1
|
Fan DD, Wang W, Zhong JJ. Enhancement of cordycepin production in submerged cultures of Cordyceps militaris by addition of ferrous sulfate. Biochem Eng J 2012. [DOI: 10.1016/j.bej.2011.09.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
2
|
Kato R, Maeda T, Akaike T, Tamai I. Nucleoside Transport at the Blood-Testis Barrier Studied with Primary-Cultured Sertoli Cells. J Pharmacol Exp Ther 2004; 312:601-8. [PMID: 15547112 DOI: 10.1124/jpet.104.073387] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Nucleosides are essential for nucleotide synthesis in testicular spermatogenesis. In the present study, the mechanism of the supply of nucleosides to the testicular system across the blood-testis barrier was studied using primary-cultured Sertoli cells from rats and TM4 cells from mice. Uptake of uridine by these cells was time- and concentration-dependent. Uridine uptake was decreased under Na(+)-free conditions, and the system was presumed to be high affinity, indicating an Na(+)-dependent concentrative nucleoside transporter (CNT) is involved. On the other hand, nitrobenzylthioinosine, a potent inhibitor of Na(+)-independent equilibrative nucleoside transporters (ENTs), inhibited uridine uptake by the Sertoli cells in a concentration-dependent manner. Expression of nucleoside transporters ENT1, ENT2, ENT3, CNT1, CNT2, and CNT3 was detected in Sertoli cells by reverse transcriptase-polymerase chain reaction analysis. Inhibition studies of the uptake of uridine by various nucleosides both in the presence and absence of Na(+) indicated that the most of those expressed nucleoside transporters, ENTs and CNTs, are involved functionally. These results demonstrated that Sertoli cells are equipped with multiple nucleoside transport systems, including ENT1, ENT2, and CNTs, to provide nucleosides for spermatogenesis.
Collapse
Affiliation(s)
- Ryo Kato
- Department of Molecular Biopharmaceutics, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamasaki, Noda, Chiba 278-8510, Japan
| | | | | | | |
Collapse
|
3
|
Jancso MA, Sculaccio SA, Thiemann OH. Identification of sugarcane genes involved in the purine synthesis pathway. Genet Mol Biol 2001. [DOI: 10.1590/s1415-47572001000100033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Nucleotide synthesis is of central importance to all cells. In most organisms, the purine nucleotides are synthesized de novo from non-nucleotide precursors such as amino acids, ammonia and carbon dioxide. An understanding of the enzymes involved in sugarcane purine synthesis opens the possibility of using these enzymes as targets for chemicals which may be effective in combating phytopathogen. Such an approach has already been applied to several parasites and types of cancer. The strategy described in this paper was applied to identify sugarcane clusters for each step of the de novo purine synthesis pathway. Representative sequences of this pathway were chosen from the National Center for Biotechnology Information (NCBI) database and used to search the translated sugarcane expressed sequence tag (SUCEST) database using the available basic local alignment search tool (BLAST) facility. Retrieved clusters were further tested for the statistical significance of the alignment by an implementation (PRSS3) of the Monte Carlo shuffling algorithm calibrated using known protein sequences of divergent taxa along the phylogenetic tree. The sequences were compared to each other and to the sugarcane clusters selected using BLAST analysis, with the resulting table of p-values indicating the degree of divergence of each enzyme within different taxa and in relation to the sugarcane clusters. The results obtained by this strategy allowed us to identify the sugarcane proteins participating in the purine synthesis pathway.
Collapse
|
4
|
Pinson B, Gabrielsen OS, Daignan-Fornier B. Redox regulation of AMP synthesis in yeast: a role of the Bas1p and Bas2p transcription factors. Mol Microbiol 2000; 36:1460-9. [PMID: 10931295 DOI: 10.1046/j.1365-2958.2000.01966.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Expression of yeast AMP synthesis genes (ADE genes) was severely affected when cells were grown under oxidative stress conditions. To get an insight into the molecular mechanisms of this new transcriptional regulation, the role of the Bas1p and Bas2p transcription factors, known to activate expression of the ADE genes, was investigated. In vitro, DNA-binding of Bas1p was sensitive to oxidation. However, this sensitivity could not account for the regulation of the ADE genes because we showed, using a BAS1-VP16 chimera, that Bas1p DNA-binding activity was not sensitive to oxidation in vivo. Consistently, a triple cysteine mutant of Bas1p (fully resistant to oxidation in vitro) was unable to restore transcription of the ADE genes under oxidative conditions. We then investigated the possibility that Bas2p could be the oxidative stress responsive factor. Interestingly, transcription of the PHO5 gene, which is dependent on Bas2p but not on Bas1p, was found to be severely impaired by oxidative stress. Nevertheless, a Bas2p cysteine-free mutant was not sufficient to confer resistance to oxidative stress. Finally, we found that a Bas1p-Bas2p fusion protein restored ADE gene expression under oxidative conditions, thus suggesting that redox sensitivity of ADE gene expression could be due to an impairment of Bas1p/Bas2p interaction. This hypothesis was further substantiated in a two hybrid experiment showing that Bas1p/Bas2p interaction is affected by oxidative stress.
Collapse
Affiliation(s)
- B Pinson
- Institut de Biochimie et Génétique Cellulaires, CNRS UPR9026, Bordeaux, France
| | | | | |
Collapse
|
5
|
Gassmann MG, Stanzel A, Werner S. Growth factor-regulated expression of enzymes involved in nucleotide biosynthesis: a novel mechanism of growth factor action. Oncogene 1999; 18:6667-76. [PMID: 10597272 DOI: 10.1038/sj.onc.1203120] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Keratinocyte growth factor (KGF) is a potent and specific mitogen for epithelial cells, including the keratinocytes of the skin. We investigated the mechanisms of action of KGF by searching for genes which are regulated by this growth factor in cultured human keratinocytes. Using the differential display RT-PCR technology we identified the gene encoding adenylosuccinate lyase [EC 4.3.2.2] as a novel KGF-regulated gene. Adenylosuccinate lyase plays an important role in purine de novo synthesis. To gain further insight into the potential role of nucleotide biosynthesis in the mitogenic effect of KGF, we cloned cDNA fragments of the key regulatory enzymes involved in purine and pyrimidine metabolism (adenylosuccinate synthetase [EC 6.3.4.4], phosphoribosyl pyrophosphate synthetase [EC 2.7.6.1], amidophosphoribosyl transferase [EC 2.4.2.14], hypoxanthine guanine phosphoribosyl transferase [EC 2.4.2.8] and the multifunctional protein CAD which includes the enzymatic activities of carbamoyl-phosphate synthetase II [EC 6.3.5.59], aspartate transcarbamylase [EC 2.1.3.2] and dihydroorotase [EC 3.5.2.3]). Expression of all of these enzymes was upregulated after treatment with KGF and also with epidermal growth factor (EGF), indicating that these mitogens stimulate nucleotide production by induction of these enzymes. To determine a possible in vivo correlation between the expression of KGF, EGF and the enzymes mentioned above, we analysed the expression of the enzymes during cutaneous wound repair, where high levels of these mitogens are present. Indeed, we found a strong mRNA expression of all of these enzymes in the EGF- and KGF-responsive keratinocytes of the hyperproliferative epithelium at the wound edge, indicating that their expression might also be regulated by growth factors during wound healing.
Collapse
Affiliation(s)
- M G Gassmann
- Max-Planck-Institute of Biochemistry, Martinsried, Germany
| | | | | |
Collapse
|
6
|
Yamaoka T, Kondo M, Honda S, Iwahana H, Moritani M, Ii S, Yoshimoto K, Itakura M. Amidophosphoribosyltransferase limits the rate of cell growth-linked de novo purine biosynthesis in the presence of constant capacity of salvage purine biosynthesis. J Biol Chem 1997; 272:17719-25. [PMID: 9211923 DOI: 10.1074/jbc.272.28.17719] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Factors controlling relative flux rates of the de novo and salvage pathways of purine nucleotide biosynthesis during animal cell growth are not fully understood. To examine the relative role of each pathway for cell growth, three cell lines including CHO K1 (a wild-type Chinese hamster ovary fibroblast cell line), CHO ade -A (an auxotrophic cell line deficient of amidophosphoribosyltransferase (ATase), a presumed rate-limiting enzyme of the de novo pathway), and CHO ade -A transfected with human ATase cDNA (-A+hATase) resulting in 30-350% of the ATase activity of CHO K1, were cultured in purine-rich or purine-free media. Based on the enzyme activities of ATase and hypoxanthine phosphoribosyltransferase, the metabolic rate of the de novo and salvage pathways, the rate of cell growth (growth rate) in three cell lines under various culture conditions, and the effect of hypoxanthine infusion on the metabolic rate of the de novo pathway in rat liver, we concluded the following. 1) In -A+hATase transfectants, ATase activity limits the rate of the de novo pathway, which is closely linked with the growth rate. 2) Purine nucleotides are synthesized preferentially by the salvage pathway as long as hypoxanthine, the most essential source of purine salvage, can be utilized, which was confirmed in rat liver in vivo by hypoxanthine infusion. The preferential usage of the salvage pathway results in sparing the energy expenditure required for de novo synthesis. 3) The regulatory capacity of the de novo pathway (about 200%) was larger than that of the salvage pathway (about 20%) with constant hypoxanthine phosphoribosyltransferase activity.
Collapse
Affiliation(s)
- T Yamaoka
- Otsuka Department of Clinical and Molecular Nutrition, School of Medicine, The University of Tokushima, 3-18-15, Kuramoto-cho, Tokushima-city, 770, Japan
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Schoettle SL, Crisp LB, Szabados E, Christopherson RI. Mechanisms of inhibition of amido phosphoribosyltransferase from mouse L1210 leukemia cells. Biochemistry 1997; 36:6377-83. [PMID: 9174353 DOI: 10.1021/bi962598m] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Amido phosphoribosyltransferase (amido PRTase) catalyses the first step of the pathway for de novo biosynthesis of purine nucleotides. The enzyme is subject to inhibition by purine nucleoside 5'-monophosphates (AMP, IMP, and GMP), by dihydrofolate polyglutamates, and by the antifolate piritrexim [Sant, M. E., Lyons, S. D., Phillips, L., & Christopherson, R. I. (1992) J. Biol. Chem. 267, 11038-11045). Using a coupled radioassay, we have determined the substrate dissociation constants as 80.4 +/- 13.2 microM for 5-phosphoribosyl 1-pyrophosphate (P-Rib-PP) and 421 +/- 193 microM for L-glutamine with P-Rib-PP bound first with positive cooperativity for interaction with a second site on the catalytically active dimer (interaction factor of 0.247 +/- 0.042). Analysis of inhibition patterns for amido PRTase shows that the antifolate piritrexim is a noncompetitive inhibitor bound with positive cooperativity at two allosteric sites of an inactive dimer with a dissociation constant of 66.0 +/- 17.8 microM for interaction with the free enzyme and an interaction factor of 0.187 +/- 0.113 with P-Rib-PP as the varied substrate. With L-glutamine as the varied substrate, a dissociation constant of 62.3 +/- 15.6 microM for interaction with the enzyme-P-Rib-PP complex and an interaction factor of 0.0958 +/- 0.0585 microM were obtained. AMP binds as a competitive inhibitor with respect to P-Rib-PP with a dissociation constant of 40.0 +/- 8.1 microM for interaction with the free enzyme and as a noncompetitive inhibitor with respect to L-glutamine with a dissociation constant of 16.4 +/- 5.2 mM for interaction with the enzyme-P-Rib-PP complex. Sucrose density gradient centrifugation of partially purified amido PRTase showed three molecular forms of the enzyme: an inactive tetramer (10.2 S) formed in the presence of AMP, an active dimer (6.7 S) formed with P-Rib-PP, and an inactive dimer (7.2 S) with piritrexim. The latter species may predominate in cells containing high levels of dihydrofolate polyglutamates.
Collapse
Affiliation(s)
- S L Schoettle
- Department of Biochemistry, University of Sydney, New South Wales, Australia
| | | | | | | |
Collapse
|
8
|
Chen S, Nagy PL, Zalkin H. Role of NRF-1 in bidirectional transcription of the human GPAT-AIRC purine biosynthesis locus. Nucleic Acids Res 1997; 25:1809-16. [PMID: 9108165 PMCID: PMC146651 DOI: 10.1093/nar/25.9.1809] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
GPAT and AIRC encode enzymes for steps one and six plus seven respectively in the pathway for de novo purine nucleotide synthesis in vertebrates. The human GPAT and AIRC genes are divergently transcribed from a 558 bp intergenic promoter region. Cis-acting sites and transcription factors important for bidirectional expression were identified. A cluster of sites between nt 215 and 260 are essential, although not sufficient, for expression of both genes. Two proteins from HepG2 cell nuclear extract, identified as NRF-1 and Sp1, bound to the promoter at sites within the 215-260 region. NRF-1 was required for stable binding of Sp1. Deletion of a 5'promoter region including nt 215-260 resulted in decreased expression of GPAT and AIRC in transfected HepG2 cells. The decreased expression was accounted for by point mutations in an NRF-1 site and either of two flanking sites for Sp1. These transcription factors account in part for the coordinated expression of human GPAT and AIRC.
Collapse
Affiliation(s)
- S Chen
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | | | | |
Collapse
|
9
|
Kim JH, Krahn JM, Tomchick DR, Smith JL, Zalkin H. Structure and function of the glutamine phosphoribosylpyrophosphate amidotransferase glutamine site and communication with the phosphoribosylpyrophosphate site. J Biol Chem 1996; 271:15549-57. [PMID: 8663035 DOI: 10.1074/jbc.271.26.15549] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Glutamine phosphoribosylpyrophosphate (PRPP) amidotransferase from Escherichia coli exhibits a basal PRPP-independent glutaminase activity having a kcat/Km that is 0.3% of fully active enzyme. Binding of PRPP activates the enzyme by a structural change that lowers the Km for glutamine 100-fold and couples glutamine hydrolysis to synthesis of 5-phosphoribosylamine. By analysis of the x-ray structure of the glutamine site containing bound 6-diazo-5-oxonorleucine, a glutamine affinity analog, and by site-directed mutagenesis we have identified residues important for glutamine binding, catalysis, and coupling with PRPP. Tyr74 is a key residue in the coupling between the sites for glutamine in the NH2-terminal domain and PRPP in the COOH-terminal domain. Arg73 and Asp127 have roles in glutamine binding. The x-ray structure indicates that there are no amino acid side chains sufficiently close to Cys1 to participate as a proton acceptor in formation of the thiolate needed for nucleophilic attack on the carboxamide of glutamine, nor as a general acid for amide nitrogen transfer. Based on the x-ray model of the glutamine site and analysis of a mutant enzyme we propose that the free NH2 terminus of Cys1 functions as the proton acceptor and donor. The results indicate that the side chain of Asn101 and the backbone nitrogen of Gly102 function to stabilize a tetrahedral oxyanion resulting from attack of Cys1 on the glutamine carboxamide. Cys1, Arg73, Asn101, Gly102, and Asp127 are conserved in the NH2-terminal domain of a subfamily of amidotransferases that includes asparagine synthetase, glucosamine 6-phosphate synthase, and glutamate synthase, implying a common function in the four enzymes. Tyr74, on the other hand, is conserved only in glutamine PRPP amidotransferase sequences consistent with a specific role in interdomain coupling. The catalytic framework of key glutamine site residues supports the assignment of glutamine PRPP amidotransferase to a recently described Ntn (NH2-terminal nucleophile) hydrolase family of enzymes.
Collapse
Affiliation(s)
- J H Kim
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907-1153, USA
| | | | | | | | | |
Collapse
|
10
|
Kim JH, Wolle D, Haridas K, Parry RJ, Smith JL, Zalkin H. A stable carbocyclic analog of 5-phosphoribosyl-1-pyrophosphate to probe the mechanism of catalysis and regulation of glutamine phosphoribosylpyrophosphate amidotransferase. J Biol Chem 1995; 270:17394-9. [PMID: 7542237 DOI: 10.1074/jbc.270.29.17394] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Glutamine phosphoribosylpyrophosphate (PRPP) amidotransferase catalysis and regulation were studied using a new stable carbocyclic analog of PRPP, 1-alpha-pyrophosphoryl-2-alpha, 3-alpha-dihydroxy-4-beta-cyclopentane-methanol-5-phosphate (cPRPP). Although cPRPP competes with PRPP for binding to the catalytic C site of the Escherichia coli enzyme, two lines of evidence demonstrate that cPRPP, unlike PRPP, does not promote an active enzyme conformation. First, cPRPP was not able to "activate" Cys1 for reaction with glutamine or a glutamine affinity analog. The ring oxygen of PRPP may thus be necessary for the conformation change that activates Cys1 for catalysis. Second, binding of cPRPP to the C site blocks binding of AMP and GMP, nucleotide end product inhibitors, to this site. However, the binding of nucleotide to the allosteric site was essentially unaffected by cPRPP in the C site. Since it is expected that nucleotide inhibitors would bind with low affinity to the active enzyme conformation, the nucleotide binding data support the conclusion that cPRPP does not activate the enzyme.
Collapse
Affiliation(s)
- J H Kim
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907, USA
| | | | | | | | | | | |
Collapse
|
11
|
Iwahana H, Honda S, Tsujisawa T, Takahashi Y, Adzuma K, Katashima R, Yamaoka T, Moritani M, Yoshimoto K, Itakura M. Rat genomic structure of amidophosphoribosyltransferase, cDNA sequence of aminoimidazole ribonucleotide carboxylase, and cell cycle-dependent expression of these two physically linked genes. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1261:369-80. [PMID: 7742366 DOI: 10.1016/0167-4781(95)00036-g] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Genomic structure of rat amidophosphoribosyltransferase (ATase; EC 2.4.2.14), which catalyzes the first committed step in de novo purine nucleotide synthesis, was determined by polymerase chain reaction (PCR)-based methods. There are 11 exons and all exon-intron boundaries were conserved among rat, human, and chicken ATase genes. A rat aminoimidazole ribonucleotide carboxylase (AIRC) cDNA encoding a bifunctional enzyme of AIRC (EC 4.1.1.21) at step 6 and SAICAR synthetase (EC 6.3.2.6) at step 7 in de novo purine nucleotide synthesis was cloned and sequenced. The size of the cloned rat AIRC cDNA was 1329 bp, and amino acid identity with human and chicken AIRC was 96 and 85%, respectively. The intergenic sequence using a phage clone and the PCR product disclosed that ATase and AIRC genes are physically linked with the 736 bp sequence between the translation start sites, and the determination of the transcriptional start sites by the primer extension assay for these genes disclosed that distance between the two major transcriptional start sites is 585 bp. The amount of mRNAs of both genes showed approx. 5-6-fold increase in G1/S phase of the cell cycle over those in G0 phase in synchronized rat 3Y1 fibroblasts.
Collapse
Affiliation(s)
- H Iwahana
- Otsuka Department of Clinical and Molecular Nutrition, School of Medicine, University of Tokushima, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Ito T, Shiraishi H, Okada K, Shimura Y. Two amidophosphoribosyltransferase genes of Arabidopsis thaliana expressed in different organs. PLANT MOLECULAR BIOLOGY 1994; 26:529-33. [PMID: 7948903 DOI: 10.1007/bf00039565] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Amidophosphoribosyltransferase (ATase: EC 2.4.2.14) is a key enzyme in the pathway of purine nucleotide biosynthesis. We have identified several cDNA clones whose amino acid sequences exhibit similarity with the known ATases in a cDNA library of young floral buds of Arabidopsis thaliana. The cDNA clones are derived from two genes homologous with each other. These cDNAs represent the first plant representatives of ATase gene. Structural comparison with ATases of other organisms has revealed that the two genes encode [4Fe-4S] cluster-dependent ATases. Northern blot analysis showed that expression level of the genes is different in three organs; one gene is expressed in flowers and roots, while the other gene is mainly expressed in leaves.
Collapse
Affiliation(s)
- T Ito
- Division 1 of Gene Expression and Regulation, National Institute for Basic Biology, Okazaki, Japan
| | | | | | | |
Collapse
|
13
|
Smith JL, Zaluzec EJ, Wery JP, Niu L, Switzer RL, Zalkin H, Satow Y. Structure of the allosteric regulatory enzyme of purine biosynthesis. Science 1994; 264:1427-33. [PMID: 8197456 DOI: 10.1126/science.8197456] [Citation(s) in RCA: 161] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Multi-wavelength anomalous diffraction (MAD) has been used to determine the structure of the regulatory enzyme of de novo synthesis of purine nucleotides, glutamine 5-phosphoribosyl-1-pyrophosphate (PRPP) amidotransferase, from Bacillus subtilis. This allosteric enzyme, a 200-kilodalton tetramer, is subject to end product regulation by purine nucleotides. The metalloenzyme from B. subtilis is a paradigm for the higher eukaryotic enzymes, which have been refractory to isolation in stable form. The two folding domains of the polypeptide are correlated with functional domains for glutamine binding and for transfer of ammonia to the substrate PRPP. Eight molecules of the feedback inhibitor adenosine monophosphate (AMP) are bound to the tetrameric enzyme in two types of binding sites: the PRPP catalytic site of each subunit and an unusual regulatory site that is immediately adjacent to each active site but is between subunits. An oxygen-sensitive [4Fe-4S] cluster in each subunit is proposed to regulate protein turnover in vivo and is distant from the catalytic site. Oxygen sensitivity of the cluster is diminished by AMP, which blocks a channel through the protein to the cluster. The structure is representative of both glutamine amidotransferases and phosphoribosyltransferases.
Collapse
Affiliation(s)
- J L Smith
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907
| | | | | | | | | | | | | |
Collapse
|
14
|
Brayton K, Chen Z, Zhou G, Nagy P, Gavalas A, Trent J, Deaven L, Dixon J, Zalkin H. Two genes for de novo purine nucleotide synthesis on human chromosome 4 are closely linked and divergently transcribed. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)37689-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|