiently promoting cell survival. In this study, we investigated if phosphorylation of TRBP enhances its interaction with PACT to bring about additional PKR inhibition. Our data establishes that phosphorylation of TRBP has no effect on PACT-TRBP interaction and TRBP's inhibitory actions on PKR are mediated exclusively by its enhanced interaction with PKR. Cells lacking TRBP are more sensitive to apoptosis in response to oxidative stress and show persistent PKR activation. These results establish that PKR inhibition by stress-induced TRBP phosphorylation occurs by its direct binding to PKR and is important for preventing apoptosis due to sustained PKR activation.
Collapse
Affiliation(s)
- Benedicth Ukhueduan
- Department of Biological Sciences, University of South Carolina, Columbia, SC, 29208, USA
| | - Evelyn Chukwurah
- Department of Biological Sciences, University of South Carolina, Columbia, SC, 29208, USA
| | - Rekha C Patel
- Department of Biological Sciences, University of South Carolina, Columbia, SC, 29208, USA.
| |
Collapse
|
9
|
Ge L, Zhang Y, Zhao X, Wang J, Zhang Y, Wang Q, Yu H, Zhang Y, You Y. EIF2AK2 selectively regulates the gene transcription in immune response and histones associated with systemic lupus erythematosus. Mol Immunol 2021; 132:132-141. [PMID: 33588244 DOI: 10.1016/j.molimm.2021.01.030] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 01/21/2021] [Accepted: 01/28/2021] [Indexed: 12/13/2022]
Abstract
PKR, also known as EIF2AK2, is an IFN-stimulated gene (ISG) and shows a higher expression in probands with systemic lupus erythematosus (SLE), which is likely responsible for the impaired translational and proliferative responses to mitogens in T cells from SLE patients. In this study, we overexpressed EIF2AK2 in HeLa cells to study EIF2AK2-regulated genes using RNA-seq technology, followed by bioinformatic analysis of target genes of EIF2AK2-regulated transcriptional factors (TFs). Overexpression of EIF2AK2 promotes HeLa cell apoptosis. EIF2AK2 selectively represses the transcription of histone protein genes associated with SLE, immune response genes and TF genes, which was validated by RT-qPCR experiments. Analysis of motifs overrepresented in the promoter regions of EIF2AK2-regulated genes revealed eighteen EIF2AK2-regulated TFs involved in establishing the EIF2AK2 network. Eight out of these predicted EIF2AK2-regulated TFs were further verified by RT-qPCR selectively in both HeLa and Jurkat cells, and most such as HEY2, TFEC, BATF2, GATA3 and ATF3 and FOXO6 are known to regulate immune response. Our results suggest that the dsRNA-dependent kinase EIF2AK2 selectively regulates the transcription of immune response and SLE-associated histone protein genes, and such a selectivity is likely to be operated by EIF2AK2-targeted TFs. The EIF2AK2-TFs axis potentially offers new therapeutic targets for counteracting immunological disease in the future.
Collapse
Affiliation(s)
- Lan Ge
- Department of Dermatology, Southwest Hospital, Third Military Medical University(Army Medical University), Chongqing, 400038, China.
| | - Yuhong Zhang
- Laboratory of Human Health and Genome Regulation, ABLife Inc., Wuhan, Hubei 430075, China; Center for Genome Analysis, ABLife Inc., Wuhan, Hubei 430075, China.
| | - Xingwang Zhao
- Department of Dermatology, Southwest Hospital, Third Military Medical University(Army Medical University), Chongqing, 400038, China.
| | - Juan Wang
- Department of Dermatology, Southwest Hospital, Third Military Medical University(Army Medical University), Chongqing, 400038, China.
| | - Yu Zhang
- Center for Genome Analysis, ABLife Inc., Wuhan, Hubei 430075, China.
| | - Qi Wang
- Center for Genome Analysis, ABLife Inc., Wuhan, Hubei 430075, China.
| | - Han Yu
- Laboratory of Human Health and Genome Regulation, ABLife Inc., Wuhan, Hubei 430075, China.
| | - Yi Zhang
- Laboratory of Human Health and Genome Regulation, ABLife Inc., Wuhan, Hubei 430075, China; Center for Genome Analysis, ABLife Inc., Wuhan, Hubei 430075, China.
| | - Yi You
- Department of Dermatology, Southwest Hospital, Third Military Medical University(Army Medical University), Chongqing, 400038, China.
| |
Collapse
|
10
|
García-Weber D, Arrieumerlou C. ADP-heptose: a bacterial PAMP detected by the host sensor ALPK1. Cell Mol Life Sci 2021; 78:17-29. [PMID: 32591860 PMCID: PMC11072087 DOI: 10.1007/s00018-020-03577-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 06/12/2020] [Accepted: 06/15/2020] [Indexed: 01/16/2023]
Abstract
The innate immune response constitutes the first line of defense against pathogens. It involves the recognition of pathogen-associated molecular patterns (PAMPs) by pathogen recognition receptors (PRRs), the production of inflammatory cytokines and the recruitment of immune cells to infection sites. Recently, ADP-heptose, a soluble intermediate of the lipopolysaccharide biosynthetic pathway in Gram-negative bacteria, has been identified by several research groups as a PAMP. Here, we recapitulate the evidence that led to this identification and discuss the controversy over the immunogenic properties of heptose 1,7-bisphosphate (HBP), another bacterial heptose previously defined as an activator of innate immunity. Then, we describe the mechanism of ADP-heptose sensing by alpha-protein kinase 1 (ALPK1) and its downstream signaling pathway that involves the proteins TIFA and TRAF6 and induces the activation of NF-κB and the secretion of inflammatory cytokines. Finally, we discuss possible delivery mechanisms of ADP-heptose in cells during infection, and propose new lines of thinking to further explore the roles of the ADP-heptose/ALPK1/TIFA axis in infections and its potential implication in the control of intestinal homeostasis.
Collapse
Affiliation(s)
- Diego García-Weber
- INSERM, U1016, Institut Cochin, CNRS, UMR8104, Université de Paris, 22 rue Méchain, 75014, Paris, France
| | - Cécile Arrieumerlou
- INSERM, U1016, Institut Cochin, CNRS, UMR8104, Université de Paris, 22 rue Méchain, 75014, Paris, France.
| |
Collapse
|
11
|
Zeng Y, Qin Q, Li K, Li H, Song C, Li Y, Dai M, Lin F, Mao Z, Li Q, Long Y, Fan Y, Pan P. PKR suppress NLRP3-pyroptosis pathway in lipopolysaccharide-induced acute lung injury model of mice. Biochem Biophys Res Commun 2019; 519:8-14. [PMID: 31474337 DOI: 10.1016/j.bbrc.2019.08.054] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 08/08/2019] [Indexed: 11/17/2022]
Abstract
To explore the effect of double-stranded RNA-dependent kinase (PKR) in acute lung injury (ALI) and resultant acute respiratory distress syndrome (ARDS). A mouse model of lipopolysaccharide (LPS)-induced ALI was used to evaluate the levels of phosphorylated (p)-PKR and NLRP3 in lung tissue, and the protective effects of a PKR inhibitor on lung injury. And in vitro, macrophages were incubated with LPS, with or without PKR inhibitor pre-treatment. It was observed that the levels of p-PKR protein and NLRP3 protein were significantly increased compared with those in control tissues after LPS administration. Meanwhile, treatment with PKR inhibitor decreased inflammation, injury score, wet/dry weight ratio, bronchoalveolar lavage fluid (BALF) protein levels, neutrophil count in BALF, myeloperoxidase activity and expression of high-mobility group box1(HMGB1) and interleukin(IL)-1β in the lungs of LPS-challenged mice. In vitro, we demonstrated that the levels of p-PKR and NLRP3, and cell mortality rate were increased in macrophages which were incubated with LPS compared with those without LPS administration, and PKR inhibitor significantly suppressed the level of NLRP3, caspase-1, HMGB1 and IL-1β. These results indicate that PKR plays a key role in ALI through NLRP3-pyrotosis pathway and pharmacological inhibition of PKR may have potential therapeutic effects in the treatment of patients with ALI and ARDS.
Collapse
Affiliation(s)
- Yanjun Zeng
- Department of Respiratory and Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China
| | - Qingwu Qin
- Department of Respiratory and Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China
| | - Keyu Li
- Department of Respiratory and Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China; Department of Respiratory Medicine, The First Hospital of Changsha, Changsha, Hunan, 410008, PR China
| | - Haitao Li
- Department of Respiratory and Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China
| | - Chao Song
- Department of Respiratory and Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China
| | - Yi Li
- Department of Respiratory and Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China
| | - Minhui Dai
- Department of Respiratory and Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China
| | - Fengyu Lin
- Department of Respiratory and Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China
| | - Zhi Mao
- Department of Respiratory and Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China
| | - Qian Li
- Department of Respiratory and Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China
| | - Yuan Long
- Department of Respiratory and Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China
| | - Yifei Fan
- Department of Respiratory and Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China
| | - Pinhua Pan
- Department of Respiratory and Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China.
| |
Collapse
|
12
|
Liu Q, Rao Y, Tian M, Zhang S, Feng P. Modulation of Innate Immune Signaling Pathways by Herpesviruses. Viruses 2019; 11:E572. [PMID: 31234396 PMCID: PMC6630988 DOI: 10.3390/v11060572] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 06/16/2019] [Accepted: 06/18/2019] [Indexed: 12/25/2022] Open
Abstract
Herpesviruses can be detected by pattern recognition receptors (PRRs), which then activate downstream adaptors, kinases and transcription factors (TFs) to induce the expression of interferons (IFNs) and inflammatory cytokines. IFNs further activate the Janus kinase-signal transducer and activator of transcription (JAK-STAT) pathway, inducing the expression of interferon-stimulated genes (ISGs). These signaling events constitute host innate immunity to defeat herpesvirus infection and replication. A hallmark of all herpesviruses is their ability to establish persistent infection in the presence of active immune response. To achieve this, herpesviruses have evolved multiple strategies to suppress or exploit host innate immune signaling pathways to facilitate their infection. This review summarizes the key host innate immune components and their regulation by herpesviruses during infection. Also we highlight unanswered questions and research gaps for future perspectives.
Collapse
Affiliation(s)
- Qizhi Liu
- Section of Infection and Immunity, Herman Ostrow School of Dentistry, Norris Comprehensive Cancer Center, University of Southern California, 925 W 34th Street, Los Angeles, CA 90089, USA.
| | - Youliang Rao
- Section of Infection and Immunity, Herman Ostrow School of Dentistry, Norris Comprehensive Cancer Center, University of Southern California, 925 W 34th Street, Los Angeles, CA 90089, USA.
| | - Mao Tian
- Section of Infection and Immunity, Herman Ostrow School of Dentistry, Norris Comprehensive Cancer Center, University of Southern California, 925 W 34th Street, Los Angeles, CA 90089, USA.
| | - Shu Zhang
- Section of Infection and Immunity, Herman Ostrow School of Dentistry, Norris Comprehensive Cancer Center, University of Southern California, 925 W 34th Street, Los Angeles, CA 90089, USA.
| | - Pinghui Feng
- Section of Infection and Immunity, Herman Ostrow School of Dentistry, Norris Comprehensive Cancer Center, University of Southern California, 925 W 34th Street, Los Angeles, CA 90089, USA.
| |
Collapse
|
13
|
Samuel CE. Adenosine deaminase acting on RNA (ADAR1), a suppressor of double-stranded RNA-triggered innate immune responses. J Biol Chem 2019; 294:1710-1720. [PMID: 30710018 PMCID: PMC6364763 DOI: 10.1074/jbc.tm118.004166] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Herbert "Herb" Tabor, who celebrated his 100th birthday this past year, served the Journal of Biological Chemistry as a member of the Editorial Board beginning in 1961, as an Associate Editor, and as Editor-in-Chief for 40 years, from 1971 until 2010. Among the many discoveries in biological chemistry during this period was the identification of RNA modification by C6 deamination of adenosine (A) to produce inosine (I) in double-stranded (ds) RNA. This posttranscriptional RNA modification by adenosine deamination, known as A-to-I RNA editing, diversifies the transcriptome and modulates the innate immune interferon response. A-to-I editing is catalyzed by a family of enzymes, adenosine deaminases acting on dsRNA (ADARs). The roles of A-to-I editing are varied and include effects on mRNA translation, pre-mRNA splicing, and micro-RNA silencing. Suppression of dsRNA-triggered induction and action of interferon, the cornerstone of innate immunity, has emerged as a key function of ADAR1 editing of self (cellular) and nonself (viral) dsRNAs. A-to-I modification of RNA is essential for the normal regulation of cellular processes. Dysregulation of A-to-I editing by ADAR1 can have profound consequences, ranging from effects on cell growth and development to autoimmune disorders.
Collapse
Affiliation(s)
- Charles E Samuel
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, California 93106.
| |
Collapse
|
14
|
Small molecule ISRIB suppresses the integrated stress response within a defined window of activation. Proc Natl Acad Sci U S A 2019; 116:2097-2102. [PMID: 30674674 PMCID: PMC6369741 DOI: 10.1073/pnas.1815767116] [Citation(s) in RCA: 148] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The integrated stress response (ISR) protects cells from a variety of harmful stressors by temporarily halting protein synthesis. However, chronic ISR activation has pathological consequences and is linked to several neurological disorders. Pharmacological inhibition of chronic ISR activity emerges as a powerful strategy to treat ISR-mediated neurodegeneration but is typically linked to adverse effects due to the ISR’s importance for normal cellular function. Paradoxically, the small-molecule ISR inhibitor ISRIB has promising therapeutic potential in vivo without overt side effects. We demonstrate here that ISRIB inhibits low-level ISR activity, but does not affect strong ISR signaling. We thereby provide a plausible mechanism of how ISRIB counteracts toxic chronic ISR activity, without disturbing the cytoprotective effects of a strong acute ISR. Activation of the integrated stress response (ISR) by a variety of stresses triggers phosphorylation of the α-subunit of translation initiation factor eIF2. P-eIF2α inhibits eIF2B, the guanine nucleotide exchange factor that recycles inactive eIF2•GDP to active eIF2•GTP. eIF2 phosphorylation thereby represses translation. Persistent activation of the ISR has been linked to the development of several neurological disorders, and modulation of the ISR promises new therapeutic strategies. Recently, a small-molecule ISR inhibitor (ISRIB) was identified that rescues translation in the presence of P-eIF2α by facilitating the assembly of more active eIF2B. ISRIB enhances cognitive memory processes and has therapeutic effects in brain-injured mice without displaying overt side effects. While using ISRIB to investigate the ISR in picornavirus-infected cells, we observed that ISRIB rescued translation early in infection when P-eIF2α levels were low, but not late in infection when P-eIF2α levels were high. By treating cells with varying concentrations of poly(I:C) or arsenite to induce the ISR, we provide additional proof that ISRIB is unable to inhibit the ISR when intracellular P-eIF2α concentrations exceed a critical threshold level. Together, our data demonstrate that the effects of pharmacological activation of eIF2B are tuned by P-eIF2α concentration. Thus, ISRIB can mitigate undesirable outcomes of low-level ISR activation that may manifest neurological disease but leaves the cytoprotective effects of acute ISR activation intact. The insensitivity of cells to ISRIB during acute ISR may explain why ISRIB does not cause overt toxic side effects in vivo.
Collapse
|
15
|
Stress-induced TRBP phosphorylation enhances its interaction with PKR to regulate cellular survival. Sci Rep 2018; 8:1020. [PMID: 29348664 PMCID: PMC5773696 DOI: 10.1038/s41598-018-19360-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 12/29/2017] [Indexed: 12/20/2022] Open
Abstract
Transactivation response element RNA-binding protein (TRBP or TARBP2) initially identified to play an important role in human immunodeficiency virus (HIV) replication also has emerged as a regulator of microRNA biogenesis. In addition, TRBP functions in signaling pathways by negatively regulating the interferon-induced double-stranded RNA (dsRNA)-activated protein kinase (PKR) during viral infections and cell stress. During cellular stress, PKR is activated and phosphorylates the α subunit of the eukaryotic translation factor eIF2, leading to the cessation of general protein synthesis. TRBP inhibits PKR activity by direct interaction as well as by binding to PKR’s two known activators, dsRNA and PACT, thus preventing their interaction with PKR. In this study, we demonstrate for the first time that TRBP is phosphorylated in response to oxidative stress and upon phosphorylation, inhibits PKR more efficiently promoting cell survival. These results establish that PKR regulation through stress-induced TRBP phosphorylation is an important mechanism ensuring cellular recovery and preventing apoptosis due to sustained PKR activation.
Collapse
|
16
|
Cedillo-Barrón L, García-Cordero J, Shrivastava G, Carrillo-Halfon S, León-Juárez M, Bustos Arriaga J, León Valenzuela P, Gutiérrez Castañeda B. The Role of Flaviviral Proteins in the Induction of Innate Immunity. Subcell Biochem 2018; 88:407-442. [PMID: 29900506 DOI: 10.1007/978-981-10-8456-0_17] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Flaviviruses are positive, single-stranded, enveloped cytoplasmic sense RNA viruses that cause a variety of important diseases worldwide. Among them, Zika virus, West Nile virus, Japanese encephalitis virus, and Dengue virus have the potential to cause severe disease. Extensive studies have been performed to elucidate the structure and replication strategies of flaviviruses, and current studies are aiming to unravel the complex molecular interactions between the virus and host during the very early stages of infection. The outcomes of viral infection and rapid establishment of the antiviral state, depends on viral detection by pathogen recognition receptors and rapid initiation of signalling cascades to induce an effective innate immune response. Extracellular and intracellular pathogen recognition receptors play a crucial role in detecting flavivirus infection and inducing a robust antiviral response. One of the main hallmarks of flaviviral nonstructural proteins is their multiple strategies to antagonise the interferon system. In this chapter, we summarize the molecular characteristics of flaviviral proteins and discuss how viral proteins target different components of the interferon signalling pathway by blocking phosphorylation, enhancing degradation, and downregulating the expression of major components of the Janus kinase/signal transducer and activator of transcription pathway. We also discuss how the interactions of viral proteins with host proteins facilitate viral pathogenesis. Due to the lack of antivirals or prophylactic treatments for many flaviviral infections, it is necessary to fully elucidate how these viruses disrupt cellular processes to influence pathogenesis and disease outcomes.
Collapse
Affiliation(s)
- L Cedillo-Barrón
- Departamento de Biomedicina Molecular, CINVESTAV IPN, México, D.F, Mexico.
| | - J García-Cordero
- Departamento de Biomedicina Molecular, CINVESTAV IPN, México, D.F, Mexico
| | - G Shrivastava
- Departamento de Biomedicina Molecular, CINVESTAV IPN, México, D.F, Mexico
| | - S Carrillo-Halfon
- Departamento de Biomedicina Molecular, CINVESTAV IPN, México, D.F, Mexico
| | - M León-Juárez
- Department of Immunobiochemistry, National Institute of Perinatology, México City, Mexico
| | - J Bustos Arriaga
- Unidad de Biomedicina. Facultad de Estudios Superiores-Iztacala, Universidad Nacional Autonoma de México, Edo. de México, Mexico
| | - Pc León Valenzuela
- Departamento de Biomedicina Molecular, CINVESTAV IPN, México, D.F, Mexico
| | - B Gutiérrez Castañeda
- Immunology Department UMF Facultad de Estudios Superiores-Iztacala, Universidad Nacional Autonoma de México, Edo. de México, Mexico
| |
Collapse
|
17
|
Martin-Jiménez CA, García-Vega Á, Cabezas R, Aliev G, Echeverria V, González J, Barreto GE. Astrocytes and endoplasmic reticulum stress: A bridge between obesity and neurodegenerative diseases. Prog Neurobiol 2017; 158:45-68. [DOI: 10.1016/j.pneurobio.2017.08.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 05/22/2017] [Accepted: 08/04/2017] [Indexed: 12/13/2022]
|
18
|
Yoshida K, Okamura H, Hiroshima Y, Abe K, Kido JI, Shinohara Y, Ozaki K. PKR induces the expression of NLRP3 by regulating the NF-κB pathway in Porphyromonas gingivalis-infected osteoblasts. Exp Cell Res 2017; 354:57-64. [PMID: 28341446 DOI: 10.1016/j.yexcr.2017.03.028] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 03/10/2017] [Accepted: 03/14/2017] [Indexed: 12/11/2022]
Abstract
The double-stranded RNA-dependent kinase (PKR), which is activated by double stranded RNA, induces inflammation by regulating NF-κB signaling. The NLR family pyrin domain-containing 3 (NLRP3) inflammasome also modulates inflammation in response to infection. Porphyromonas gingivalis (P.gingivalis) is an oral bacterium which is implicated in the pathogenesis of periodontal diseases. We previously reported that PKR is a key modulator of bone metabolism and inflammation in the periodontal tissue. PKR was also reported to induce inflammation in response to microbes by regulating the NLRP3 inflammasome, suggesting that PKR could affect inflammation along with NLRP3 in periodontal diseases. In this study, we investigated the effects of PKR on NLRP3 expression and NF-κB activity in P. gingivalis infected osteoblasts. We first constructed a SNAP26b-tagged P.gingivalis (SNAP-P. g.) and traced its internalization into the cell. SNAP-P. g. increased the activity of PKR and NF-κB and also induced NLRP3 expression in osteoblasts. Inhibition of NF-κB attenuated SNAP-P. g.-induced NLRP3 expression. The knockdown of PKR using shRNA decreased both the activity of NF-κB and the expression of NLRP3 induced by SNAP-P.g.. We therefore concluded that in osteoblasts, P. gingivalis activated PKR, which in turn increased NLRP3 expression by activating NF-κB. Our results suggest that PKR modulates inflammation by regulating the expression of the NLRP3 inflammasome through the NF-κB pathway in periodontal diseases.
Collapse
Affiliation(s)
- Kaya Yoshida
- Department of Oral Healthcare Education, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto, Tokushima 770-8504, Japan.
| | - Hirohiko Okamura
- Department of Histology and Oral Histology, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto, Tokushima 770-8504, Japan; Department of Oral Morphology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata, Kita-ku, Okayama 770-8525, Japan
| | - Yuka Hiroshima
- Institute for Genome Research, Tokushima University, 3-18-15 Kuramoto, Tokushima 770-8503, Japan
| | - Kaori Abe
- SHIBASAKI, Inc., 507 Horikiri, Chichibu 368-0066, Japan
| | - Jun-Ichi Kido
- Department of Periodontology and Endodontology, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto, Tokushima 770-8504, Japan
| | - Yasuo Shinohara
- Institute for Genome Research, Tokushima University, 3-18-15 Kuramoto, Tokushima 770-8503, Japan
| | - Kazumi Ozaki
- Oral Healthcare Promotion, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto, Tokushima 770-8504, Japan
| |
Collapse
|
19
|
Saad MJA, Santos A, Prada PO. Linking Gut Microbiota and Inflammation to Obesity and Insulin Resistance. Physiology (Bethesda) 2017; 31:283-93. [PMID: 27252163 DOI: 10.1152/physiol.00041.2015] [Citation(s) in RCA: 421] [Impact Index Per Article: 60.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Obesity and insulin resistance are the major predisposing factors to comorbidities, such as Type 2 diabetes, nonalcoholic fatty liver disease, cardiovascular and neurodegenerative diseases, and several types of cancer. The prevalence of obesity is still increasing worldwide and now affects a large number of individuals. Here, we review the role of the gut microbiota in the pathophysiology of insulin resistance/obesity. The human intestine is colonized by ∼100 trillion bacteria, which constitute the gut microbiota. Studies have shown that lean and overweight rodents and humans may present differences in the composition of their intestinal flora. Over the past 10 years, data from different sources have established a causal link between the intestinal microbiota and obesity/insulin resistance. It is important to emphasize that diet-induced obesity promotes insulin resistance by mechanisms independent and dependent on gut microbiota. In this review, we present several mechanisms that contribute to explaining the link between intestinal flora and insulin resistance/obesity. The LPS from intestinal flora bacteria can induce a chronic subclinical inflammatory process and obesity, leading to insulin resistance through activation of TLR4. The reduction in circulating SCFA may also have an essential role in the installation of reduced insulin sensitivity and obesity. Other mechanisms include effects of bile acids, branched-chain amino acids (BCAA), and some other lesser-known factors. In the near future, this area should open new therapeutic avenues for obesity/insulin resistance and its comorbidities.
Collapse
Affiliation(s)
- M J A Saad
- Department of Internal Medicine, State University of Campinas (UNICAMP), Campinas, Brazil; and
| | - A Santos
- Department of Internal Medicine, State University of Campinas (UNICAMP), Campinas, Brazil; and
| | - P O Prada
- Department of Internal Medicine, State University of Campinas (UNICAMP), Campinas, Brazil; and School of Applied Sciences, State University of Campinas (UNICAMP), Limeira, Brazil
| |
Collapse
|
20
|
Kalra J, Dhar A. Double-stranded RNA-dependent protein kinase signalling and paradigms of cardiometabolic syndrome. Fundam Clin Pharmacol 2017; 31:265-279. [DOI: 10.1111/fcp.12261] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Revised: 11/30/2016] [Accepted: 12/16/2016] [Indexed: 12/28/2022]
Affiliation(s)
- Jaspreet Kalra
- Department of Pharmacy; Birla Institute of Technology and Sciences Pilani, Hyderabad Campus; Jawahar Nagar Shameerpet, Hyderabad Andhra Pradesh 500078 India
| | - Arti Dhar
- Department of Pharmacy; Birla Institute of Technology and Sciences Pilani, Hyderabad Campus; Jawahar Nagar Shameerpet, Hyderabad Andhra Pradesh 500078 India
| |
Collapse
|
21
|
Tape CJ, Jørgensen C. Cell-Specific Labeling for Analyzing Bidirectional Signaling by Mass Spectrometry. Methods Mol Biol 2017; 1636:219-234. [PMID: 28730482 DOI: 10.1007/978-1-4939-7154-1_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2024]
Abstract
Cell-specific proteome labeling enables global proteome-wide analysis of cell signaling in heterotypic co-cultures. Such approaches have provided unique insight in contact-initiated receptor tyrosine kinase signaling, transfer of proteomic material between heterotypic cells, and interactions between normal and oncogenic cells. Here we describe current methods for cell-specific labeling of heterotypic cells with isotopic labeled amino acids (e.g., SILAC and CTAP). We outline the advantages and disadvantages of individual approaches, describe typical experimental scenarios, and discuss where each experimental approach is optimally applied.
Collapse
Affiliation(s)
- Christopher J Tape
- The Institute of Cancer Research, London, SW3 6JB, UK
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Claus Jørgensen
- Systems Oncology, CRUK Manchester Institute, The University of Manchester, Wilmslow Road, Manchester, M20 4QL, UK.
| |
Collapse
|
22
|
Garnier Y, Pfeiffer D, Jensen A, Berger R. Effects of Mild Hypothermia on Metabolic Disturbances in Fetal Hippocampal Slices After Oxygen/Glucose Deprivation Depend on Depth and Time Delay of Cooling. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/107155760100800403] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
| | | | - Arne Jensen
- Department of Obstrics and Gynecology, Ruhr-Universität Bochum, Bochum, Germany
| | - Richard Berger
- Department of Obstrics and Gynecology, Ruhr-Universität Bochum, Bochum, Germany; Universitätsfrauenklinik Bochum, Knappschaftskrankenhaus, In der Schornau 23 25, D-44892 Bochum, Germany
| |
Collapse
|
23
|
Nakajima S, Chi Y, Gao K, Kono K, Yao J. eIF2α-Independent Inhibition of TNF-α-Triggered NF-κB Activation by Salubrinal. Biol Pharm Bull 2016; 38:1368-74. [PMID: 26328492 DOI: 10.1248/bpb.b15-00312] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Salubrinal is a selective inhibitor of cellular complexes that dephosphorylate eukaryotic translation initiation factor 2α (eIF2α). In previous reports, salubrinal was shown to have the potential to inhibit the activation of nuclear factor-κB (NF-κB) by several stimuli. However, the effects of salubrinal on NF-κB signaling are largely unknown. In this study, we investigated whether and how salubrinal affects NF-κB activation induced by tumor necrosis factor (TNF)-α and interleukin (IL)-1β. We found that salubrinal selectively blocked TNF-α- but not IL-1β-induced activation of NF-κB. This inhibitory effect occurred upstream of transforming growth factor (TGF)-β-activated kinase 1 (TAK1). Further experiments revealed that salubrinal blocked TNF-α-triggered NF-κB activation independent of its action on eIF2α because knockdown of eIF2α by small interfering RNA (siRNA) did not reverse the inhibitory effect of salubrinal on NF-κB. Moreover, guanabenz, a selective inhibitor of the regulatory subunit of protein phosphatase (PP) 1, also preferentially inhibited TNF-α-triggered activation of NF-κB. These findings raise the possibility that salubrinal may selectively block TNF-α-triggered activation of the NF-κB pathway through inhibition of the PP1 complex.
Collapse
Affiliation(s)
- Shotaro Nakajima
- Department of Molecular Signaling, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi
| | | | | | | | | |
Collapse
|
24
|
Complementary Roles of GADD34- and CReP-Containing Eukaryotic Initiation Factor 2α Phosphatases during the Unfolded Protein Response. Mol Cell Biol 2016; 36:1868-80. [PMID: 27161320 DOI: 10.1128/mcb.00190-16] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 04/27/2016] [Indexed: 02/02/2023] Open
Abstract
Phosphorylation of eukaryotic initiation factor 2α (eIF2α) controls transcriptome-wide changes in mRNA translation in stressed cells. While phosphorylated eIF2α (P-eIF2α) attenuates global protein synthesis, mRNAs encoding stress proteins are more efficiently translated. Two eIF2α phosphatases, containing GADD34 and CReP, catalyze P-eIF2α dephosphorylation. The current view of GADD34, whose transcription is stress induced, is that it functions in a feedback loop to resolve cell stress. In contrast, CReP, which is constitutively expressed, controls basal P-eIF2α levels in unstressed cells. Our studies show that GADD34 drives substantial changes in mRNA translation in unstressed cells, particularly targeting the secretome. Following activation of the unfolded protein response (UPR), rapid translation of GADD34 mRNA occurs and GADD34 is essential for UPR progression. In the absence of GADD34, eIF2α phosphorylation is persistently enhanced and the UPR translational program is significantly attenuated. This "stalled" UPR is relieved by the subsequent activation of compensatory mechanisms that include AKT-mediated suppression of PKR-like kinase (PERK) and increased expression of CReP mRNA, partially restoring protein synthesis. Our studies highlight the coordinate regulation of UPR by the GADD34- and CReP-containing eIF2α phosphatases to control cell viability.
Collapse
|
25
|
The Herpes Simplex Virus Virion Host Shutoff Protein Enhances Translation of Viral True Late mRNAs Independently of Suppressing Protein Kinase R and Stress Granule Formation. J Virol 2016; 90:6049-6057. [PMID: 27099317 DOI: 10.1128/jvi.03180-15] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 04/15/2016] [Indexed: 12/13/2022] Open
Abstract
UNLABELLED The herpes simplex virus (HSV) virion host shutoff (vhs) RNase destabilizes cellular and viral mRNAs, suppresses host protein synthesis, dampens antiviral responses, and stimulates translation of viral mRNAs. vhs mutants display a host range phenotype: translation of viral true late mRNAs is severely impaired and stress granules accumulate in HeLa cells, while translation proceeds normally in Vero cells. We found that vhs-deficient virus activates the double-stranded RNA-activated protein kinase R (PKR) much more strongly than the wild-type virus does in HeLa cells, while PKR is not activated in Vero cells, raising the possibility that PKR might play roles in stress granule induction and/or inhibiting translation in restrictive cells. We tested this possibility by evaluating the effects of inactivating PKR. Eliminating PKR in HeLa cells abolished stress granule formation but had only minor effects on viral true late protein levels. These results document an essential role for PKR in stress granule formation by a nuclear DNA virus, indicate that induction of stress granules is the consequence rather than the cause of the translational defect, and are consistent with our previous suggestion that vhs promotes translation of viral true late mRNAs by preventing mRNA overload rather than by suppressing eIF2α phosphorylation. IMPORTANCE The herpes simplex virus vhs RNase plays multiple roles during infection, including suppressing PKR activation, inhibiting the formation of stress granules, and promoting translation of viral late mRNAs. A key question is the extent to which these activities are mechanistically connected. Our results demonstrate that PKR is essential for stress granule formation in the absence of vhs, but at best, it plays a secondary role in suppressing translation of viral mRNAs. Thus, the ability of vhs to promote translation of viral mRNAs can be largely uncoupled from PKR suppression, demonstrating that this viral RNase modulates at least two distinct aspects of RNA metabolism.
Collapse
|
26
|
p58(IPK) suppresses NLRP3 inflammasome activation and IL-1β production via inhibition of PKR in macrophages. Sci Rep 2016; 6:25013. [PMID: 27113095 PMCID: PMC4845006 DOI: 10.1038/srep25013] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 04/04/2016] [Indexed: 02/07/2023] Open
Abstract
The NLRP3 inflammasome activation is a key signaling event for activation and secretion of pro-inflammatory cytokines such as IL-1β from macrophages. p58IPK is a molecular chaperone that regulates protein homeostasis through inhibiting eIF-2α kinases including double-stranded RNA–dependent protein kinase (PKR), which has been recently implicated in inflammasome activation. Herein we investigate the role of p58IPK in TLR4 signaling and inflammasome activation in macrophages. Primary bone marrow-derived macrophages (BMDM) was isolated from p58IPK knockout (KO) and wildtype (WT) mice and treated with lipopolysaccharide (LPS) and ATP to activate TLR4 signaling and stimulate inflammasome activation. Compared to WT macrophages, p58IPK deficient cells demonstrated significantly stronger activation of PKR, NF-κB, and JNK and higher expression of pro-inflammatory genes TNF-α and IL-1β. Coincidently, p58IPK deletion intensified NLRP3-inflammasome activation indicated by enhanced caspase 1 cleavage and increased IL-1β maturation and secretion. Pretreatment with specific PKR inhibitor or overexpression of p58IPK largely abolished the changes in inflammasome activation and IL-1β secretion in p58IPK null macrophages. Furthermore, immunoprecipitation assay confirmed the binding of p58IPK with PKR, but not other TLR4 downstream signaling molecules. Collectively, these results suggest a novel and crucial role of p58IPK in regulation of inflammasome activation and IL-1β secretion in macrophages.
Collapse
|
27
|
George CX, Ramaswami G, Li JB, Samuel CE. Editing of Cellular Self-RNAs by Adenosine Deaminase ADAR1 Suppresses Innate Immune Stress Responses. J Biol Chem 2016; 291:6158-68. [PMID: 26817845 PMCID: PMC4813567 DOI: 10.1074/jbc.m115.709014] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 01/15/2016] [Indexed: 12/24/2022] Open
Abstract
Adenosine deaminases acting on double-stranded RNA (ADARs) catalyze the deamination of adenosine (A) to produce inosine (I) in double-stranded (ds) RNA structures, a process known as A-to-I RNA editing. dsRNA is an important trigger of innate immune responses, including interferon (IFN) production and action. We examined the role of A-to-I RNA editing by two ADARs, ADAR1 and ADAR2, in the sensing of self-RNA in the absence of pathogen infection, leading to activation of IFN-induced, RNA-mediated responses in mouse embryo fibroblasts. IFN treatment of Adar1(-/-) cells lacking both the p110 constitutive and p150 IFN-inducible ADAR1 proteins induced formation of stress granules, whereas neither wild-type (WT) nor Adar2(-/-) cells displayed a comparable stress granule response following IFN treatment. Phosphorylation of protein synthesis initiation factor eIF2α at serine 51 was increased in IFN-treated Adar1(-/-) cells but not in either WT or Adar2(-/-) cells following IFN treatment. Analysis by deep sequencing of mouse exonic loci containing A-to-I-editing sites revealed that the majority of editing in mouse embryo fibroblasts was carried out by ADAR1. IFN treatment increased editing in both WT and Adar2(-/-) cells but not in either Adar1(-/-) or Adar1(-/-) (p150) cells or Stat1(-/-) or Stat2(-/-) cells. Hyper-edited sites found in predicted duplex structures showed strand bias of editing for some RNAs. These results implicate ADAR1 p150 as the major A-to-I editor in mouse embryo fibroblasts, acting as a feedback suppressor of innate immune responses otherwise triggered by self-RNAs possessing regions of double-stranded character.
Collapse
Affiliation(s)
- Cyril X George
- From the Department of Molecular, Cellular and Developmental Biology and
| | - Gokul Ramaswami
- the Department of Genetics, Stanford University, Stanford, California 94305
| | - Jin Billy Li
- the Department of Genetics, Stanford University, Stanford, California 94305
| | - Charles E Samuel
- From the Department of Molecular, Cellular and Developmental Biology and the Biomolecular Sciences and Engineering Program, University of California, Santa Barbara, California 93106 and
| |
Collapse
|
28
|
Shaheen ZR, Corbett JA. Macrophage Expression of Inflammatory Genes in Response to EMCV Infection. Biomolecules 2015; 5:1938-54. [PMID: 26295266 PMCID: PMC4598781 DOI: 10.3390/biom5031938] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 08/06/2015] [Accepted: 08/08/2015] [Indexed: 12/24/2022] Open
Abstract
The expression and production of type 1 interferon is the classic cellular response to virus infection. In addition to this antiviral response, virus infection also stimulates the production of proinflammatory mediators. In this review, the pathways controlling the induction of inflammatory genes and the roles that these inflammatory mediators contribute to host defense against viral pathogens will be discussed. Specific focus will be on the role of the chemokine receptor CCR5, as a signaling receptor controlling the activation of pathways leading to virus-induced inflammatory gene expression.
Collapse
Affiliation(s)
- Zachary R Shaheen
- Department of Biochemistry, Medical College of Wisconsin, 8701 W. Watertown Plank Rd, Milwaukee, WI 53226, USA.
| | - John A Corbett
- Department of Biochemistry, Medical College of Wisconsin, 8701 W. Watertown Plank Rd, Milwaukee, WI 53226, USA.
| |
Collapse
|
29
|
Bahal R, Lakhani P, Bhat A, Kondiparthi L, Dhar I, Desai K, Dhar A. Protein kinase R and the metabolic syndrome. ACTA ACUST UNITED AC 2015. [DOI: 10.3233/jcb-15006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Rishabh Bahal
- Department of Pharmacy, Birla Institute of Technology and Sciences Pilani, Hyderabad Campus, Jawahar Nagar, Shameerpet, Hyderabad, Andhra Pradesh, India
| | - Prit Lakhani
- Department of Pharmacy, Birla Institute of Technology and Sciences Pilani, Hyderabad Campus, Jawahar Nagar, Shameerpet, Hyderabad, Andhra Pradesh, India
| | - Audesh Bhat
- Department of Microbiology & Immunology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Lavanya Kondiparthi
- Department of Pharmacy, Birla Institute of Technology and Sciences Pilani, Hyderabad Campus, Jawahar Nagar, Shameerpet, Hyderabad, Andhra Pradesh, India
| | - Indu Dhar
- Department of Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Kaushik Desai
- Department of Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Arti Dhar
- Department of Pharmacy, Birla Institute of Technology and Sciences Pilani, Hyderabad Campus, Jawahar Nagar, Shameerpet, Hyderabad, Andhra Pradesh, India
| |
Collapse
|
30
|
Hull CM, Bevilacqua PC. Mechanistic Analysis of Activation of the Innate Immune Sensor PKR by Bacterial RNA. J Mol Biol 2015; 427:3501-3515. [PMID: 26026708 DOI: 10.1016/j.jmb.2015.05.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 05/08/2015] [Accepted: 05/20/2015] [Indexed: 12/22/2022]
Abstract
The protein kinase PKR (protein kinase R) is a sensor in innate immunity. PKR autophosphorylates in the presence of double-stranded RNA enabling it to phosphorylate its substrate, eIF2α (eukaryotic initiation factor 2α), halting cellular translation. Classical activators of PKR are long viral double-stranded RNAs, but recently, PKR has been found to be activated by bacterial RNA. However, the features of bacterial RNA that activate PKR are unknown. We studied the Bacillus subtilis trp 5'-UTR (untranslated region), which is an indirect riboswitch with secondary and tertiary RNA structures that regulate gene function. Additionally, the trp 5'-UTR binds a protein, TRAP (tryptophan RNA-binding attenuation protein), which recognizes l-tryptophan. We present the first evidence that multiple structural features in this RNA, which are typical of bacterial RNAs, activate PKR in TRAP-free and TRAP/l-Trp-bound forms. Segments from the 5'-UTR, including the terminator 5'-stem-loop and Shine-Dalgarno blocking hairpins, demonstrated 5'-triphosphate and flanking RNA tail dependence on PKR activation. Disruption of long-distance tertiary interactions in the 5'-UTR led to partial loss in activation, consistent with highly base-paired regions in bacterial RNA activating PKR. One physiological change a bacterial RNA would face in a human cell is a decrease in the concentration of free magnesium. Upon lowering the magnesium concentration to human physiological conditions of 0.5mM, the trp 5'-UTR continued to activate PKR potently. Moreover, total RNA from Escherichia coli, depleted of rRNA, also activated PKR under these ionic conditions. This study demonstrates that PKR can signal the presence of bacterial RNAs under physiological ionic conditions and offers a potential explanation for the apparent absence of riboswitches in the human genome.
Collapse
Affiliation(s)
- Chelsea M Hull
- Department of Chemistry, Center for RNA Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Philip C Bevilacqua
- Department of Chemistry, Center for RNA Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
31
|
|
32
|
Zhu Z, Zhong H, Zhou Q, Hu X, Chen D, Wang J, Wu J, Cai J, Zhou S, Chen AF. Inhibition of PKR impairs angiogenesis through a VEGF pathway. Am J Physiol Endocrinol Metab 2015; 308:E518-24. [PMID: 25587101 DOI: 10.1152/ajpendo.00469.2014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Peripheral artery disease (PAD) is a common clinical problem, and its pathophysiological mechanisms are incompletely understood. Double-stranded RNA-activated protein kinase (PKR) is a ubiquitously expressed serine/threonine protein kinase. Although PKR has been reported in antivirus and the immune system, the role of PKR in vascular function, especially in angiogenesis, is still unclear. PKR(-/-) mice were used in our experiments. Blood flow recovery was significantly delayed in PKR(-/-) vs. WT mice (Laser Doppler detection, n = 9, P < 0.01), accompanied by 34% reduced CD31-positive stain in ischemic muscle 28 days after procedure (immunohistochemistry, n = 9, P < 0.05). PKR expression decreased in the first 12 h and increased to peak at 24 h in human umbilical vein endothelial cells (HUVECs) in response to hypoxia (Western blot analyses, n = 3, P < 0.05). Accordingly, phospho-PKR expression increased in HUVECs 24 h after treatment with hypoxia (Western blot analyses, n = 3, P < 0.05). Inhibition of PKR (siRNA transfection) reduced microtubule formation (Matrigel tube formation, n = 3, vs. control siRNA, P < 0.05) and migration (wound healing, n = 3, vs. control siRNA, P < 0.05) by 33 and 59%, respectively. Vascular endothelial growth factor (VEGF) expression in ischemic muscle from PKR(-/-) mice was significantly decreased by 54% 1 day after procedure (n = 3, P < 0.05, vs. WT) and by 63% 7 days after procedure (n = 3, P < 0.01, vs. WT), respectively. At the same time, VEGF expression in HUVECs decreased by 21% (n = 3, P < 0.05, PKR siRNA vs. control siRNA). These findings demonstrate that PKR mediates angiogenesis through a VEGF pathway, which may form the basis for future intervention of PAD.
Collapse
Affiliation(s)
- Zhaowei Zhu
- Department of Cardiology, the Second Xiangya Hospital, Central South University, Changsha, China; and
| | - Hua Zhong
- The Third Xiangya Hospital and the College of Pharmacy, Central South University, Changsha, China
| | - Qin Zhou
- Department of Cardiology, the Second Xiangya Hospital, Central South University, Changsha, China; and
| | - Xinqun Hu
- Department of Cardiology, the Second Xiangya Hospital, Central South University, Changsha, China; and
| | - Dandan Chen
- Department of Cardiology, the Second Xiangya Hospital, Central South University, Changsha, China; and
| | - Jiemei Wang
- Department of Cardiology, the Second Xiangya Hospital, Central South University, Changsha, China; and
| | - Jinze Wu
- Department of Cardiology, the Second Xiangya Hospital, Central South University, Changsha, China; and
| | - Jingjing Cai
- Department of Cardiology, the Second Xiangya Hospital, Central South University, Changsha, China; and
| | - Shenghua Zhou
- The Third Xiangya Hospital and the College of Pharmacy, Central South University, Changsha, China
| | - Alex F Chen
- Department of Cardiology, the Second Xiangya Hospital, Central South University, Changsha, China; and
| |
Collapse
|
33
|
Yong Y, Meng Y, Ding H, Fan Z, Tang Y, Zhou C, Luo J, Ke ZJ. PACT/RAX regulates the migration of cerebellar granule neurons in the developing cerebellum. Sci Rep 2015; 5:7961. [PMID: 25609658 PMCID: PMC4302322 DOI: 10.1038/srep07961] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 12/29/2014] [Indexed: 01/03/2023] Open
Abstract
PACT and its murine ortholog RAX were originally identified as a protein activator for the dsRNA-dependent, interferon-inducible protein kinase PKR. Recent studies indicated that RAX played a role in embryogenesis and neuronal development. In this study, we investigated the expression of RAX during the postnatal development of the mouse cerebellum and its role in the migration of cerebellar granule neurons (CGNs). High expression of RAX was observed in the cerebellum from postnatal day (PD) 4 to PD9, a period when the CGNs migrate from the external granule layer (EGL) to the internal granule layer (IGL). The migration of the EGL progenitor cells in vivo was inhibited by RAX knockdown on PD4. This finding was confirmed by in vitro studies showing that RAX knockdown impaired the migration of CGNs in cerebellar microexplants. PACT/RAX-regulated migration required its third motif and was independent of PKR. PACT/RAX interacted with focal adhesion kinase (FAK) and PACT/RAX knockdown disturbed the FAK phosphorylation in CGNs. These findings demonstrated a novel function of PACT/RAX in the regulation of neuronal migration.
Collapse
Affiliation(s)
- Yue Yong
- 1] Department of Biochemistry, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China [2] Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Shanghai 200031, China
| | - Ya Meng
- 1] Department of Biochemistry, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China [2] Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Shanghai 200031, China
| | - Hanqing Ding
- Department of Biochemistry, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Zhiqin Fan
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Shanghai 200031, China
| | - Yifen Tang
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Shanghai 200031, China
| | - Chenghua Zhou
- 1] Department of Biochemistry, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China [2] Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Shanghai 200031, China
| | - Jia Luo
- Department of Pharmacology and Nutritonal Sciences, University of Kentucky College of Medicine, Lexington, Kentucky 40536, U.S.A
| | - Zun-Ji Ke
- 1] Department of Biochemistry, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China [2] Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
34
|
Wu C, Bai L, Li Z, Samuel CE, Akusjärvi G, Svensson C. Poor growth of human adenovirus-12 compared to adenovirus-2 correlates with a failure to impair PKR activation during the late phase of infection. Virology 2015; 475:120-8. [DOI: 10.1016/j.virol.2014.11.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2014] [Revised: 10/15/2014] [Accepted: 11/11/2014] [Indexed: 01/03/2023]
|
35
|
Kepp O, Senovilla L, Vitale I, Vacchelli E, Adjemian S, Agostinis P, Apetoh L, Aranda F, Barnaba V, Bloy N, Bracci L, Breckpot K, Brough D, Buqué A, Castro MG, Cirone M, Colombo MI, Cremer I, Demaria S, Dini L, Eliopoulos AG, Faggioni A, Formenti SC, Fučíková J, Gabriele L, Gaipl US, Galon J, Garg A, Ghiringhelli F, Giese NA, Guo ZS, Hemminki A, Herrmann M, Hodge JW, Holdenrieder S, Honeychurch J, Hu HM, Huang X, Illidge TM, Kono K, Korbelik M, Krysko DV, Loi S, Lowenstein PR, Lugli E, Ma Y, Madeo F, Manfredi AA, Martins I, Mavilio D, Menger L, Merendino N, Michaud M, Mignot G, Mossman KL, Multhoff G, Oehler R, Palombo F, Panaretakis T, Pol J, Proietti E, Ricci JE, Riganti C, Rovere-Querini P, Rubartelli A, Sistigu A, Smyth MJ, Sonnemann J, Spisek R, Stagg J, Sukkurwala AQ, Tartour E, Thorburn A, Thorne SH, Vandenabeele P, Velotti F, Workenhe ST, Yang H, Zong WX, Zitvogel L, Kroemer G, Galluzzi L. Consensus guidelines for the detection of immunogenic cell death. Oncoimmunology 2014; 3:e955691. [PMID: 25941621 PMCID: PMC4292729 DOI: 10.4161/21624011.2014.955691] [Citation(s) in RCA: 624] [Impact Index Per Article: 62.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 08/04/2014] [Indexed: 02/07/2023] Open
Abstract
Apoptotic cells have long been considered as intrinsically tolerogenic or unable to elicit immune responses specific for dead cell-associated antigens. However, multiple stimuli can trigger a functionally peculiar type of apoptotic demise that does not go unnoticed by the adaptive arm of the immune system, which we named "immunogenic cell death" (ICD). ICD is preceded or accompanied by the emission of a series of immunostimulatory damage-associated molecular patterns (DAMPs) in a precise spatiotemporal configuration. Several anticancer agents that have been successfully employed in the clinic for decades, including various chemotherapeutics and radiotherapy, can elicit ICD. Moreover, defects in the components that underlie the capacity of the immune system to perceive cell death as immunogenic negatively influence disease outcome among cancer patients treated with ICD inducers. Thus, ICD has profound clinical and therapeutic implications. Unfortunately, the gold-standard approach to detect ICD relies on vaccination experiments involving immunocompetent murine models and syngeneic cancer cells, an approach that is incompatible with large screening campaigns. Here, we outline strategies conceived to detect surrogate markers of ICD in vitro and to screen large chemical libraries for putative ICD inducers, based on a high-content, high-throughput platform that we recently developed. Such a platform allows for the detection of multiple DAMPs, like cell surface-exposed calreticulin, extracellular ATP and high mobility group box 1 (HMGB1), and/or the processes that underlie their emission, such as endoplasmic reticulum stress, autophagy and necrotic plasma membrane permeabilization. We surmise that this technology will facilitate the development of next-generation anticancer regimens, which kill malignant cells and simultaneously convert them into a cancer-specific therapeutic vaccine.
Collapse
Key Words
- APC, antigen-presenting cell
- ATF6, activating transcription factor 6
- ATP release
- BAK1, BCL2-antagonist/killer 1
- BAX, BCL2-associated X protein
- BCL2, B-cell CLL/lymphoma 2 protein
- CALR, calreticulin
- CTL, cytotoxic T lymphocyte
- DAMP, damage-associated molecular pattern
- DAPI, 4′,6-diamidino-2-phenylindole
- DiOC6(3), 3,3′-dihexyloxacarbocyanine iodide
- EIF2A, eukaryotic translation initiation factor 2A
- ER, endoplasmic reticulum
- FLT3LG, fms-related tyrosine kinase 3 ligand
- G3BP1, GTPase activating protein (SH3 domain) binding protein 1
- GFP, green fluorescent protein
- H2B, histone 2B
- HMGB1
- HMGB1, high mobility group box 1
- HSP, heat shock protein
- HSV-1, herpes simplex virus type I
- ICD, immunogenic cell death
- IFN, interferon
- IL, interleukin
- MOMP, mitochondrial outer membrane permeabilization
- PDIA3, protein disulfide isomerase family A
- PI, propidium iodide
- RFP, red fluorescent protein
- TLR, Toll-like receptor
- XBP1, X-box binding protein 1
- autophagy
- calreticulin
- endoplasmic reticulum stress
- immunotherapy
- member 3
- Δψm, mitochondrial transmembrane potential
Collapse
Affiliation(s)
- Oliver Kepp
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Center de Recherche des Cordeliers; Paris, France
- INSERM; U1138; Paris, France
- Metabolomics and Cell Biology Platforms; Gustave Roussy Cancer Campus; Villejuif, France
| | - Laura Senovilla
- INSERM; U1138; Paris, France
- Metabolomics and Cell Biology Platforms; Gustave Roussy Cancer Campus; Villejuif, France
- INSERM; U1015; Villejuif, France
| | - Ilio Vitale
- Regina Elena National Cancer Institute; Rome, Italy
| | - Erika Vacchelli
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Center de Recherche des Cordeliers; Paris, France
- INSERM; U1138; Paris, France
- Gustave Roussy Cancer Campus; Villejuif, France
| | - Sandy Adjemian
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Center de Recherche des Cordeliers; Paris, France
- INSERM; U1138; Paris, France
- Gustave Roussy Cancer Campus; Villejuif, France
- Molecular Cell Biology Laboratory; Department of Immunology; Institute of Biomedical Sciences; University of São Paulo; São Paulo, Brazil
| | - Patrizia Agostinis
- Cell Death Research and Therapy (CDRT) Laboratory; Department of Cellular and Molecular Medicine; University of Leuven; Leuven, Belgium
| | - Lionel Apetoh
- INSERM; UMR866; Dijon, France
- Centre Georges François Leclerc; Dijon, France
- Université de Bourgogne; Dijon, France
| | - Fernando Aranda
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Center de Recherche des Cordeliers; Paris, France
- INSERM; U1138; Paris, France
- Gustave Roussy Cancer Campus; Villejuif, France
| | - Vincenzo Barnaba
- Departement of Internal Medicine and Medical Sciences; University of Rome La Sapienza; Rome, Italy
- Istituto Pasteur; Fondazione Cenci Bolognetti; Rome, Italy
| | - Norma Bloy
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Center de Recherche des Cordeliers; Paris, France
- INSERM; U1138; Paris, France
- Gustave Roussy Cancer Campus; Villejuif, France
| | - Laura Bracci
- Department of Hematology; Oncology and Molecular Medicine; Istituto Superiore di Sanità (ISS); Rome, Italy
| | - Karine Breckpot
- Laboratory of Molecular and Cellular Therapy (LMCT); Department of Biomedical Sciences Medical School of the Free University of Brussels (VUB); Jette, Belgium
| | - David Brough
- Faculty of Life Sciences; University of Manchester; Manchester, UK
| | - Aitziber Buqué
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Center de Recherche des Cordeliers; Paris, France
- INSERM; U1138; Paris, France
- Gustave Roussy Cancer Campus; Villejuif, France
| | - Maria G. Castro
- Department of Neurosurgery and Cell and Developmental Biology; University of Michigan School of Medicine; Ann Arbor, MI USA
| | - Mara Cirone
- Department of Experimental Medicine; University of Rome La Sapienza; Rome, Italy
| | - Maria I. Colombo
- Laboratorio de Biología Celular y Molecular; Instituto de Histología y Embriología (IHEM); Facultad de Ciencias Médicas; Universidad Nacional de Cuyo; CONICET; Mendoza, Argentina
| | - Isabelle Cremer
- INSERM; U1138; Paris, France
- Université Pierre et Marie Curie/Paris VI; Paris, France
- Equipe 13; Center de Recherche des Cordeliers; Paris, France
| | - Sandra Demaria
- Department of Pathology; New York University School of Medicine; New York, NY USA
| | - Luciana Dini
- Department of Biological and Environmental Science and Technology (DiSTeBA); University of Salento; Lecce, Italy
| | - Aristides G. Eliopoulos
- Molecular and Cellular Biology Laboratory; Division of Basic Sciences; University of Crete Medical School; Heraklion, Greece
- Institute of Molecular Biology and Biotechnology; Foundation of Research and Technology - Hellas; Heraklion, Greece
| | - Alberto Faggioni
- Department of Experimental Medicine; University of Rome La Sapienza; Rome, Italy
| | - Silvia C. Formenti
- Department of Radiation Oncology; NewYork University School of Medicine and Langone Medical Center; New York, NY USA
| | - Jitka Fučíková
- Department of Immunology; 2 Faculty of Medicine and University Hospital Motol, Charles University; Prague, Czech Republic
- Sotio; Prague, Czech Republic
| | - Lucia Gabriele
- Department of Hematology; Oncology and Molecular Medicine; Istituto Superiore di Sanità (ISS); Rome, Italy
| | - Udo S. Gaipl
- Department of Radiation Oncology; University Hospital Erlangen; University of Erlangen-Nürnberg; Erlangen, Germany
| | - Jérôme Galon
- INSERM; U1138; Paris, France
- Université Pierre et Marie Curie/Paris VI; Paris, France
- Université Paris Descartes/Paris V; Sorbonne Paris Cité; Paris, France
- Laboratory of Integrative Cancer Immunology; Center de Recherche des Cordeliers; Paris, France
| | - Abhishek Garg
- Cell Death Research and Therapy (CDRT) Laboratory; Department of Cellular and Molecular Medicine; University of Leuven; Leuven, Belgium
| | - François Ghiringhelli
- INSERM; UMR866; Dijon, France
- Centre Georges François Leclerc; Dijon, France
- Université de Bourgogne; Dijon, France
| | - Nathalia A. Giese
- European Pancreas Center; Department of Surgery; University Hospital Heidelberg; Heidelberg, Germany
| | - Zong Sheng Guo
- Department of Surgery; University of Pittsburgh; Pittsburgh, PA USA
| | - Akseli Hemminki
- Cancer Gene Therapy Group; Transplantation laboratory; Haartman Institute; University of Helsinki; Helsinki, Finland
| | - Martin Herrmann
- Department of Internal Medicine 3; University of Erlangen-Nuremberg; Erlangen, Germany
| | - James W. Hodge
- Laboratory of Tumor Immunology and Biology; Center for Cancer Research; National Cancer Institute (NCI), National Institutes of Health (NIH); Bethesda, MD USA
| | - Stefan Holdenrieder
- Institute of Clinical Chemistry and Clinical Pharmacology; University Hospital Bonn; Bonn, Germany
| | - Jamie Honeychurch
- Faculty of Medical and Human Sciences, Institute of Cancer Studies; Manchester Academic Health Sciences Center; University of Manchester; Manchester, UK
| | - Hong-Min Hu
- Cancer Research and Biotherapy Center; Second Affiliated Hospital of Southeast University; Nanjing, China
- Laboratory of Cancer Immunobiology; Earle A. Chiles Research Institute; Providence Portland Medical Center; Portland, OR USA
| | - Xing Huang
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Center de Recherche des Cordeliers; Paris, France
- INSERM; U1138; Paris, France
- Metabolomics and Cell Biology Platforms; Gustave Roussy Cancer Campus; Villejuif, France
| | - Tim M. Illidge
- Faculty of Medical and Human Sciences, Institute of Cancer Studies; Manchester Academic Health Sciences Center; University of Manchester; Manchester, UK
| | - Koji Kono
- Department of Surgery; National University of Singapore; Singapore, Singapore
- Cancer Science Institute of Singapore; National University of Singapore; Singapore, Singapore
| | | | - Dmitri V. Krysko
- VIB Inflammation Research Center; Ghent, Belgium
- Department of Biomedical Molecular Biology; Ghent University; Ghent, Belgium
| | - Sherene Loi
- Division of Cancer Medicine and Division of Research; Peter MacCallum Cancer Center; East Melbourne; Victoria, Australia
| | - Pedro R. Lowenstein
- Department of Neurosurgery and Cell and Developmental Biology; University of Michigan School of Medicine; Ann Arbor, MI USA
| | - Enrico Lugli
- Unit of Clinical and Experimental Immunology; Humanitas Clinical and Research Center; Milan, Italy
- Department of Medical Biotechnologies and Translational Medicine, University of Milan; Rozzano, Italy
| | - Yuting Ma
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Center de Recherche des Cordeliers; Paris, France
- INSERM; U1138; Paris, France
- Gustave Roussy Cancer Campus; Villejuif, France
| | - Frank Madeo
- Institute of Molecular Biosciences; University of Graz; Graz, Austria
| | - Angelo A. Manfredi
- University Vita-Salute San Raffaele; Milano, Italy
- San Raffaele Scientific Institute; Milano, Italy
| | - Isabelle Martins
- Gustave Roussy Cancer Campus; Villejuif, France
- INSERM, U1030; Villejuif, France
- Faculté de Médecine; Université Paris-Sud/Paris XI; Kremlin-Bicêtre, France
| | - Domenico Mavilio
- Unit of Clinical and Experimental Immunology; Humanitas Clinical and Research Center; Milan, Italy
- Department of Medical Biotechnologies and Translational Medicine, University of Milan; Rozzano, Italy
| | - Laurie Menger
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Center de Recherche des Cordeliers; Paris, France
- INSERM; U1138; Paris, France
- Gustave Roussy Cancer Campus; Villejuif, France
- Cancer Immunology Unit, Research Department of Haematology; University College London (UCL) Cancer Institute; London, UK
| | - Nicolò Merendino
- Department of Ecological and Biological Sciences (DEB), Tuscia University; Viterbo, Italy
| | - Michael Michaud
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Center de Recherche des Cordeliers; Paris, France
- INSERM; U1138; Paris, France
- Gustave Roussy Cancer Campus; Villejuif, France
| | - Gregoire Mignot
- Cellular and Molecular Immunology and Endocrinology, Oniris; Nantes, France
| | - Karen L. Mossman
- Department of Pathology and Molecular Medicine; McMaster Immunology Research Center; Hamilton, Canada
- Institute for Infectious Disease Research; McMaster University; Hamilton, Canada
| | - Gabriele Multhoff
- Department of Radiation Oncology; Klinikum rechts der Isar; Technical University of Munich; Munich, Germany
| | - Rudolf Oehler
- Comprehensive Cancer Center; Medical University of Vienna; Vienna, Austria
| | - Fabio Palombo
- Departement of Internal Medicine and Medical Sciences; University of Rome La Sapienza; Rome, Italy
- Istituto Pasteur; Fondazione Cenci Bolognetti; Rome, Italy
| | | | - Jonathan Pol
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Center de Recherche des Cordeliers; Paris, France
- INSERM; U1138; Paris, France
- Gustave Roussy Cancer Campus; Villejuif, France
| | - Enrico Proietti
- Department of Hematology; Oncology and Molecular Medicine; Istituto Superiore di Sanità (ISS); Rome, Italy
| | - Jean-Ehrland Ricci
- INSERM; U1065; Nice, France
- Equipe “Contrôle Métabolique des Morts Cellulaires,” Center Méditerranéen de Médecine Moléculaire (C3M); Nice, France
- Faculté de Médecine; Université de Nice Sophia Antipolis; Nice, France
- Centre Hospitalier Universitaire de Nice; Nice, France
| | - Chiara Riganti
- Department of Oncology and Subalpine Center for Research and Experimental Medicine (CeRMS); University of Turin; Turin, Italy
| | - Patrizia Rovere-Querini
- University Vita-Salute San Raffaele; Milano, Italy
- San Raffaele Scientific Institute; Milano, Italy
| | - Anna Rubartelli
- Cell Biology Unit; Azienda Ospedaliera Universitaria San Martino; Istituto Nazionale per la Ricerca sul Cancro; Genova, Italy
| | | | - Mark J. Smyth
- Immunology in Cancer and Infection Laboratory; QIMR Berghofer Medical Research Institute; Herston, Australia
- School of Medicine, University of Queensland; Herston, Australia
| | - Juergen Sonnemann
- Department of Pediatric Haematology and Oncology; Jena University Hospital, Children's Clinic; Jena, Germany
| | - Radek Spisek
- Department of Immunology; 2 Faculty of Medicine and University Hospital Motol, Charles University; Prague, Czech Republic
- Sotio; Prague, Czech Republic
| | - John Stagg
- Centre de Recherche du Center Hospitalier de l’Université de Montréal; Faculté de Pharmacie, Université de Montréal; Montréal, Canada
| | - Abdul Qader Sukkurwala
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Center de Recherche des Cordeliers; Paris, France
- INSERM; U1138; Paris, France
- Gustave Roussy Cancer Campus; Villejuif, France
- Department of Pathology, Dow International Medical College; Dow University of Health Sciences; Karachi, Pakistan
| | - Eric Tartour
- INSERM; U970; Paris, France
- Pôle de Biologie; Hôpital Européen Georges Pompidou; AP-HP; Paris, France
| | - Andrew Thorburn
- Department of Pharmacology; University of Colorado School of Medicine; Aurora, CO USA
| | | | - Peter Vandenabeele
- VIB Inflammation Research Center; Ghent, Belgium
- Department of Biomedical Molecular Biology; Ghent University; Ghent, Belgium
- Methusalem Program; Ghent University; Ghent, Belgium
| | - Francesca Velotti
- Department of Ecological and Biological Sciences (DEB), Tuscia University; Viterbo, Italy
| | - Samuel T. Workenhe
- Department of Pathology and Molecular Medicine; McMaster Immunology Research Center; Hamilton, Canada
- Institute for Infectious Disease Research; McMaster University; Hamilton, Canada
| | - Haining Yang
- University of Hawaii Cancer Center; Honolulu, HI USA
| | - Wei-Xing Zong
- Department of Molecular Genetics and Microbiology; Stony Brook University; Stony Brook, NY USA
| | - Laurence Zitvogel
- INSERM; U1015; Villejuif, France
- Gustave Roussy Cancer Campus; Villejuif, France
- Centre d’Investigation Clinique Biothérapie 507 (CICBT507); Gustave Roussy Cancer Campus; Villejuif, France
| | - Guido Kroemer
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Center de Recherche des Cordeliers; Paris, France
- INSERM; U1138; Paris, France
- Metabolomics and Cell Biology Platforms; Gustave Roussy Cancer Campus; Villejuif, France
- Université Paris Descartes/Paris V; Sorbonne Paris Cité; Paris, France
- Pôle de Biologie; Hôpital Européen Georges Pompidou; AP-HP; Paris, France
| | - Lorenzo Galluzzi
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Center de Recherche des Cordeliers; Paris, France
- INSERM; U1138; Paris, France
- Gustave Roussy Cancer Campus; Villejuif, France
- Université Paris Descartes/Paris V; Sorbonne Paris Cité; Paris, France
| |
Collapse
|
36
|
Yong Y, Luo J, Ke ZJ. dsRNA binding protein PACT/RAX in gene silencing, development and diseases. ACTA ACUST UNITED AC 2014; 9:382-388. [PMID: 25554729 DOI: 10.1007/s11515-014-1325-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
PACT (Protein kinase, interferon-inducible double stranded RNA dependent activator) and its murine ortholog RAX (PKR-associated protein X) were originally identified as a protein activator for the dsRNA-dependent, interferon-inducible protein kinase (PKR). Endogenous PACT/RAX activates PKR in response to diverse stress signals such as serum starvation, and peroxide or arsenite treatment. PACT/RAX heterodimerized with PKR and activated it with its third motif in the absence of dsRNA. The activation of PKR leads to enhanced eIF2α phosphorylation followed by apoptosis or inhibition of growth. Besides the role of activating PKR, PACT is associated with a ~500 kDa complex that contains Dicer, hAgo2, and TRBP (TAR RNA binding protein) and it associates with Dicer to facilitate the production of small interfering RNA. PACT/RAX plays an important role in diverse physiological and pathological processes. Pact-/- mice exhibit notable developmental abnormalities including microtia, with craniofacial ear, and hearing defects. Pact-/- mice had smaller body sizes and fertility defects, both of which were caused by defective pituitary functions. It was found that dRAX disrupted fly embryos homozygous, displayed highly abnormal commissural axon structure of the central nervous system, and 70% of the flies homozygous for the mutant allele died prior to adulthood. Using high density SNP genotyping arrays, it was found that a mutation in PRKRA (the PACT/RAX gene) is the causative genetic mutation in DYT16, a novel autosomal recessive dystonia-parkinsonism syndrome in Brazilian patients.
Collapse
Affiliation(s)
- Yue Yong
- Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Shanghai 200031, China
| | - Jia Luo
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, Kentucky 40536, USA
| | - Zun-Ji Ke
- Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Shanghai 200031, China ; Department of Biochemistry, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| |
Collapse
|
37
|
The herpes simplex virus 1 virion host shutoff protein enhances translation of viral late mRNAs by preventing mRNA overload. J Virol 2014; 88:9624-32. [PMID: 24920814 DOI: 10.1128/jvi.01350-14] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
UNLABELLED We recently demonstrated that the virion host shutoff (vhs) protein, an mRNA-specific endonuclease, is required for efficient herpes simplex virus 1 (HSV-1) replication and translation of viral true-late mRNAs, but not other viral and cellular mRNAs, in many cell types (B. Dauber, J. Pelletier, and J. R. Smiley, J. Virol. 85:5363-5373, 2011, http://dx.doi.org/10.1128/JVI.00115-11). Here, we evaluated whether the structure of true-late mRNAs or the timing of their transcription is responsible for the poor translation efficiency in the absence of vhs. To test whether the highly structured 5' untranslated region (5'UTR) of the true-late gC mRNA is the primary obstacle for translation initiation, we replaced it with the less structured 5'UTR of the γ-actin mRNA. However, this mutation did not restore translation in the context of a vhs-deficient virus. We then examined whether the timing of transcription affects translation efficiency at late times. To this end, we engineered a vhs-deficient virus mutant that transcribes the true-late gene US11 with immediate-early kinetics (IEUS11-ΔSma). Interestingly, IEUS11-ΔSma showed increased translational activity on the US11 transcript at late times postinfection, and US11 protein levels were restored to wild-type levels. These results suggest that mRNAs can maintain translational activity throughout the late stage of infection if they are present before translation factors and/or ribosomes become limiting. Taken together, these results provide evidence that in the absence of the mRNA-destabilizing function of vhs, accumulation of viral mRNAs overwhelms the capacity of the host translational machinery, leading to functional exclusion of the last mRNAs that are made during infection. IMPORTANCE The process of mRNA translation accounts for a significant portion of a cell's energy consumption. To ensure efficient use of cellular resources, transcription, translation, and mRNA decay are tightly linked and highly regulated. However, during virus infection, the overall amount of mRNA may increase drastically, possibly overloading the capacity of the translation apparatus. Our results suggest that the HSV-1 vhs protein, an mRNA-specific endoribonuclease, prevents mRNA overload during infection, thereby allowing translation of late viral mRNAs. The requirement for vhs varies between cell types. Further studies of the basis for this difference likely will offer insights into how cells regulate overall mRNA levels and access to the translational apparatus.
Collapse
|
38
|
Tape CJ, Norrie IC, Worboys JD, Lim L, Lauffenburger DA, Jørgensen C. Cell-specific labeling enzymes for analysis of cell-cell communication in continuous co-culture. Mol Cell Proteomics 2014; 13:1866-76. [PMID: 24820872 DOI: 10.1074/mcp.o113.037119] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We report the orthologous screening, engineering, and optimization of amino acid conversion enzymes for cell-specific proteomic labeling. Intracellular endoplasmic-reticulum-anchored Mycobacterium tuberculosis diaminopimelate decarboxylase (DDC(M.tub-KDEL)) confers cell-specific meso-2,6-diaminopimelate-dependent proliferation to multiple eukaryotic cell types. Optimized lysine racemase (Lyr(M37-KDEL)) supports D-lysine specific proliferation and efficient cell-specific isotopic labeling. When ectopically expressed in discrete cell types, these enzymes confer 90% cell-specific isotopic labeling efficiency after 10 days of co-culture. Moreover, DDC(M.tub-KDEL) and Lyr(M37-KDEL) facilitate equally high cell-specific labeling fidelity without daily media exchange. Consequently, the reported novel enzyme pairing can be used to study cell-specific signaling in uninterrupted, continuous co-cultures. Demonstrating the importance of increased labeling stability for addressing novel biological questions, we compare the cell-specific phosphoproteome of fibroblasts in direct co-culture with epithelial tumor cells in both interrupted (daily media exchange) and continuous (no media exchange) co-cultures. This analysis identified multiple cell-specific phosphorylation sites specifically regulated in the continuous co-culture. Given their applicability to multiple cell types, continuous co-culture labeling fidelity, and suitability for long-term cell-cell phospho-signaling experiments, we propose DDC(M.tub-KDEL) and Lyr(M37-KDEL) as excellent enzymes for cell-specific labeling with amino acid precursors.
Collapse
Affiliation(s)
- Christopher J Tape
- From the ‡Division of Cancer Biology, The Institute of Cancer Research, 237 Fulham Road, London, SW3 6JB, UK; §Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Ida C Norrie
- From the ‡Division of Cancer Biology, The Institute of Cancer Research, 237 Fulham Road, London, SW3 6JB, UK
| | - Jonathan D Worboys
- From the ‡Division of Cancer Biology, The Institute of Cancer Research, 237 Fulham Road, London, SW3 6JB, UK
| | - Lindsay Lim
- From the ‡Division of Cancer Biology, The Institute of Cancer Research, 237 Fulham Road, London, SW3 6JB, UK
| | - Douglas A Lauffenburger
- §Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Claus Jørgensen
- From the ‡Division of Cancer Biology, The Institute of Cancer Research, 237 Fulham Road, London, SW3 6JB, UK;
| |
Collapse
|
39
|
Zhang S, Sun Y, Chen H, Dai Y, Zhan Y, Yu S, Qiu X, Tan L, Song C, Ding C. Activation of the PKR/eIF2α signaling cascade inhibits replication of Newcastle disease virus. Virol J 2014; 11:62. [PMID: 24684861 PMCID: PMC3994276 DOI: 10.1186/1743-422x-11-62] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 03/27/2014] [Indexed: 12/15/2022] Open
Abstract
Background Newcastle Disease virus (NDV) causes severe and economically significant disease in almost all birds. However, factors that affect NDV replication in host cells are poorly understood. NDV generates long double-stranded RNA (dsRNA) molecules during transcription of single-stranded genomic RNA. Protein kinase R (PKR) is activated by dsRNA. The aim of this study was to elucidate the role of PKR in NDV infection. Results NDV infection led to the activation of dsRNA-dependent PKR and phosphorylation of its substrate, translation initiation factor eIF2α, in a dose-dependent manner by either the lentogenic strain LaSota or a velogenic strain Herts/33. PKR activation coincided with the accumulation of dsRNA induced by NDV infection. PKR knockdown remarkably decreased eIF2α phosphorylation as well as IFN-β mRNA levels, leading to the augmentation of extracellular virus titer. Furthermore, siRNA knockdown or phosphorylation of eIF2α or okadaic acid treatment significantly impaired NDV replication, indicating the critical role of the PKR/eIF2α signaling cascade in NDV infection. Conclusion PKR is activated by dsRNA generated by NDV infection and inhibits NDV replication by eIF2α phosphorylation. This study provides insight into NDV-host interactions for the development of candidate antiviral strategies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Chan Ding
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No,518 Ziyue Road, Shanghai 200241, China.
| |
Collapse
|
40
|
John L, Samuel CE. Induction of stress granules by interferon and down-regulation by the cellular RNA adenosine deaminase ADAR1. Virology 2014; 454-455:299-310. [PMID: 24725957 DOI: 10.1016/j.virol.2014.02.025] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 01/20/2014] [Accepted: 02/22/2014] [Indexed: 12/13/2022]
Abstract
Measles virus (MV) deficient in C protein (C(ko)) expression efficiently induces both stress granules (SG) and interferon (IFNβ), whereas isogenic wild-type (WT) and V mutant (V(ko)) viruses do not. We therefore examined the effect of IFNβ pretreatment on SG formation, and the roles played by the IFN-inducible double-stranded (ds) RNA-dependent protein kinase (PKR) and dsRNA adenosine deaminase (ADAR1). SG formation in ADAR1-sufficient cells infected with WT or V(ko) mutant virus was enhanced by IFN treatment and was PKR-dependent. SG formation in C(ko) virus-infected cells was already high without IFN treatment and was not further enhanced by IFN. IFN treatment alone, in the absence of infection, induced SG formation in ADAR1-deficient but not ADAR1-sufficient cells. Type I IFN-induced enhancement in SG formation occurred by a canonical IFN signaling response dependent upon STAT1 and STAT2. These results further establish ADAR1 as a suppressor of the interferon and SG innate immune responses.
Collapse
Affiliation(s)
- Lijo John
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA 93106, United States
| | - Charles E Samuel
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA 93106, United States; Biomolecular Sciences and Engineering Program, University of California, Santa Barbara, CA 93106, United States.
| |
Collapse
|
41
|
Kim D, Hur J, Park K, Bae S, Shin D, Ha SC, Hwang HY, Hohng S, Lee JH, Lee S, Kim YG, Kim KK. Distinct Z-DNA binding mode of a PKR-like protein kinase containing a Z-DNA binding domain (PKZ). Nucleic Acids Res 2014; 42:5937-48. [PMID: 24682817 PMCID: PMC4027156 DOI: 10.1093/nar/gku189] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Double-stranded ribonucleic acid-activated protein kinase (PKR) downregulates translation as a defense mechanism against viral infection. In fish species, PKZ, a PKR-like protein kinase containing left-handed deoxyribonucleic acid (Z-DNA) binding domains, performs a similar role in the antiviral response. To understand the role of PKZ in Z-DNA recognition and innate immune response, we performed structural and functional studies of the Z-DNA binding domain (Zα) of PKZ from Carassius auratus (caZαPKZ). The 1.7-Å resolution crystal structure of caZαPKZ:Z-DNA revealed that caZαPKZ shares the overall fold with other Zα, but has discrete structural features that differentiate its DNA binding mode from others. Functional analyses of caZαPKZ and its mutants revealed that caZαPKZ mediates the fastest B-to-Z transition of DNA among Zα, and the minimal interaction for Z-DNA recognition is mediated by three backbone phosphates and six residues of caZαPKZ. Structure-based mutagenesis and B-to-Z transition assays confirmed that Lys56 located in the β-wing contributes to its fast B-to-Z transition kinetics. Investigation of the DNA binding kinetics of caZαPKZ further revealed that the B-to-Z transition rate is positively correlated with the association rate constant. Taking these results together, we conclude that the positive charge in the β-wing largely affects fast B-to-Z transition activity by enhancing the DNA binding rate.
Collapse
Affiliation(s)
- Doyoun Kim
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 440-746, Korea
| | - Jeonghwan Hur
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 440-746, Korea
| | - Kwangsoo Park
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 440-746, Korea
| | - Sangsu Bae
- Department of Physics and Astronomy, Seoul National University, Seoul 151-747, Korea National Center for Creative Research Initiatives, Seoul National University, Seoul 151-747, Korea
| | - Donghyuk Shin
- Department of Biological Sciences, Sungkyunkwan University, Suwon 440-746, Korea
| | - Sung Chul Ha
- Pohang Accelerator Laboratory, Pohang University of Science and Technology, Pohang, Kyungbuk 790-784, Korea
| | - Hye-Yeon Hwang
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 440-746, Korea
| | - Sungchul Hohng
- Department of Physics and Astronomy, Seoul National University, Seoul 151-747, Korea National Center for Creative Research Initiatives, Seoul National University, Seoul 151-747, Korea Department of Biophysics and Chemical Biology, Seoul National University, Seoul 151-747, Korea
| | - Joon-Hwa Lee
- Department of Chemistry and RINS, Gyeongsang National University, Jinju, Gyeongnam 660-701, Korea
| | - Sangho Lee
- Department of Biological Sciences, Sungkyunkwan University, Suwon 440-746, Korea
| | - Yang-Gyun Kim
- Department of Chemistry, Sungkyunkwan University, Suwon 440-746, Korea
| | - Kyeong Kyu Kim
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 440-746, Korea
| |
Collapse
|
42
|
Valentine CD, Zhang H, Phuan PW, Nguyen J, Verkman AS, Haggie PM. Small molecule screen yields inhibitors of Pseudomonas homoserine lactone-induced host responses. Cell Microbiol 2013; 16:1-14. [PMID: 23910799 DOI: 10.1111/cmi.12176] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2013] [Revised: 07/16/2013] [Accepted: 07/26/2013] [Indexed: 12/27/2022]
Abstract
Pseudomonas aeruginosa infections are commonly associated with cystic fibrosis, pneumonias, neutropenia and burns. The P. aeruginosa quorum sensing molecule N-(3-oxo-dodecanoyl) homoserine lactone (C12) cause multiple deleterious host responses, including repression of NF-κB transcriptional activity and apoptosis. Inhibition of C12-mediated host responses is predicted to reduce P. aeruginosa virulence. We report here a novel, host-targeted approach for potential adjunctive anti-Pseudomonal therapy based on inhibition of C12-mediated host responses. A high-throughput screen was developed to identify C12 inhibitors that restore NF-κB activity in C12-treated, lipopolysaccharide (LPS)-stimulated cells. Triazolo[4,3-a]quinolines with nanomolar potency were identified as C12-inhibitors that restore NF-κB-dependent luciferase expression in LPS- and TNF-stimulated cell lines. In primary macrophages and fibroblasts, triazolo[4,3-a]quinolines inhibited C12 action to restore cytokine secretion in LPS-stimulated cells. Serendipitously, in the absence of an inflammatory stimulus, triazolo[4,3-a]quinolines prevented C12-mediated responses, including cytotoxicity, elevation of cytoplasmic calcium, and p38 MAPK phosphorylation. In vivo efficacy was demonstrated in a murine model of dermal inflammation involving intradermalC12 administration. The discovery of triazolo[4,3-a]quinolines provides a pharmacological tool to investigate C12-mediated host responses, and a potential host-targeted anti-Pseudomonal therapy.
Collapse
Affiliation(s)
- Cathleen D Valentine
- Division of Nephrology, Department of Medicine, University of California San Francisco, San Francisco, CA, 94143, USA
| | | | | | | | | | | |
Collapse
|
43
|
Valentine CD, Anderson MO, Papa FR, Haggie PM. X-box binding protein 1 (XBP1s) is a critical determinant of Pseudomonas aeruginosa homoserine lactone-mediated apoptosis. PLoS Pathog 2013; 9:e1003576. [PMID: 23990788 PMCID: PMC3749957 DOI: 10.1371/journal.ppat.1003576] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 07/06/2013] [Indexed: 12/22/2022] Open
Abstract
Pseudomonas aeruginosa infections are associated with high mortality rates and occur in diverse conditions including pneumonias, cystic fibrosis and neutropenia. Quorum sensing, mediated by small molecules including N-(3-oxo-dodecanoyl) homoserine lactone (C12), regulates P. aeruginosa growth and virulence. In addition, host cell recognition of C12 initiates multiple signalling responses including cell death. To gain insight into mechanisms of C12-mediated cytotoxicity, we studied the role of endoplasmic reticulum stress in host cell responses to C12. Dramatic protection against C12-mediated cell death was observed in cells that do not produce the X-box binding protein 1 transcription factor (XBP1s). The leucine zipper and transcriptional activation motifs of XBP1s were sufficient to restore C12-induced caspase activation in XBP1s-deficient cells, although this polypeptide was not transcriptionally active. The XBP1s polypeptide also regulated caspase activation in cells stimulated with N-(3-oxo-tetradecanoyl) homoserine lactone (C14), produced by Yersinia enterolitica and Burkholderia pseudomallei, and enhanced homoserine lactone-mediated caspase activation in the presence of endogenous XBP1s. In C12-tolerant cells, responses to C12 including phosphorylation of p38 MAPK and eukaryotic initiation factor 2α were conserved, suggesting that C12 cytotoxicity is not heavily dependent on these pathways. In summary, this study reveals a novel and unconventional role for XBP1s in regulating host cell cytotoxic responses to bacterial acyl homoserine lactones. Chronic and acute infections associated with P. aeruginosa constitute a major healthcare burden. Antimicrobial approaches are currently used against P. aeruginosa; however, infections are typically refractory to treatment and drug resistant strains have been isolated. As such, there is urgent need to understand mechanisms of P. aeruginosa virulence and for new strategies to fight infections. The P. aeruginosa-derived quorum-sensing molecule C12 is recognized by host cells and initiates stress responses including cytotoxicity. In this study, the X-box binding protein 1 transcription factor (XBP1s) was identified as a host factor critical for apoptotic responses initiated by C12 and other similar quorum sensing molecules. Additional C12-initiated host responses, including phosphorylation of p38 MAPK and eIF2α were found to be of lesser importance for C12-initiated cytotoxicity. These studies have broad implications for our understanding of bacterial virulence mechanisms and for development of potential new strategies to combat infections.
Collapse
Affiliation(s)
- Cathleen D. Valentine
- Department of Nephrology, University of California, San Francisco, San Francisco, California, United States of America
| | - Marc O. Anderson
- Department of Chemistry and Biochemistry, San Francisco State University, San Francisco, California, United States of America
| | - Feroz R. Papa
- Lung Biology Center, Diabetes Center, and California Institute for Quantitative Biosciences, University of California, San Francisco, San Francisco, California, United States of America
| | - Peter M. Haggie
- Department of Nephrology, University of California, San Francisco, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
44
|
Influence of gut microbiota on subclinical inflammation and insulin resistance. Mediators Inflamm 2013; 2013:986734. [PMID: 23840101 PMCID: PMC3694527 DOI: 10.1155/2013/986734] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 05/16/2013] [Indexed: 12/13/2022] Open
Abstract
Obesity is the main condition that is correlated with the appearance of insulin resistance, which is the major link among its comorbidities, such as type 2 diabetes, nonalcoholic fatty liver disease, cardiovascular and neurodegenerative diseases, and several types of cancer. Obesity affects a large number of individuals worldwide; it degrades human health and quality of life. Here, we review the role of the gut microbiota in the pathophysiology of obesity and type 2 diabetes, which is promoted by a bacterial diversity shift mediated by overnutrition. Whole bacteria, their products, and metabolites undergo increased translocation through the gut epithelium to the circulation due to degraded tight junctions and the consequent increase in intestinal permeability that culminates in inflammation and insulin resistance. Several strategies focusing on modulation of the gut microbiota (antibiotics, probiotics, and prebiotics) are being experimentally employed in metabolic derangement in order to reduce intestinal permeability, increase the production of short chain fatty acids and anorectic gut hormones, and promote insulin sensitivity to counteract the inflammatory status and insulin resistance found in obese individuals.
Collapse
|
45
|
Taghavi N, Samuel CE. RNA-dependent protein kinase PKR and the Z-DNA binding orthologue PKZ differ in their capacity to mediate initiation factor eIF2α-dependent inhibition of protein synthesis and virus-induced stress granule formation. Virology 2013; 443:48-58. [PMID: 23706307 DOI: 10.1016/j.virol.2013.04.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 04/03/2013] [Accepted: 04/22/2013] [Indexed: 02/07/2023]
Abstract
Protein kinase R (PKR), a regulator of translation in mammalian cells, possesses two ds-RNA binding domains responsible for kinase activation. Protein kinase Z (PKZ), a PKR-like kinase present in fish, possesses two Z-DNA binding domains. A complementation strategy with cells stably deficient in PKR was used to compare the functions of PKR and PKZ. We found reporter expression was inhibited by wildtype (WT) PKR but not by either catalytic (K296R) or RNA-binding (K64E) mutants. PKZ, like PKR, more potently inhibited 5' cap-dependent compared to IRES-dependent reporter expression. However, in contrast to PKR-expressing cells, phosphorylation of initiation factor eIF2α was not detectably increased in PKZ-expressing cells. Furthermore, virus-induced stress granule formation was observed in PKR-deficient cells complemented with WT PKR but not K296R mutant PKR or WT PKZ. These results suggest that PKR and PKZ function by distinguishable mechanisms to modulate host responses including protein synthesis inhibition and stress granule formation.
Collapse
Affiliation(s)
- Nora Taghavi
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, California 93106, USA
| | | |
Collapse
|
46
|
Li Y, Xie J, Wu S, Xia J, Zhang P, Liu C, Zhang P, Huang X. Protein kinase regulated by dsRNA downregulates the interferon production in dengue virus- and dsRNA-stimulated human lung epithelial cells. PLoS One 2013; 8:e55108. [PMID: 23372823 PMCID: PMC3555826 DOI: 10.1371/journal.pone.0055108] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Accepted: 12/18/2012] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Dengue virus (DENV) is found in the tropical and subtropical regions and affects millions of people annually. Currently, no specific vaccine or antiviral treatment against dengue virus is available. Innate immunity has been shown to be important for host resistance to DENV infection. Although protein kinase regulated by double-stranded RNA (PKR) has been found to promote the innate signaling in response to infection by several viruses, its role in the innate response to DENV infection is still unclear. Our study aimed to investigate the role of PKR in DENV-induced innate immune responses. METHODOLOGY/PRINCIPAL FINDINGS By RNAi, silencing of PKR significantly enhanced the expression of interferon (IFN)-β in DENV infected human lung epithelial A549 cells. Western blot and immunofluorescence microscopy data showed that PKR knockdown upregulated the activation of innate signaling cascades including p38 and JNK mitogen-activated protein kinases (MAPKs), interferon regulatory factor-3 and NF-κB, following DENV2 infection. Likewise, a negative regulatory effect of PKR on the IFN production was also observed in poly(IC) challenged cells. Moreover, the PKR knockdown-mediated IFN induction was attenuated by RIG-I or IPS-1 silencing. Finally, overexpression of a catalytically inactive PKR mutant (K296R), but not of a mutant lacking dsRNA binding activity (K64E) or the double mutant (K64EK296R), reversed the IFN induction mediated by PKR knockdown, suggesting that the dsRNA binding activity is required for PKR to downregulate IFN production. CONCLUSIONS/SIGNIFICANCE PKR acts as a negative regulator of IFN induction triggered by DENVs and poly(IC), and this regulation relies on its dsRNA binding activity. These findings reveal a novel regulatory role for PKR in innate immunity, suggesting that PKR might be a promising target for anti-DENV treatments.
Collapse
Affiliation(s)
- Yuye Li
- Department of Immunology, Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Jiong Xie
- Department of Immunology, Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Siyu Wu
- Department of Immunology, Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Jun Xia
- Department of Immunology, Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Peifen Zhang
- Department of Immunology, Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Chao Liu
- Department of Immunology, Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Ping Zhang
- Department of Immunology, Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Xi Huang
- Department of Immunology, Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| |
Collapse
|
47
|
Stress granule formation induced by measles virus is protein kinase PKR dependent and impaired by RNA adenosine deaminase ADAR1. J Virol 2012; 87:756-66. [PMID: 23115276 DOI: 10.1128/jvi.02270-12] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
ADAR1, an interferon (IFN)-inducible double-stranded (ds) RNA-specific adenosine deaminase, downregulates host innate responses, including activation of the dsRNA-dependent protein kinase (PKR) and induction of IFN-β mRNA. Conversely, PKR amplifies IFN-β induction by measles virus (MV) and inhibits virus protein synthesis. Formation of stress granules (SGs), cytoplasmic aggregates of stalled translation complexes and RNA-binding proteins, is a host response to virus infection mediated by translation initiation factor eIF2α phosphorylation. We examined the roles of PKR and ADAR1 in SG formation using HeLa cells stably deficient in either PKR (PKR(kd)) or ADAR1 (ADAR1(kd)) compared to control (CON(kd)) cells. Infection with either wild-type (WT) MV or an isogenic mutant lacking C protein expression (C(ko)) comparably induced formation of SG in ADAR1(kd) cells, whereas only the C(ko) mutant was an efficient inducer in control cells. Both ADAR1 and PKR colocalized with SG following infection. MV-induced; SG formation was PKR dependent but impaired by ADAR1. Complementation of ADAR1(kd) cells by expression of either p150 WT isoform or the p150 Zα (Y177A) Z-DNA-binding mutant of ADAR1 restored suppression of host responses, including SG formation and PKR activation. In contrast, neither the p110 WT isoform nor the p150 catalytic (H910A, E912A) mutant of ADAR1 complemented the ADAR1(kd) phenotype. These results further establish ADAR1 as a suppressor of host innate responses, including activation of PKR and the subsequent SG response.
Collapse
|
48
|
Siddiqui MA, Malathi K. RNase L induces autophagy via c-Jun N-terminal kinase and double-stranded RNA-dependent protein kinase signaling pathways. J Biol Chem 2012; 287:43651-64. [PMID: 23109342 DOI: 10.1074/jbc.m112.399964] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Autophagy is a tightly regulated mechanism that mediates sequestration, degradation, and recycling of cellular proteins, organelles, and pathogens. Several proteins associated with autophagy regulate host responses to viral infections. Ribonuclease L (RNase L) is activated during viral infections and cleaves cellular and viral single-stranded RNAs, including rRNAs in ribosomes. Here we demonstrate that direct activation of RNase L coordinates the activation of c-Jun N-terminal kinase (JNK) and double-stranded RNA-dependent protein kinase (PKR) to induce autophagy with hallmarks as accumulation of autophagic vacuoles, p62(SQSTM1) degradation and conversion of Microtubule-associated Protein Light Chain 3-I (LC3-I) to LC3-II. Accordingly, treatment of cells with pharmacological inhibitors of JNK or PKR and mouse embryonic fibroblasts (MEFs) lacking JNK1/2 or PKR showed reduced autophagy levels. Furthermore, RNase L-induced JNK activity promoted Bcl-2 phosphorylation, disrupted the Beclin1-Bcl-2 complex and stimulated autophagy. Viral infection with Encephalomyocarditis virus (EMCV) or Sendai virus led to higher levels of autophagy in wild-type (WT) MEFs compared with RNase L knock out (KO) MEFs. Inhibition of RNase L-induced autophagy using Bafilomycin A1 or 3-methyladenine suppressed viral growth in initial stages; in later stages autophagy promoted viral replication dampening the antiviral effect. Induction of autophagy by activated RNase L is independent of the paracrine effects of interferon (IFN). Our findings suggest a novel role of RNase L in inducing autophagy affecting the outcomes of viral pathogenesis.
Collapse
|
49
|
Hepatitis C virus (HCV) induces formation of stress granules whose proteins regulate HCV RNA replication and virus assembly and egress. J Virol 2012; 86:11043-56. [PMID: 22855484 DOI: 10.1128/jvi.07101-11] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Stress granules (SGs) are cytoplasmic structures that are induced in response to environmental stress, including viral infections. Here we report that hepatitis C virus (HCV) triggers the appearance of SGs in a PKR- and interferon (IFN)-dependent manner. Moreover, we show an inverse correlation between the presence of stress granules and the induction of IFN-stimulated proteins, i.e., MxA and USP18, in HCV-infected cells despite high-level expression of the corresponding MxA and USP18 mRNAs, suggesting that interferon-stimulated gene translation is inhibited in stress granule-containing HCV-infected cells. Finally, in short hairpin RNA (shRNA) knockdown experiments, we found that the stress granule proteins T-cell-restricted intracellular antigen 1 (TIA-1), TIA1-related protein (TIAR), and RasGAP-SH3 domain binding protein 1 (G3BP1) are required for efficient HCV RNA and protein accumulation at early time points in the infection and that G3BP1 and TIA-1 are required for intracellular and extracellular infectious virus production late in the infection, suggesting that they are required for virus assembly. In contrast, TIAR downregulation decreases extracellular infectious virus titers with little effect on intracellular RNA content or infectivity late in the infection, suggesting that it is required for infectious particle release. Collectively, these results illustrate that HCV exploits the stress granule machinery at least two ways: by inducing the formation of SGs by triggering PKR phosphorylation, thereby downregulating the translation of antiviral interferon-stimulated genes, and by co-opting SG proteins for its replication, assembly, and egress.
Collapse
|
50
|
Singh M, Patel RC. Increased interaction between PACT molecules in response to stress signals is required for PKR activation. J Cell Biochem 2012; 113:2754-64. [DOI: 10.1002/jcb.24152] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|