1
|
Phillip JM, Lin R, Cheetham A, Stern D, Li Y, Wang Y, Wang H, Rini D, Cui H, Walston JD, Abadir PM. Nature-inspired delivery of mitochondria-targeted angiotensin receptor blocker. PNAS NEXUS 2022; 1:pgac147. [PMID: 36082235 PMCID: PMC9437577 DOI: 10.1093/pnasnexus/pgac147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 07/27/2022] [Indexed: 01/29/2023]
Abstract
Mitochondria are critical regulators of cellular function and survival. We have previously demonstrated that functional angiotensin receptors embedded within the inner mitochondrial membrane modulate mitochondrial energy production and free radical generation. The expression of mitochondrial angiotensin II type-1 receptors increases during aging, with a complementary decrease in angiotensin II type-2 receptor density. To address this age-associated mitochondrial dysfunction, we have developed a mitochondria-targeted delivery system to effectively transport angiotensin type-1 receptor blocker-Losartan (mtLOS) into the inner mitochondrial membrane. We engineered mtLOS to become active within the mitochondria after cleavage by mitochondrial peptidases. Our data demonstrate effective and targeted delivery of mtLOS into the mitochondria, compared to a free Losartan, or Losartan conjugated to a scrambled mitochondrial target signal peptide, with significant shifts in mitochondrial membrane potential upon mtLOS treatment. Furthermore, engineered mitochondrial-targeting modalities could open new avenues to transport nonmitochondrial proteins into the mitochondria, such as other macromolecules and therapeutic agents.
Collapse
Affiliation(s)
- Jude M Phillip
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, USA
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ran Lin
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, USA
| | - Andrew Cheetham
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - David Stern
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, USA
| | - Yukang Li
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, USA
| | - Yuzhu Wang
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, USA
| | - Han Wang
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, USA
| | - David Rini
- Department of Art as Applied to Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Honggang Cui
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, USA
| | - Jeremy D Walston
- Department of Medicine, Division of Geriatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Peter M Abadir
- Department of Medicine, Division of Geriatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
2
|
Ahmed KS, Liu S, Mao J, Zhang J, Qiu L. Dual-Functional Peptide Driven Liposome Codelivery System for Efficient Treatment of Doxorubicin-Resistant Breast Cancer. Drug Des Devel Ther 2021; 15:3223-3239. [PMID: 34349500 PMCID: PMC8326382 DOI: 10.2147/dddt.s317454] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 07/21/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The active-targeted drug delivery systems had attracted more and more attention to efficiently overcome multidrug resistance (MDR) in cancer treatments. The aim of the work was to develop a multifunctional nano-structured liposomal system for co-delivery of doxorubicin hydrochloride (DOX) and celecoxib (CEL) to overcome doxorubicin resistance in breast cancer. METHODS A functional hybrid peptide (MTS-R8H3) with unique cellular penetrability, endo-lysosomal escape and mitochondrial targeting ability was successfully synthesized using solid phase synthesis technology. The peptide modified targeted liposomes (DOX/CEL-MTS-R8H3 lipo) for co-delivery of DOX and CEL were formulated to overcome the chemoresistance in MCF/ADR cells. RESULTS DOX/CEL-MTS-R8H3 lipo showed nanosized shape and displayed high stability for one month. The cytotoxicity effect of the co-delivery of DOX and CEL through peptide modified liposomes had remarkable treatment efficacy on killing MCF/ADR cells. Targeted liposome exhibited greater cellular entry ability about 5.72-fold stronger than DOX solution. Moreover, as compared with unmodified liposomes, the presence of MTS-R8H3 peptide entity on liposome surface enhanced the mitochondrial-targeting ability and achieved effective reactive oxygen species (ROS) production with significant inhibition of P-gp efflux activity. CONCLUSION The study suggested that the DOX/CEL-MTS-R8H3 lipo is a promising strategy for overcoming drug resistance in breast cancer treatments with high targeting inhibition efficiency.
Collapse
Affiliation(s)
- Kamel S Ahmed
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi, 214122, Jiangsu, People’s Republic of China
- Department of Pharmaceutics, Faculty of Pharmacy, Minia University, Minia, 19623, Egypt
| | - Shenhuan Liu
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi, 214122, Jiangsu, People’s Republic of China
| | - Jing Mao
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi, 214122, Jiangsu, People’s Republic of China
| | - Jie Zhang
- The Jiaxing Key Laboratory of Oncological Photodynamic Therapy and the Targeted Drug Research, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, 314001, People’s Republic of China
| | - Lipeng Qiu
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi, 214122, Jiangsu, People’s Republic of China
| |
Collapse
|
3
|
Chen J, Xia L, Wang W, Wang Z, Hou S, Xie C, Cai J, Lu Y. Identification of a mitochondrial-targeting secretory protein from Nocardia seriolae which induces apoptosis in fathead minnow cells. JOURNAL OF FISH DISEASES 2019; 42:1493-1507. [PMID: 31482589 DOI: 10.1111/jfd.13062] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 06/27/2019] [Accepted: 06/28/2019] [Indexed: 06/10/2023]
Abstract
Nocardia seriolae is the main pathogen responsible for fish nocardiosis. A mitochondrial-targeting secretory protein (MTSP) 3141 with an N-terminal transit peptide (TP) from N. seriolae was predicted by bioinformatic analysis based on the genomic sequence of the N. seriolae strain ZJ0503. However, the function of the MTSP3141 and its homologs remains totally unknown. In this study, mass spectrometry analysis of the extracellular products from N. seriolae proved that MTSP3141 was a secretory protein, subcellular localization research showed the MTSP3141-GFP fusion protein co-localized with mitochondria in fathead minnow (FHM) cells, the TP played an important role in mitochondria targeting, and only the TP located at N-terminus but not C-terminus can lead to mitochondria directing. Moreover, quantitative assays of mitochondrial membrane potential (ΔΨm) value, caspase-3 activity and apoptosis-related gene (Bcl-2, Bax, Bad, Bid and p53) mRNA expression suggested that cell apoptosis was induced in FHM cells by the overexpression of both MTSP3141 and MTSP3141ΔTP (with the N-terminal TP deleted) proteins. Taken together, the results of this study indicated that the MTSP3141 of N. seriolae was a secretory protein, might target mitochondria, induce apoptosis in host cells and function as a virulence factor.
Collapse
Affiliation(s)
- Jianlin Chen
- Shenzhen Institute of Guangdong Ocean University, Shenzhen City, China
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Fishery College of Guangdong Ocean University, Zhanjiang City, China
- Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen City, China
| | - Liqun Xia
- Shenzhen Institute of Guangdong Ocean University, Shenzhen City, China
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Fishery College of Guangdong Ocean University, Zhanjiang City, China
- Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen City, China
| | - Wenji Wang
- Shenzhen Institute of Guangdong Ocean University, Shenzhen City, China
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Fishery College of Guangdong Ocean University, Zhanjiang City, China
- Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen City, China
| | - Zhiwen Wang
- Shenzhen Institute of Guangdong Ocean University, Shenzhen City, China
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Fishery College of Guangdong Ocean University, Zhanjiang City, China
- Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen City, China
| | - Suying Hou
- Shenzhen Institute of Guangdong Ocean University, Shenzhen City, China
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Fishery College of Guangdong Ocean University, Zhanjiang City, China
- Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen City, China
| | - Caixia Xie
- Shenzhen Institute of Guangdong Ocean University, Shenzhen City, China
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Fishery College of Guangdong Ocean University, Zhanjiang City, China
- Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen City, China
| | - Jia Cai
- Shenzhen Institute of Guangdong Ocean University, Shenzhen City, China
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Fishery College of Guangdong Ocean University, Zhanjiang City, China
- Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen City, China
| | - Yishan Lu
- Shenzhen Institute of Guangdong Ocean University, Shenzhen City, China
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Fishery College of Guangdong Ocean University, Zhanjiang City, China
- Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen City, China
| |
Collapse
|
4
|
Kam A, Loo S, Dutta B, Sze SK, Tam JP. Plant-derived mitochondria-targeting cysteine-rich peptide modulates cellular bioenergetics. J Biol Chem 2019; 294:4000-4011. [PMID: 30674551 PMCID: PMC6422099 DOI: 10.1074/jbc.ra118.006693] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 01/07/2019] [Indexed: 12/16/2022] Open
Abstract
Mitochondria are attractive therapeutic targets for developing agents to delay age-related frailty and diseases. However, few promising leads have been identified from natural products. Previously, we identified roseltide rT1, a hyperstable 27-residue cysteine-rich peptide from Hibiscus sabdariffa, as a knottin-type neutrophil elastase inhibitor. Here, we show that roseltide rT1 is also a cell-penetrating, mitochondria-targeting peptide that increases ATP production. Results from flow cytometry, live-cell imaging, pulldown assays, and genetically-modified cell lines supported that roseltide rT1 enters cells via glycosaminoglycan-dependent endocytosis, and enters the mitochondria through TOM20, a mitochondrial protein import receptor. We further showed that roseltide rT1 increases cellular ATP production via mitochondrial membrane hyperpolarization. Using biotinylated roseltide rT1 for target identification and proteomic analysis, we showed that human mitochondrial membrane ATP synthase subunit O is an intramitochondrial target. Collectively, these data support our discovery that roseltide rT1 is a first-in-class mitochondria-targeting, cysteine-rich peptide with potentials to be developed into tools to further our understanding of mitochrondria-related diseases.
Collapse
Affiliation(s)
- Antony Kam
- From the School of Biological Sciences, Nanyang Technological University, 637551 Singapore
| | - Shining Loo
- From the School of Biological Sciences, Nanyang Technological University, 637551 Singapore
| | - Bamaprasad Dutta
- From the School of Biological Sciences, Nanyang Technological University, 637551 Singapore
| | - Siu Kwan Sze
- From the School of Biological Sciences, Nanyang Technological University, 637551 Singapore
| | - James P Tam
- From the School of Biological Sciences, Nanyang Technological University, 637551 Singapore
| |
Collapse
|
5
|
Import of a major mitochondrial enzyme depends on synergy between two distinct helices of its presequence. Biochem J 2016; 473:2813-29. [PMID: 27422783 PMCID: PMC5095901 DOI: 10.1042/bcj20160535] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 07/15/2016] [Indexed: 12/13/2022]
Abstract
Mammalian glutamate dehydrogenase (GDH), a nuclear-encoded enzyme central to cellular metabolism, is among the most abundant mitochondrial proteins (constituting up to 10% of matrix proteins). To attain such high levels, GDH depends on very efficient mitochondrial targeting that, for human isoenzymes hGDH1 and hGDH2, is mediated by an unusually long cleavable presequence (N53). Here, we studied the mitochondrial transport of these proteins using isolated yeast mitochondria and human cell lines. We found that both hGDHs were very rapidly imported and processed in isolated mitochondria, with their presequences (N53) alone being capable of directing non-mitochondrial proteins into mitochondria. These presequences were predicted to form two α helices (α1: N 1–10; α2: N 16–32) separated by loops. Selective deletion of the α1 helix abolished the mitochondrial import of hGDHs. While the α1 helix alone had a very weak hGDH mitochondrial import capacity, it could direct efficiently non-mitochondrial proteins into mitochondria. In contrast, the α2 helix had no autonomous mitochondrial-targeting capacity. A peptide consisting of α1 and α2 helices without intervening sequences had GDH transport efficiency comparable with that of N53. Mutagenesis of the cleavage site blocked the intra-mitochondrial processing of hGDHs, but did not affect their mitochondrial import. Replacement of all three positively charged N-terminal residues (Arg3, Lys7 and Arg13) by Ala abolished import. We conclude that the synergistic interaction of helices α1 and α2 is crucial for the highly efficient import of hGDHs into mitochondria.
Collapse
|
6
|
Lin R, Zhang P, Cheetham AG, Walston J, Abadir P, Cui H. Dual peptide conjugation strategy for improved cellular uptake and mitochondria targeting. Bioconjug Chem 2014; 26:71-7. [PMID: 25547808 PMCID: PMC4306504 DOI: 10.1021/bc500408p] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Mitochondria are critical regulators of cellular function and survival. Delivery of therapeutic and diagnostic agents into mitochondria is a challenging task in modern pharmacology because the molecule to be delivered needs to first overcome the cell membrane barrier and then be able to actively target the intracellular organelle. Current strategy of conjugating either a cell penetrating peptide (CPP) or a subcellular targeting sequence to the molecule of interest only has limited success. We report here a dual peptide conjugation strategy to achieve effective delivery of a non-membrane-penetrating dye 5-carboxyfluorescein (5-FAM) into mitochondria through the incorporation of both a mitochondrial targeting sequence (MTS) and a CPP into one conjugated molecule. Notably, circular dichroism studies reveal that the combined use of α-helix and PPII-like secondary structures has an unexpected, synergistic contribution to the internalization of the conjugate. Our results suggest that although the use of positively charged MTS peptide allows for improved targeting of mitochondria, with MTS alone it showed poor cellular uptake. With further covalent linkage of the MTS-5-FAM conjugate to a CPP sequence (R8), the dually conjugated molecule was found to show both improved cellular uptake and effective mitochondria targeting. We believe these results offer important insight into the rational design of peptide conjugates for intracellular delivery.
Collapse
Affiliation(s)
- Ran Lin
- Department of Chemical and Biomolecular Engineering, ‡Institute for NanoBioTechnology, §Division of Geriatrics Medicine and Gerontology, and ⊥Department of Oncology and Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University , Baltimore, Maryland 21218, United States
| | | | | | | | | | | |
Collapse
|
7
|
Kiyonaka S, Kajimoto T, Sakaguchi R, Shinmi D, Omatsu-Kanbe M, Matsuura H, Imamura H, Yoshizaki T, Hamachi I, Morii T, Mori Y. Genetically encoded fluorescent thermosensors visualize subcellular thermoregulation in living cells. Nat Methods 2013; 10:1232-8. [DOI: 10.1038/nmeth.2690] [Citation(s) in RCA: 167] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 09/17/2013] [Indexed: 12/23/2022]
|
8
|
Wang ZH, Cai XL, Wu L, Yu Z, Liu JL, Zhou ZN, Liu J, Yang HT. Mitochondrial energy metabolism plays a critical role in the cardioprotection afforded by intermittent hypobaric hypoxia. Exp Physiol 2012; 97:1105-18. [PMID: 22562809 DOI: 10.1113/expphysiol.2012.065102] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Intermittent hypobaric hypoxia (IHH) is an effective protective strategy against myocardial ischaemia-reperfusion (I/R) injury, but the precise mechanisms are far from clear. To understand the overall effects of IHH on the myocardial proteins during I/R, we analysed functional performance and the protein expression profile in isolated hearts from normoxic rats and from rats adapted to IHH (5000 m, 4 h day(-1), 4 weeks) following I/R injury (30 min/45 min). Intermittent hypobaric hypoxia significantly improved the postischaemic recovery of left ventricular function compared with the recovery in time-matched normoxic control hearts. Two-dimensional electrophoresis with matrix-assisted laser desorption/ionization and time-of-flight mass spectrometric analysis was then used to assess protein alterations in left ventricles from normoxic and IHH groups, with or without I/R. The expressions of 16 proteins changed by over fivefold; nine of these proteins are involved in energy metabolism. Immunoblot and real-time PCR analysis confirmed the IHH-increased expressions of the ATP synthase subunit β, mitochondrial aldehyde dehydrogenase and heat shock protein 27 in left ventricles. Furthermore, IHH significantly attenuated the reduction of myocardial ATP content, mitochondrial ATP synthase activity, membrane potential and respiratory control ratios due to I/R. In addition, inhibition of mitochondrial ATP synthase by oligomycin (1 μmol l(-1)) abolished the IHH-induced improvements in three parameters: postischaemic recovery of left ventricular function, mitochondrial membrane potential and respiratory control ratios. These results suggest that an improvement in mitochondrial energy metabolism makes an important contribution to the cardioprotection afforded by IHH against postischaemic myocardial dysfunction.
Collapse
Affiliation(s)
- Zhi-Hua Wang
- Key Laboratory of Stem Cell Biology and Laboratory of Molecular Cardiology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences & Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Mukhopadhyay A, Yang CS, Weiner H. Binding of mitochondrial leader sequences to Tom20 assessed using a bacterial two-hybrid system shows that hydrophobic interactions are essential and that some mutated leaders that do not bind Tom20 can still be imported. Protein Sci 2006; 15:2739-48. [PMID: 17088320 PMCID: PMC2242433 DOI: 10.1110/ps.062462006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Previous studies pointed to the importance of leucine residues in the binding of mitochondrial leader sequences to Tom20, an outer membrane protein translocator that initially binds the leader during import. A bacteria two-hybrid assay was here employed to determine if this could be an alternative way to investigate the binding of leader to the receptor. Leucine to alanine and arginine to glutamine mutations were made in the leader sequence from rat liver aldehyde dehydrogenase (pALDH). The leucine residues in the C-terminal of pALDH leader were found to be essential for TOM20 binding. The hydrophobic residues of another mitochondrial leader F1beta-ATPase that were important for Tom20 binding were found at the C-terminus of the leader. In contrast, it was the leucines in the N-terminus of the leader of ornithine transcarbamylase that were essential for binding. Modeling the peptides to the structure of Tom20 showed that the hydrophobic residues from the three proteins could all fit into the hydrophobic binding pocket. The mutants of pALDH that did not bind to Tom20 were still imported in vivo in transformed HeLa cells or in vitro into isolated mitochondria. In contrast, the mutant from pOTC was imported less well ( approximately 50%) while the mutant from F1beta-ATPase was not imported to any measurable extent. Binding to Tom20 might not be a prerequisite for import; however, it also is possible that import can occur even if binding to a receptor component is poor, so long as the leader binds tightly to another component of the translocator.
Collapse
Affiliation(s)
- Abhijit Mukhopadhyay
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907-2063, USA
| | | | | |
Collapse
|
10
|
Rudhe C, Clifton R, Chew O, Zemam K, Richter S, Lamppa G, Whelan J, Glaser E. Processing of the dual targeted precursor protein of glutathione reductase in mitochondria and chloroplasts. J Mol Biol 2004; 343:639-47. [PMID: 15465051 DOI: 10.1016/j.jmb.2004.08.053] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2004] [Revised: 08/16/2004] [Accepted: 08/18/2004] [Indexed: 11/27/2022]
Abstract
Pea glutathione reductase (GR) is dually targeted to mitochondria and chloroplasts by means of an N-terminal signal peptide of 60 amino acid residues. After import, the signal peptide is cleaved off by the mitochondrial processing peptidase (MPP) in mitochondria and by the stromal processing peptidase (SPP) in chloroplasts. Here, we have investigated determinants for processing of the dual targeting signal peptide of GR by MPP and SPP to examine if there is separate or universal information recognised by both processing peptidases. Removal of 30 N-terminal amino acid residues of the signal peptide (GRDelta1-30) greatly stimulated processing activity by both MPP and SPP, whereas constructs with a deletion of an additional ten amino acid residues (GRDelta1-40) and deletion of 22 amino acid residues in the middle of the GR signal sequence (GRDelta30-52) could be cleaved by SPP but not by MPP. Numerous single mutations of amino acid residues in proximity of the cleavage site did not affect processing by SPP, whereas mutations within two amino acid residues on either side of the processing site had inhibitory effect on processing by MPP with a nearly complete inhibition for mutations at position -1. Mutation of positively charged residues in the C-terminal half of the GR targeting peptide inhibited processing by MPP but not by SPP. An inhibitory effect on SPP was detected only when double and triple mutations were introduced upstream of the cleavage site. These results indicate that: (i) recognition of processing site on a dual targeted GR precursor differs between MPP and SPP; (ii) the GR targeting signal has similar determinants for processing by MPP as signals targeting only to mitochondria; and (iii) processing by SPP shows a low level of sensitivity to single mutations on targeting peptide and likely involves recognition of the physiochemical properties of the sequence in the vicinity of cleavage rather than a requirement for specific amino acid residues.
Collapse
Affiliation(s)
- Charlotta Rudhe
- Department of Biochemistry and Biophysics, Arrhenius Laboratories for Natural Sciences, Stockholm University, S-106 91 Stockholm, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Mukhopadhyay A, Heard TS, Wen X, Hammen PK, Weiner H. Location of the actual signal in the negatively charged leader sequence involved in the import into the mitochondrial matrix space. J Biol Chem 2003; 278:13712-8. [PMID: 12551941 DOI: 10.1074/jbc.m212743200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Proteins destined for the mitochondrial matrix space have leader sequences that are typically present at the most N-terminal end of the nuclear-encoded precursor protein. The leaders are rich in positive charges and usually deficient of negative charges. This observation led to the acid-chain hypothesis to explain how the leader sequences interact with negatively charged receptor proteins. Here we show using both chimeric leaders and one from isopropyl malate synthase that possesses a negative charge that the leader need not be at the very N terminus of the precursor. Experiments were performed with modified non-functioning leader sequences fused to either the native or a non-functioning leader of aldehyde dehydrogenase so that an internal leader sequence could exist. The internal leader is sufficient for the import of the modified precursor protein. It appears that this leader still needs to form an amphipathic helix just like the normal N-terminal leaders do. This internal leader could function even if the most N-terminal portion contained negative charges in the first 7-11 residues. If the first 11 residues were deleted from isopropyl malate synthase, the resulting protein was imported more successfully than the native protein. It appears that precursors that carry negatively charged leaders use an internal signal sequence to compensate for the non-functional segment at the most N-terminal portion of the protein.
Collapse
Affiliation(s)
- Abhijit Mukhopadhyay
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907-2063, USA
| | | | | | | | | |
Collapse
|
12
|
Bauer MF, Hofmann S, Neupert W. Import of mitochondrial proteins. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2003; 53:57-90. [PMID: 12512337 DOI: 10.1016/s0074-7742(02)53004-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Matthias F Bauer
- Institute of Clinical Chemistry, Molecular Diagnostics and Mitochondrial Genetics and Diabetes Research Group, Academic Hospital Munich-Schwabing Kölner Platz, D-80804 München, Germany
| | | | | |
Collapse
|
13
|
Mukhopadhyay A, Hammen P, Waltner-Law M, Weiner H. Timing and structural consideration for the processing of mitochondrial matrix space proteins by the mitochondrial processing peptidase (MPP). Protein Sci 2002; 11:1026-35. [PMID: 11967360 PMCID: PMC2373553 DOI: 10.1110/ps.3760102] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2001] [Revised: 01/19/2001] [Accepted: 01/22/2001] [Indexed: 10/14/2022]
Abstract
Most mitochondrial matrix space proteins are synthesized as a precursor protein, and the N-terminal extension of amino acids that served as the leader sequence is removed after import by the action of a metalloprotease called mitochondrial processing peptidase (MPP). The crystal structure of MPP has been solved very recently, and it has been shown that synthetic leader peptides bind with MPP in an extended conformation. However, it is not known how MPP recognizes hundreds of leader peptides with different primary and secondary structures or when during import the leader is removed. Here we took advantage of the fact that the structure of the leader from rat liver aldehyde dehydrogenase has been determined by 2D-NMR to possess two helical portions separated by a three amino acid (RGP) linker. When the linker was deleted, the leader formed one long continuous helix that can target a protein to the matrix space but is not removed by the action of MPP. Repeats of two and three leaders were fused to the precursor protein to determine the stage of import at which processing occurs, if MPP could function as an endo peptidase, and if it would process if the cleavage site was part of a helix. Native or linker deleted constructs were used. Import into isolated yeast mitochondria or processing with recombinantly expressed MPP was performed. It was concluded that processing did not occur as the precursor was just entering the matrix space, but most likely coincided with the folding of the protein. Further, finding that hydrolysis could not take place if the processing site was part of a stable helix is consistent with the crystal structure of MPP. Lastly, it was found that MPP could function at sites as far as 108 residues from the N terminus of the precursor protein, but its ability to process decreases exponentially as the distance increases.
Collapse
Affiliation(s)
- Abhijit Mukhopadhyay
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907-1153, USA
| | | | | | | |
Collapse
|
14
|
Duby G, Oufattole M, Boutry M. Hydrophobic residues within the predicted N-terminal amphiphilic alpha-helix of a plant mitochondrial targeting presequence play a major role in in vivo import. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2001; 27:539-49. [PMID: 11576437 DOI: 10.1046/j.1365-313x.2001.01098.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
A deletion and mutagenesis study was performed on the mitochondrial presequence of the beta-subunit of the F(1)-ATP synthase from Nicotiana plumbaginifolia linked to the green fluorescent protein (GFP). The various constructs were tested in vivo by transient expression in tobacco protoplasts. GFP distribution in transformed cells was analysed in situ by confocal microscopy, and in vitro in subcellular fractions by Western blotting. Despite its being highly conserved in different species, deletion of the C-terminal region (residues 48-54) of the presequence did not affect mitochondrial import. Deletion of the conserved residues 40-47 and the less conserved intermediate region (residues 18-39) resulted in 60% reduction in GFP import, whereas mutation of conserved residues within these regions had little effect. Further shortening of the presequence progressively reduced import, with the construct retaining the predicted N-terminal amphiphilic alpha-helix (residues 1-12) being unable to mediate mitochondrial import. However, point mutation showed that this last region plays an important role through its basic residues and amphiphilicity, but also through its hydrophobic residues. Replacing Arg4 and Arg5 by alanine residues and shifting the Arg5 and Leu6 (in order to disturb amphiphilicity) resulted in reduction of the presequence import efficiency. The most dramatic effects were seen with single or double mutations of the four Leu residues (positions 5, 6, 10 and 11), which resulted in marked reduction or abolition of GFP import, respectively. We conclude that the N-terminal helical structure of the presequence is necessary but not sufficient for efficient mitochondrial import, and that its hydrophobic residues play an essential role in in vivo mitochondrial targeting.
Collapse
Affiliation(s)
- G Duby
- Unité de biochimie physiologique, Université catholique de Louvain, Croix du Sud 2-20, B-1348 Louvain-la-Neuve, Belgium
| | | | | |
Collapse
|
15
|
Zhou J, Weiner H. The N-terminal portion of mature aldehyde dehydrogenase affects protein folding and assembly. Protein Sci 2001; 10:1490-7. [PMID: 11468345 PMCID: PMC2374079 DOI: 10.1110/ps.5301] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2001] [Revised: 04/19/2001] [Accepted: 04/26/2001] [Indexed: 10/16/2022]
Abstract
Human liver cytosolic (ALDH1) and mitochondrial (ALDH2) aldehyde dehydrogenases are both encoded in the nucleus and synthesized in the cytosol. ALDH1 must fold in the cytosol, but ALDH2 is first synthesized as a precursor and must remain unfolded during import into mitochondria. The two mature forms share high identity (68%) at the protein sequence level except for the first 21 residues (14%); their tertiary structures were found to be essentially identical. ALDH1 folded faster in vitro than ALDH2 and could assemble to tetramers while ALDH2 remained as monomers. Import assay was used as a tool to study the folding status of ALDH1 and ALDH2. pALDH1 was made by fusing the presequence of precursor ALDH2 to the N-terminal end of ALDH1. Its import was reduced about 10-fold compared to the precursor ALDH2. The exchange of the N-terminal 21 residues from the mature portion altered import, folding, and assembly of precursor ALDH1 and precursor ALDH2. More of chimeric ALDH1 precursor was imported into mitochondria compared to its parent precursor ALDH1. The import of chimeric ALDH2 precursor, the counterpart of chimeric ALDH1 precursor, was reduced compared to its parent precursor ALDH2. Mature ALDH1 proved to be more stable against urea denaturation than ALDH2. Urea unfolding improved the import of precursor ALDH1 and the chimeric precursors but not precursor ALDH2, consistent with ALDH1 and the chimeric ALDHs being more stable than ALDH2. The N-terminal segment of the mature protein, and not the presequence, makes a major contribution to the folding, assembly, and stability of the precursor and may play a role in folding and hence the translocation of the precursor into mitochondria.
Collapse
Affiliation(s)
- J Zhou
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907-1153, USA
| | | |
Collapse
|
16
|
Lumb MJ, Drake AF, Danpure CJ. Effect of N-terminal alpha-helix formation on the dimerization and intracellular targeting of alanine:glyoxylate aminotransferase. J Biol Chem 1999; 274:20587-96. [PMID: 10400689 DOI: 10.1074/jbc.274.29.20587] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The unparalleled peroxisome-to-mitochondrion mistargeting of alanine:glyoxylate aminotransferase (AGT) in the hereditary disease primary hyperoxaluria type 1 is caused by the combined presence of a common Pro11 --> Leu polymorphism and a disease-specific Gly170 --> Arg mutation. The Pro11 --> Leu replacement generates a functionally weak N-terminal mitochondrial targeting sequence (MTS), the efficiency of which is increased by the additional presence of the Gly170 --> Arg replacement. AGT dimerization is inhibited in the combined presence of both replacements but not when each is present separately. In this paper we have attempted to identify the structural determinants of AGT dimerization and mitochondrial mistargeting. Unlike most MTSs, the polymorphic MTS of AGT has little tendency to adopt an alpha-helical conformation in vitro. Nevertheless, it is able to target efficiently a monomeric green fluorescent (GFP) fusion protein, but not dimeric AGT, to mitochondria in transfected COS-1 cells. Increasing the propensity of this MTS to fold into an alpha-helix, by making a double Pro11 --> Leu + Pro10 --> Leu replacement, enabled it to target both GFP and AGT efficiently to mitochondria. The double Pro11 --> Leu + Pro10 --> Leu replacement retarded AGT dimerization in vitro as did the disease-causing double Pro11 --> Leu + Gly170 --> Arg replacement. These data suggest that N-terminal alpha-helix formation is more important for maintaining AGT in a conformation (i. e. monomeric) compatible with mitochondrial import than it is for the provision of mitochondrial targeting information. The parallel effects of the Pro10 --> Leu and Gly170 --> Arg replacements on the dimerization and intracellular targeting of polymorphic AGT (containing the Pro11 --> Leu replacement) raise the possibility that they might achieve their effects by the same mechanism.
Collapse
Affiliation(s)
- M J Lumb
- MRC Laboratory for Molecular Cell Biology and the Department of Biology, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | | | | |
Collapse
|
17
|
Ni L, Heard TS, Weiner H. In vivo mitochondrial import. A comparison of leader sequence charge and structural relationships with the in vitro model resulting in evidence for co-translational import. J Biol Chem 1999; 274:12685-91. [PMID: 10212250 DOI: 10.1074/jbc.274.18.12685] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The positive charges and structural properties of the mitochondrial leader sequence of aldehyde dehydrogenase have been extensively studied in vitro. The results of these studies showed that increasing the helicity of this leader would compensate for reduced import from positive charge substitutions of arginine with glutamine or the insertion of negative charged residues made in the native leader. In this in vivo study, utilizing the green fluorescent protein (GFP) as a passenger protein, import results showed the opposite effect with respect to helicity, but the results from mutations made within the native leader sequence were consistent between the in vitro and in vivo experiments. Leader mutations that reduced the efficiency of import resulted in a cytosolic accumulation of a truncated GFP chimera that was fluorescent but devoid of a mitochondrial leader. The native leader efficiently imported before GFP could achieve a stable, import-incompetent structure, suggesting that import was coupled with translation. As a test for a co-translational mechanism, a chimera of GFP that contained the native leader of aldehyde dehydrogenase attached at the N terminus and a C-terminal endoplasmic reticulum targeting signal attached to the C terminus of GFP was constructed. This chimera was localized exclusively to mitochondria. The import result with the dual signal chimera provides support for a co-translational mitochondrial import pathway.
Collapse
Affiliation(s)
- L Ni
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907-1153, USA
| | | | | |
Collapse
|
18
|
Hammen PK, Heard TS, Waltner M, Weiner H. The loss in hydrophobic surface area resulting from a Leu to Val mutation at the N-terminus of the aldehyde dehydrogenase presequence prevents import of the protein into mitochondria. Protein Sci 1999; 8:890-6. [PMID: 10211835 PMCID: PMC2144303 DOI: 10.1110/ps.8.4.890] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
An apparent conservative mutation, Leu to Val, at the second residue of the rat liver mitochondrial aldehyde dehydrogenase (ALDH) presequence resulted in a precursor protein that was not imported into mitochondria. Additional mutants were made to substitute various amino acids with nonpolar side chains for Leu2. The Ile, Phe, and Trp mutants were imported to an extent similar to that of the native precursor, but the Ala mutant was imported only about one-fourth as well. It was shown that the N-terminal methionine was removed from the L2V mutant in a reaction catalyzed by methionine aminopeptidase. The N-terminal methionine of native pALDH and the other mutant presequences was blocked, presumably by acetylation. Because of the difference in co-translational modification, the L2V mutant sustained a significant loss in the available hydrophobic surface of the presequence. Import competence was restored to the L2V mutant when it was translated using a system that did not remove Met1. The removal of an Arg-Gly-Pro helix linker segment (residues 11-14) from the L2V mutant, which shifted three leucine residues toward the N-terminus, also restored import competence. These results lead to the conclusion that a minimum amount of hydrophobic surface area near the N-termini of mitochondrial presequences is an essential property to determine their ability to be imported. As a result, both electrostatic and hydrophobic components must be considered when trying to understand the interactions between precursor proteins and proteins of the mitochondrial import apparatus.
Collapse
Affiliation(s)
- P K Hammen
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907-1153, USA
| | | | | | | |
Collapse
|
19
|
Tanudji M, Sjöling S, Glaser E, Whelan J. Signals required for the import and processing of the alternative oxidase into mitochondria. J Biol Chem 1999; 274:1286-93. [PMID: 9880497 DOI: 10.1074/jbc.274.3.1286] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The critical residues involved in targeting and processing of the soybean alternative oxidase to plant and animal mitochondria was investigated. Import of various site-directed mutants into soybean mitochondria indicated that positive residues throughout the length of the presequence were important for import, not just those in the predicted region of amphiphilicity. The position of the positive residues in the C-terminal end of the presequence was also important for import. Processing assays of the various constructs with purified spinach mitochondrial processing peptidase showed that all the -2-position mutants had a drastic effect on processing. In contrast to the import assay, the position of the positive residue could be changed for processing. Deletion mutants confirmed the site-directed mutagenesis data in that an amphiphilic alpha-helix was not the only determinant of mitochondrial import in this homologous plant system. Import of these constructs into rat liver mitochondria indicated that the degree of inhibition differed and that the predicted region of amphiphilic alpha-helix was more important with rat liver mitochondria. Processing with a rat liver matrix fraction showed little inhibition. These results are discussed with respect to targeting specificity in plant cells and highlight the need to carry out homologous studies and define the targeting requirements to plant mitochondria.
Collapse
Affiliation(s)
- M Tanudji
- Department of Biochemistry, University of Western Australia, Nedlands 6907, Western Australia, Australia
| | | | | | | |
Collapse
|
20
|
Heard TS, Weiner H. A regional net charge and structural compensation model to explain how negatively charged amino acids can be accepted within a mitochondrial leader sequence. J Biol Chem 1998; 273:29389-93. [PMID: 9792640 DOI: 10.1074/jbc.273.45.29389] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mitochondrial leader sequences have been found to be statistically enriched for positively charged residues, with only a few known leader sequences possessing negatively charged residues. Mutational studies that have introduced negatively charged residues into various leader sequences have shown a general, but not absolute, trend toward reduced import. The leader sequence of rat liver aldehyde dehydrogenase has been previously determined by NMR to form a helix-linker-helix structure. A negative charge introduced into this leader did not prevent import, provided that a net positive charge remained in the N-helical segment. When the net charge of the N-terminal helical segment was reduced to zero, import could be recovered by removing the linker, which resulted in a longer, more stable leader. This structural recovery of import was effective enough to compensate for a net charge of zero within the first 10 residues, even when a glutamate is the first charged side chain presented in the sequence.
Collapse
Affiliation(s)
- T S Heard
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907-1153, USA
| | | |
Collapse
|
21
|
|
22
|
Abstract
Mitochondria import many hundreds of different proteins that are encoded by nuclear genes. These proteins are targeted to the mitochondria, translocated through the mitochondrial membranes, and sorted to the different mitochondrial subcompartments. Separate translocases in the mitochondrial outer membrane (TOM complex) and in the inner membrane (TIM complex) facilitate recognition of preproteins and transport across the two membranes. Factors in the cytosol assist in targeting of preproteins. Protein components in the matrix partake in energetically driving translocation in a reaction that depends on the membrane potential and matrix-ATP. Molecular chaperones in the matrix exert multiple functions in translocation, sorting, folding, and assembly of newly imported proteins.
Collapse
Affiliation(s)
- W Neupert
- Institut für Physiologische Chemie der Universität München, Germany
| |
Collapse
|
23
|
Luciano P, Géli V. The mitochondrial processing peptidase: function and specificity. Cell Mol Life Sci 1996; 52:1077-82. [PMID: 8988249 DOI: 10.1007/bf01952105] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Targeting signals of mitochondrial precursors are cleaved in the matrix during or after import by the mitochondrial processing peptidase (MPP). This enzyme consists of two nonidentical alpha- and beta-subunits each of molecular weight of about 50 kDa. In mammals and fungi, MPP is soluble in the matrix, whereas in plants the enzyme is part of the cytochrome bc1 complex. MPP is a metalloendopeptidase which has been classified as a member of the pitrilysin family on the basis of the HXXEHX76E zinc-binding motif present in beta-MPP. Both subunits of MPP are required for processing activity. The alpha-subunit of MPP, which probably recognizes a three-dimensional motif adopted by the presequence, presents the presequence to beta-MPP, which carries the catalytic active site. MPP acts as an endoprotease on chemically synthesized peptides corresponding to mitochondrial presequences. Matrix-targeting signals and MPP cleavage signals seem to be distinct, although the two signals may overlap within a given presequence. The structural element helix-turn-helix, that cleavable presequences adopt in a membrane mimetic environment, may be required for processing but is not sufficient for proteolysis. Binding of the presequence by alpha-MPP tolerates a high degree of mutations of the presequence. alpha-MPP may present a degenerated cleavage site motif to beta-MPP in an accessible conformation for processing. The conformation of mitochondrial presequences bound to MPP remains largely unknown.
Collapse
Affiliation(s)
- P Luciano
- Laboratoire d'Ingéniérie des Systèmes Macromoléculaires, CNRS, Marseille, France
| | | |
Collapse
|
24
|
Claros MG, Vincens P. Computational method to predict mitochondrially imported proteins and their targeting sequences. EUROPEAN JOURNAL OF BIOCHEMISTRY 1996; 241:779-86. [PMID: 8944766 DOI: 10.1111/j.1432-1033.1996.00779.x] [Citation(s) in RCA: 1324] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Most of the proteins that are used in mitochondria are imported through the double membrane of the organelle. The information that guides the protein to mitochondria is contained in its sequence and structure, although no direct evidence can be obtained. In this article, discriminant analysis has been performed with 47 parameters and a large set of mitochondrial proteins extracted from the SwissProt database. A computational method that facilitates the analysis and objective prediction of mitochondrially imported proteins has been developed. If only the amino acid sequence is considered, 75-97% of the mitochondrial proteins studied have been predicted to be imported into mitochondria. Moreover, the existence of mitochondrial-targeting sequences is predicted in 76-94% of the analyzed mitochondrial precursor proteins. As a practical application, the number of unknown yeast open reading frames that might be mitochondrial proteins has been predicted, which revealed that many of them are clustered.
Collapse
Affiliation(s)
- M G Claros
- Laboratoire de Génétique Moléculaire, CNRS URA 1302, Ecole Normale Supérieure, Paris, France. or
| | | |
Collapse
|
25
|
Hammen PK, Waltner M, Hahnemann B, Heard TS, Weiner H. The Role of Positive Charges and Structural Segments in the Presequence of Rat Liver Aldehyde Dehydrogenase in Import into Mitochondria. J Biol Chem 1996. [DOI: 10.1074/jbc.271.35.21041] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
26
|
Waltner M, Hammen PK, Weiner H. Influence of the Mature Portion of a Precursor Protein on the Mitochondrial Signal Sequence. J Biol Chem 1996. [DOI: 10.1074/jbc.271.35.21226] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
27
|
Eriksson AC, Sjöling S, Glaser E. Characterization of the bifunctional mitochondrial processing peptidase (MPP)/bc1 complex in Spinacia oleracea. J Bioenerg Biomembr 1996; 28:285-92. [PMID: 8807403 DOI: 10.1007/bf02110702] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The mitochondrial general processing peptidase (MPP) in plant mitochondria constitutes an integral part of the cytochrome bc1 complex of the respiratory chain. Here we present a characterization of this bifunctional complex from spinach leaf mitochondria. The purified MPP/bc1 complex has a molecular mass of 550 kDa, which corresponds to a dimer. Increased ionic strength results in partial dissociation of the dimer as well as loss of the processing activity. Micellar concentrations of nonionic and zwitterionic detergents stimulate the activity by decreasing the temperature optimum of the processing reaction, whereas anionic detergents totally suppress the activity. MPP is a metalloendopeptidase. Interestingly, hemin, a potent regulator of mitochondrial and cytosolic biogenesis and inhibitor of proteosomal degradation, inhibits the processing activity. Measurements of the processing activity at different redox states of the bc1 complex show that despite bifunctionality of the MPP/bc1 complex, there is no correlation between electron transfer and protein processing.
Collapse
Affiliation(s)
- A C Eriksson
- Department of Biochemistry, Arrhenius Laboratories for Natural Sciences, Stockholm University, Sweden
| | | | | |
Collapse
|
28
|
Waltner M, Weiner H. Conversion of a nonprocessed mitochondrial precursor protein into one that is processed by the mitochondrial processing peptidase. J Biol Chem 1995; 270:26311-7. [PMID: 7592841 DOI: 10.1074/jbc.270.44.26311] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Mitochondrial processing peptidase (MPP) cleaves the signal sequence from a variety of mitochondrial precursor proteins. A subset of mitochondrial proteins, including rhodanese and 3-oxoacyl-CoA thiolase, are imported into the matrix space, yet are not processed. Rhodanese signal peptide and translated protein were recognized by MPP, as both were inhibitors of processing. The signal peptide of precursor aldehyde dehydrogenase consists of a helix-linker-helix motif but when the RGP linker is removed, processing no longer occurs (Thornton, K., Wang, Y., Weiner, H., and Gorenstein, D. G. (1993) J. Biol. Chem. 268, 19906-19914). Disruption of the helical signal sequence of rhodanese by the addition of the RGP linker did not allow cleavage to occur. However, addition of a putative cleavage site allowed the protein to be processed. The same cleavage site was added to 3-oxoacyl-CoA thiolase, but this protein was still not processed. Thiolase and linker-deleted aldehyde dehydrogenase signal peptides were poor inhibitors of MPP. It can be concluded that both a processing site and the structure surrounding this site are important for MPP recognition.
Collapse
Affiliation(s)
- M Waltner
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907-1153, USA
| | | |
Collapse
|
29
|
Chupin V, Leenhouts JM, de Kroon AI, de Kruijff B. Cardiolipin modulates the secondary structure of the presequence peptide of cytochrome oxidase subunit IV: a 2D 1H-NMR study. FEBS Lett 1995; 373:239-44. [PMID: 7589474 DOI: 10.1016/0014-5793(95)01054-i] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The secondary structure of the presequence of cytochrome oxidase subunit IV (p25) was studied by circular dichroism and 2D nuclear magnetic resonance in micelles of dodecylphosphocholine (DPC) and mixed micelles of DPC and mitochondrial cardiolipin (CL). In both systems, alpha-helix formation was observed. The alpha-helix stretches from the N- to the C-terminus with a break at the proline residue at position 13. Upon introduction of CL in the DPC micellar system, an increased stability of the helix was observed around proline13 and in the C-terminal half. This observation, together with reported results on specific interactions between CL and p25, led to the proposal of a two-state equilibrium of the alpha-helical conformation of p25, modulated by CL.
Collapse
Affiliation(s)
- V Chupin
- Department of Biochemistry of Membranes, Utrecht University, The Netherlands
| | | | | | | |
Collapse
|
30
|
Zhou J, Bai Y, Weiner H. Proteolysis prevents in vivo chimeric fusion protein import into yeast mitochondria. Cytosolic cleavage and subcellular distribution. J Biol Chem 1995; 270:16689-93. [PMID: 7622479 DOI: 10.1074/jbc.270.28.16689] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The in vivo import of liver mitochondrial aldehyde dehydrogenase was investigated in yeast by constructing fusion proteins between its leader sequence and beta-galactosidase. Only 7% of the protein was imported. If 21 or 71 amino acids from the mature portion of aldehyde dehydrogenase were included in the construct, 40% was imported. The protein remaining in cytosol was sequenced. When the leader was fused directly to beta-galactosidase, the first 7 residues of the leader were missing. When 21 residues of mature aldehyde dehydrogenase were included, the entire leader plus 6 residues of the mature portion were missing; if 71 residues of mature aldehyde dehydrogenase were included, the first residue found corresponds to the 66th residue of the mature portion. When the leader was fused directly to beta-galactosidase, no processing of the imported protein occurred, and the N-terminal amino acid was blocked, presumably by acetylation. If the 21-amino acid insert was included, processing occurred. A modified leader sequence lacking the three-amino acid linker (RGP) was imported but not processed, just as we found in vitro (Thornton, K., Wang, Y., Weiner, H., and Gorenstein, D.G. (1993) J. Biol. Chem. 268, 19906-19914). The less than 100% import of pre-aldehyde dehydrogenase was due to the action of a post-translational protease attack which prevented import by destroying the leader peptide segment.
Collapse
Affiliation(s)
- J Zhou
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907-1153, USA
| | | | | |
Collapse
|
31
|
Jarvis JA, Ryan MT, Hoogenraad NJ, Craik DJ, Høj PB. Solution structure of the acetylated and noncleavable mitochondrial targeting signal of rat chaperonin 10. J Biol Chem 1995; 270:1323-31. [PMID: 7836398 DOI: 10.1074/jbc.270.3.1323] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Chaperonin 10 (Cpn10) is one of only a few mitochondrial matrix proteins synthesized without a cleavable targeting signal. Using a truncated form of Cpn10 and synthetic peptides in mitochondrial import assays, we show that the N-terminal region is both necessary and sufficient for organellar targeting in vitro. To elucidate the structural features of this topogenic signal, peptides representing residues 1-25 of rat Cpn10 were synthesized with and without the naturally occurring N-terminal acetylation. 1H NMR spectroscopy in 20% CF3CH2OH,H2O showed that both peptides assume a stable helix-turn-helix motif and are highly amphiphilic in nature. Chemical shift and coupling constant data revealed that the N-terminal helix is stabilized by N-acetylation, whereas NOE and exchange studies were used to derive a three dimensional structure for the acetylated peptide. These findings are discussed with respect to a recent model predicting that targeting sequences forming a continuous alpha-helix of more than 11 residues cannot adopt a conformation necessary for proteolysis by the matrix located signal peptidases (Hammen, P. K., Gorenstein, D. G., and Weiner, H. (1994) Biochemistry 33, 8610-8617).
Collapse
Affiliation(s)
- J A Jarvis
- School of Pharmaceutical Chemistry, Monash University, Parkville, Victoria, Australia
| | | | | | | | | |
Collapse
|
32
|
Sjöling S, Eriksson AC, Glaser E. A helical element in the C-terminal domain of the N. plumbaginifolia F1 beta presequence is important for recognition by the mitochondrial processing peptidase. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(18)31600-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
33
|
Wang Y, Weiner H. Evaluation of electrostatic and hydrophobic effects on the interaction of mitochondrial signal sequences with phospholipid bilayers. Biochemistry 1994; 33:12860-7. [PMID: 7947692 DOI: 10.1021/bi00209a018] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The information that directs a nuclear-coded protein to be imported into mitochondria resides in an N-terminal extension, called a signal sequence. The primary sequences of all known ones differ. The only common feature is their ability to theoretically form an amphiphilic, positively charged, alpha-helix. We previously showed that a short stable helical segment was required for a peptide to be functional in import [Wang, Y., & Weiner, H. (1993) J. Biol. Chem. 268, 4759-4765]. Here we investigate the interaction of three altered signal sequences with phospholipid membranes containing cardiolipin to ascertain the importance of electrostatic and hydrophobic interactions with the membrane. The three already described peptides were derivatives of the signal sequence from aldehyde dehydrogenase, which is composed of three segments, two helices separated by a linker. ANCN had the C-helix replaced by the N-helix of the signal sequence of cytochrome c oxidase subunit IV, ANCC had the C-terminal helix replaced by the C-terminal random coil of cytochrome oxidase subunit IV, and linker deleted had the linker region deleted. ANCC, which functioned poorly as a signal sequence, had a very low affinity for binding to the negatively charged membranes. In contrast, both ANCN and linker deleted showed a relatively high affinity for the membranes and were capable of functioning as a good leader sequence. It appears that linker deleted possessed a stronger hydrophobic effect with membranes while ANCN had a higher electrostatic interaction. On the basic of these studies, a model was proposed to describe the interaction of mitochondrial signal sequences with negatively charged phospholipid membranes involving electrostatic interaction for initial binding and hydrophobic interaction for insertion.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- Y Wang
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907
| | | |
Collapse
|
34
|
Chang C, Yoshida A. Cloning and characterization of the gene encoding mouse mitochondrial aldehyde dehydrogenase. Gene 1994; 148:331-6. [PMID: 7958964 DOI: 10.1016/0378-1119(94)90708-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The mitochondrial (mt) aldehyde dehydrogenase (ALDH2) in liver has been considered to play a major role in the detoxification of alcohol in humans. Using the human ALDH2 cDNA and synthetic oligodeoxyribonucleotides (oligos) as probes, the mouse ALDH2 (mALDH2) gene was isolated and characterized. Nucleotide (nt) sequence analysis revealed an open reading frame (ORF) of 1560 bp encoding a protein of 519 amino acid (aa) residues. The gene is composed of 13 exons and 12 introns and spans approx. 26 kb of the mouse genome. The deduced aa sequence, when compared to the mtALDH2 of human, rat, horse and bovine, revealed 95.8, 99.0, 95.6 and 93.6% aa identity, respectively. Primer extension and rapid amplification of cDNA ends (RACE) experiments showed that the transcription start point (tsp) was 105 bp upstream from the start codon. The promoter region of mALDH2 is devoid of a TATA consensus sequence motif, but putative regulatory elements, including a CAAT box, Sp1-binding site and glucocorticoid-response element (GRE), are present in the promoter region. Northern blot hybridization demonstrated the existence of a high level of mALDH2 mRNA in mouse liver and a low level in mouse kidney.
Collapse
Affiliation(s)
- C Chang
- Department of Biochemical Genetics, Beckman Research Institute of the City of Hope, Duarte, CA 91010
| | | |
Collapse
|
35
|
Leenhouts JM, Török Z, Demel RA, de Gier J, de Kruijff B. The full length of a mitochondrial presequence is required for efficient monolayer insertion and interbilayer contact formation. Mol Membr Biol 1994; 11:159-64. [PMID: 7742880 DOI: 10.3109/09687689409162234] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The peptide specificity of both presequence-monolayer interactions and the ability of presequences to induce interbilayer contacts between large unilamellar vesicles was investigated. A range of different synthetic peptides that are documented for their mitochondrial protein import abilities were used for this purpose. Both monolayer insertion and vesicle aggregation were found to be strongly dependent on the primary structure of the studied presequence peptides. The combination of monolayer data and results of vesicle aggregation experiments leads to the overall suggestion that monolayer insertion and interbilayer contact formation are mechanistically related. For maximal effects the full length of a presequence peptide is required. The cardiolipin specificity of presequence-induced interbilayer contact formation previously reported was found to be a more general property among presequence peptides. The peptide's ability to induce vesicle-vesicle contacts seems to parallel the efficiency of its import ability into mitochondria. These results lead to an extended hypothesis on the role of presequence-induced contact site formation during the mitochondrial protein import process.
Collapse
Affiliation(s)
- J M Leenhouts
- Department of Biochemistry of Membranes, Utrecht University, The Netherlands
| | | | | | | | | |
Collapse
|
36
|
Chaumont F, Silva Filho MDC, Thomas D, Leterme S, Boutry M. Truncated presequences of mitochondrial F1-ATPase beta subunit from Nicotiana plumbaginifolia transport CAT and GUS proteins into mitochondria of transgenic tobacco. PLANT MOLECULAR BIOLOGY 1994; 24:631-41. [PMID: 8155882 DOI: 10.1007/bf00023559] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The mitochondrial F1-ATPase beta subunit (ATPase-beta) of Nicotiana plumbaginifolia is nucleus-encoded as a precursor containing an NH2-terminal extension. By sequencing the mature N. tabacum ATPase-beta, we determined the length of the presequence, viz. 54 residues. To define the essential regions of this presequence, we produced a series of 3' deletions in the sequence coding for the 90 NH2-terminal residues of ATPase-beta. The truncated sequences were fused with the chloramphenicol acetyl transferase (cat) and beta-glucuronidase (gus) genes and introduced into tobacco plants. From the observed distribution of CAT and GUS activity in the plant cells, we conclude that the first 23 amino-acid residues of ATPase-beta remain capable of specifically targeting reporter proteins into mitochondria. Immunodetection in transgenic plants and in vitro import experiments with various CAT fusion proteins show that the precursors are processed at the expected cleavage site but also at a cryptic site located in the linker region between the presequence and the first methionine of native CAT.
Collapse
Affiliation(s)
- F Chaumont
- Unité de Biochimie Physiologique, University of Louvain, Louvain-la-Neuve, Belgium
| | | | | | | | | |
Collapse
|
37
|
Thornton K, Wang Y, Weiner H, Gorenstein D. Import, processing, and two-dimensional NMR structure of a linker-deleted signal peptide of rat liver mitochondrial aldehyde dehydrogenase. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(19)36598-6] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|