1
|
Ionescu MI, Oniga O. Molecular Docking Evaluation of ( E)-5-arylidene-2-thioxothiazolidin-4-one Derivatives as Selective Bacterial Adenylate Kinase Inhibitors. Molecules 2018; 23:molecules23051076. [PMID: 29751552 PMCID: PMC6102543 DOI: 10.3390/molecules23051076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 04/27/2018] [Accepted: 05/01/2018] [Indexed: 12/13/2022] Open
Abstract
Multi-drug resistant microorganism infections with emerging problems that require not only a prevention strategy, but also the development of new inhibitory compounds. Six previously synthesized 5-arylidene-2-thioxothiazolidin-4-one derivatives 1a–f, were screened for inhibitory activity on adenylate kinases of different origins by molecular docking. The compounds 1c and 1d were the most efficient inhibitors of bacterial and some archean adenylate kinases. Hydrogen bond interactions were observed with the residues belonging to the ATP binding site. Moreover human adenylate kinases are poor targets, suggesting that this selectivity offers promising prospectives for refining the structure of our compounds.
Collapse
Affiliation(s)
- Mihaela Ileana Ionescu
- Department of Microbiology, Iuliu Hațieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania.
- Department of Microbiology, County Emergency Clinical Hospital, 400006 Cluj-Napoca, Romania.
| | - Ovidiu Oniga
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Iuliu Hațieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania.
| |
Collapse
|
2
|
Wang Y, Makowski L. Fine structure of conformational ensembles in adenylate kinase. Proteins 2017; 86:332-343. [DOI: 10.1002/prot.25443] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 10/12/2017] [Accepted: 11/03/2017] [Indexed: 11/07/2022]
Affiliation(s)
- Yujing Wang
- Department of BioengineeringNortheastern UniversityBoston Massachusetts
| | - Lee Makowski
- Department of BioengineeringNortheastern UniversityBoston Massachusetts
| |
Collapse
|
3
|
Thieulin-Pardo G, Schramm A, Lignon S, Lebrun R, Kojadinovic M, Gontero B. The intriguing CP12-like tail of adenylate kinase 3 fromChlamydomonas reinhardtii. FEBS J 2016; 283:3389-407. [DOI: 10.1111/febs.13814] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 06/14/2016] [Accepted: 07/13/2016] [Indexed: 01/09/2023]
Affiliation(s)
| | - Antoine Schramm
- Aix Marseille Univ; CNRS; BIP, UMR 7281, IMM; Marseille Cedex 20 France
| | - Sabrina Lignon
- Plate-forme Protéomique; Marseille Protéomique (MaP); Institut de Microbiologie de la Méditerranée; CNRS, FR 3479 Marseille Cedex 20 France
| | - Régine Lebrun
- Plate-forme Protéomique; Marseille Protéomique (MaP); Institut de Microbiologie de la Méditerranée; CNRS, FR 3479 Marseille Cedex 20 France
| | - Mila Kojadinovic
- Aix Marseille Univ; CNRS; BIP, UMR 7281, IMM; Marseille Cedex 20 France
| | - Brigitte Gontero
- Aix Marseille Univ; CNRS; BIP, UMR 7281, IMM; Marseille Cedex 20 France
| |
Collapse
|
4
|
Krishnamurthy H, Munro K, Yan H, Vieille C. Dynamics in Thermotoga neapolitana adenylate kinase: 15N relaxation and hydrogen-deuterium exchange studies of a hyperthermophilic enzyme highly active at 30 degrees C. Biochemistry 2009; 48:2723-39. [PMID: 19220019 DOI: 10.1021/bi802001w] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Backbone conformational dynamics of Thermotoga neapolitana adenylate kinase in the free form (TNAK) and inhibitor-bound form (TNAK*Ap5A) were investigated at 30 degrees C using (15)N NMR relaxation measurements and NMR monitored hydrogen-deuterium exchange. With kinetic parameters identical to those of Escherichia coli AK (ECAK) at 30 degrees C, TNAK is a unique hyperthermophilic enzyme. These catalytic properties make TNAK an interesting and novel model to study the interplay between protein rigidity, stability, and activity. Comparison of fast time scale dynamics (picosecond to nanosecond) in the open and closed states of TNAK and ECAK at 30 degrees C reveals a uniformly higher rigidity across all domains of TNAK. Within this framework of a rigid TNAK structure, several residues located in the AMP-binding domain and in the core-lid hinge regions display high picosecond to nanosecond time scale flexibility. Together with the recent comparison of ECAK dynamics with those of hyperthermophilic Aquifex aeolicus AK (AAAK), our results provide strong evidence for the role of picosecond to nanosecond time scale fluctuations in both stability and activity. In the slow time scales, TNAK's increased rigidity is not uniform but localized in the AMP-binding and lid domains. The core domain amides of ECAK and TNAK in the open and closed states show comparable protection against exchange. Significantly, the hinges framing the lid domain show similar exchange data in ECAK and TNAK open and closed forms. Our NMR relaxation and hydrogen-deuterium exchange studies therefore suggest that TNAK maintains high activity at 30 degrees C by localizing flexibility to the hinge regions that are key to facilitating conformational changes.
Collapse
Affiliation(s)
- Harini Krishnamurthy
- Program in Cell and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, USA
| | | | | | | |
Collapse
|
5
|
Madern D, Pfister C, Zaccai G. Mutation at a Single Acidic Amino Acid Enhances the Halophilic Behaviour of Malate Dehydrogenase from Haloarcula Marismortui in Physiological Salts. ACTA ACUST UNITED AC 2008. [DOI: 10.1111/j.1432-1033.1995.1088g.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
6
|
Rudolph MG, Heissmann R, Wittmann JG, Klostermeier D. Crystal structure and nucleotide binding of the Thermus thermophilus RNA helicase Hera N-terminal domain. J Mol Biol 2006; 361:731-43. [PMID: 16890241 DOI: 10.1016/j.jmb.2006.06.065] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2006] [Revised: 06/20/2006] [Accepted: 06/26/2006] [Indexed: 02/06/2023]
Abstract
DEAD box RNA helicases use the energy of ATP hydrolysis to unwind double-stranded RNA regions or to disrupt RNA/protein complexes. A minimal RNA helicase comprises nine conserved motifs distributed over two RecA-like domains. The N-terminal domain contains all motifs involved in nucleotide binding, namely the Q-motif, the DEAD box, and the P-loop, as well as the SAT motif, which has been implicated in the coordination of ATP hydrolysis and RNA unwinding. We present here the crystal structure of the N-terminal domain of the Thermus thermophilus RNA helicase Hera in complex with adenosine monophosphate (AMP). Upon binding of AMP the P-loop adopts a partially collapsed or half-open conformation that is still connected to the DEAD box motif, and the DEAD box in turn is linked to the SAT motif via hydrogen bonds. This network of interactions communicates changes in the P-loop conformation to distant parts of the helicase. The affinity of AMP is comparable to that of ADP and ATP, substantiating that the binding energy from additional phosphate moieties is directly converted into conformational changes of the entire helicase. Importantly, the N-terminal Hera domain forms a dimer in the crystal similar to that seen in another thermophilic prokaryote. It is possible that this mode of dimerization represents the prototypic architecture in RNA helicases of thermophilic origin.
Collapse
Affiliation(s)
- Markus G Rudolph
- Department of Molecular Structural Biology, University of Göttingen, D-37077 Göttingen, Germany
| | | | | | | |
Collapse
|
7
|
Bellinzoni M, Haouz A, Graña M, Munier-Lehmann H, Shepard W, Alzari PM. The crystal structure of Mycobacterium tuberculosis adenylate kinase in complex with two molecules of ADP and Mg2+ supports an associative mechanism for phosphoryl transfer. Protein Sci 2006; 15:1489-93. [PMID: 16672241 PMCID: PMC2242552 DOI: 10.1110/ps.062163406] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The crystal structure of Mycobacterium tuberculosis adenylate kinase (MtAK) in complex with two ADP molecules and Mg2+ has been determined at 1.9 A resolution. Comparison with the solution structure of the enzyme, obtained in the absence of substrates, shows significant conformational changes of the LID and NMP-binding domains upon substrate binding. The ternary complex represents the state of the enzyme at the start of the backward reaction (ATP synthesis). The structure is consistent with a direct nucleophilic attack of a terminal oxygen from the acceptor ADP molecule on the beta-phosphate from the donor substrate, and both the geometry and the distribution of positive charge in the active site support the hypothesis of an associative mechanism for phosphoryl transfer.
Collapse
Affiliation(s)
- Marco Bellinzoni
- Unité de Biochimie Structurale, CNRS-URA 2185, Institut Pasteur, F-75724 Paris, France
| | | | | | | | | | | |
Collapse
|
8
|
Krishnamurthy H, Lou H, Kimple A, Vieille C, Cukier RI. Associative mechanism for phosphoryl transfer: a molecular dynamics simulation of Escherichia coli adenylate kinase complexed with its substrates. Proteins 2006; 58:88-100. [PMID: 15521058 DOI: 10.1002/prot.20301] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The ternary complex of Escherichia coli adenylate kinase (ECAK) with its substrates adenosine monophosphate (AMP) and Mg-ATP, which catalyzes the reversible transfer of a phosphoryl group between adenosine triphosphate (ATP) and AMP, was studied using molecular dynamics. The starting structure for the simulation was assembled from the crystal structures of ECAK complexed with the bisubstrate analog diadenosine pentaphosphate (AP(5)A) and of Bacillus stearothermophilus adenylate kinase complexed with AP(5)A, Mg(2+), and 4 coordinated water molecules, and by deleting 1 phosphate group from AP(5)A. The interactions of ECAK residues with the various moieties of ATP and AMP were compared to those inferred from NMR, X-ray crystallography, site-directed mutagenesis, and enzyme kinetic studies. The simulation supports the hypothesis that hydrogen bonds between AMP's adenine and the protein are at the origin of the high nucleoside monophosphate (NMP) specificity of AK. The ATP adenine and ribose moieties are only loosely bound to the protein, while the ATP phosphates are strongly bound to surrounding residues. The coordination sphere of Mg(2+), consisting of 4 waters and oxygens of the ATP beta- and gamma-phosphates, stays approximately octahedral during the simulation. The important role of the conserved Lys13 in the P loop in stabilizing the active site by bridging the ATP and AMP phosphates is evident. The influence of Mg(2+), of its coordination waters, and of surrounding charged residues in maintaining the geometry and distances of the AMP alpha-phosphate and ATP beta- and gamma-phosphates is sufficient to support an associative reaction mechanism for phosphoryl transfer.
Collapse
Affiliation(s)
- Harini Krishnamurthy
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing 48224-1322, USA
| | | | | | | | | |
Collapse
|
9
|
Despa F, Orgill DP, Lee RC. Effects of crowding on the thermal stability of heterogeneous protein solutions. Ann Biomed Eng 2005; 33:1125-31. [PMID: 16133920 DOI: 10.1007/s10439-005-5780-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2004] [Accepted: 04/15/2005] [Indexed: 11/29/2022]
Abstract
Crowding can substantially affect the transition of a protein between its native (N) and unfolded (U) states via volume exclusion effects. Also, it influences considerably the aggregation (A) of unfolded proteins. To examine the details, we developed an approach for computing the kinetic rates of the process N <--> U --> A in which the concentration of the protein is explicitly taken into account. We then compute the relative change with temperature of the protein denaturation for various fractional volume occupancies and partition of proteins in solution. The analysis indicates that, in protein solutions in which the average distance between proteins is comparable with the radius of gyration of an unfolded protein, steric effects increase the stability of the proteins which are in compact, native states. In heterogeneous protein solutions containing various types of proteins with different thermal stabilities, the unfolding of the most thermolabile proteins will increase the stability of the other proteins. The results shed light on the way proteins change the thermal stability of a cell as they unfold and aggregate. This study may be valuable in questions related to the dynamics of thermal injuries.
Collapse
Affiliation(s)
- Florin Despa
- Department of Surgery, MC 6035, The University of Chicago, Chicago, MC6035, Illinois 60637, USA.
| | | | | |
Collapse
|
10
|
Bordner AJ, Abagyan RA. Large-scale prediction of protein geometry and stability changes for arbitrary single point mutations. Proteins 2004; 57:400-13. [PMID: 15340927 DOI: 10.1002/prot.20185] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We have developed a method to both predict the geometry and the relative stability of point mutants that may be used for arbitrary mutations. The geometry optimization procedure was first tested on a new benchmark of 2141 ordered pairs of X-ray crystal structures of proteins that differ by a single point mutation, the largest data set to date. An empirical energy function, which includes terms representing the energy contributions of the folded and denatured proteins and uses the predicted mutant side chain conformation, was fit to a training set consisting of half of a diverse set of 1816 experimental stability values for single point mutations in 81 different proteins. The data included a substantial number of small to large residue mutations not considered by previous prediction studies. After removing 22 (approximately 2%) outliers, the stability calculation gave a standard deviation of 1.08 kcal/mol with a correlation coefficient of 0.82. The prediction method was then tested on the remaining half of the experimental data, giving a standard deviation of 1.10 kcal/mol and covariance of 0.66 for 97% of the test set. A regression fit of the energy function to a subset of 137 mutants, for which both native and mutant structures were available, gave a prediction error comparable to that for the complete training set with predicted side chain conformations. We found that about half of the variation is due to conformation-independent residue contributions. Finally, a fit to the experimental stability data using these residue parameters exclusively suggests guidelines for improving protein stability in the absence of detailed structure information.
Collapse
Affiliation(s)
- A J Bordner
- The Scripps Research Institute, 10550 North Torrey Pines Rd., Mail TPC-28, San Diego, California, USA.
| | | |
Collapse
|
11
|
Ratner V, Sinev M, Haas E. Determination of intramolecular distance distribution during protein folding on the millisecond timescale. J Mol Biol 2000; 299:1363-71. [PMID: 10873459 DOI: 10.1006/jmbi.2000.3814] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A method for determination of transient (on the millisecond timescale) intramolecular distance distributions (IDDs) by time-resolved dynamic non-radiative excitation energy transfer measurements was developed. The time-course of the development of the IDD between residues 73 and 203 in the CORE domain of Escherichia coli adenylate kinase throughout refolding from the GuHCl-induced denatured state was determined. The mean of the apparent IDD reduced to a value close to its magnitude in the native protein, within 2 ms (the dead-time of the instrument). At that time the width of that distribution was rather large (16+/-2 A). The large width implies that the intramolecular diffusion coefficient of the labeled segment does not exceed 10(-7) cm(2)/second. In a second slower phase of the refolding transition, the width was reduced to its native value (6+/-4 A).
Collapse
Affiliation(s)
- V Ratner
- Department of Life Sciences, Bar Ilan University, Ramat-Gan, 52900, Israel
| | | | | |
Collapse
|
12
|
Yamada M, Sugahara M, Hishitani Y, Nobumoto M, Nakazawa A. Isolation and characterization of mutated mitochondrial GTP:AMP phosphotransferase. J Mol Biol 1998; 280:551-8. [PMID: 9665856 DOI: 10.1006/jmbi.1998.1876] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
GTP:AMP phosphotransferase (adenylate kinase isozyme 3, AK3) mutants were obtained by using the ability of AK3 to complement a temperature-sensitive mutation of Escherichia coli adenylate kinase (AKe). Five mutants, P16L, G19S, G91D, G91S, and P93L, had mutation sites located at two loops that are involved in substrate binding of the enzyme. P16L and G19S bearing changes at the first loop showed reduced affinity for both GTP and AMP, the extent of reduction being slightly higher for GTP than AMP. In contrast, G91S and P93L having alterations at the second loop had lower affinities for AMP. Only the alterations at the second loop strongly influenced the Vmax value of the enzyme. Another mutant, D163N, had a substitution at the site forming a salt bridge in adenylate kinase isozyme 1 (AK1), which influenced the Vmax as well as the Km values for both substrates. The kinetic characteristics of these mutants were comparable to those of the corresponding AK1 or AKe mutants. Furthermore, from the results of mutations T201P and T201A that had alterations in all the kinetic parameters of AK3 and from a comparison with the structure and the kinetic parameters of AKe, we expect that a residue(s) around Thr201 is involved in recognition of the base of nucleoside triphosphate.
Collapse
Affiliation(s)
- M Yamada
- Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, Yamaguchi, 753-8515, Japan
| | | | | | | | | |
Collapse
|
13
|
Briand G, Perrier V, Kouach M, Takahashi M, Gilles AM, Bârzu O. Characterization of metal and nucleotide liganded forms of adenylate kinase by electrospray ionization mass spectrometry. Arch Biochem Biophys 1997; 339:291-7. [PMID: 9056261 DOI: 10.1006/abbi.1997.9877] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Complexes of adenylate kinase from Escherichia coli, Bacillus subtilis, and Bacillus stearothermophilus with the bisubstrate nucleotide analog P1,P5-di(adenosine 5')-pentaphosphate and with metal ions (Zn2+ and/or Mg2+) were analyzed by electrospray ionization mass spectrometry. P1,P5-di(adenosine 5')-pentaphosphate. adenylate kinase complex was detected in the positive mode at pH as low as 3.8. Binding of nucleotide to adenylate kinase stabilizes the overall structure of the protein and preserves the Zn2+ chelated form of the enzyme from the gram-positive organisms. In this way, it is possible in a single mass spectrometry experiment to screen metal-chelating adenylate kinases, without use of radioactively labeled compounds. Binding of Mg2+ to enzyme via P1,P5-di(adenosine 5')-pentaphosphate was also demonstrated by mass spectrometry. Although no amino acid side chain in adenylate kinase is supposed to interact with Mg2+, Asp93 in porcine muscle cytosolic enzyme, equivalent to Asp84 in the E. coli adenylate kinase, was proposed to stabilize the nucleotide.Mg2+ complex via water molecules.
Collapse
Affiliation(s)
- G Briand
- Laboratoire d'Application de Spectrométrie de Masse, Université de Lille II, Lille Cedex, 59045, France
| | | | | | | | | | | |
Collapse
|
14
|
Madern D, Pfister C, Zaccai G. Mutation at a single acidic amino acid enhances the halophilic behaviour of malate dehydrogenase from Haloarcula marismortui in physiological salts. EUROPEAN JOURNAL OF BIOCHEMISTRY 1995; 230:1088-95. [PMID: 7601139 DOI: 10.1111/j.1432-1033.1995.tb20659.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
In a statistical analysis of the amino acid compositions of 26 halophilic proteins, 24 showed an increase in acidic amino acids and a decrease in basic ones when compared to their non-halophilic homologues. The role of acidic residues in halophilic adaptation was investigated by site-directed mutagenesis of malate dehydrogenase (MalDH) from Haloarcula marismortui. In all of 40 non-halophilic homologous proteins, the position aligned with E243 in halophilic MalDH is occupied by a non-acidic amino acid, most frequently by arginine. The E243R mutant of halophilic MalDH was constructed, over-expressed in Escherichia coli, renatured and purified. Its salt-dependent catalytic activity was not affected compared to the wild-type enzyme and both proteins have the same Km values for their substrates. The resistance to denaturation of the mutant was compared to that of the wild-type protein in different physiological salt (NaCl or KCl) and temperature conditions and interpreted in terms of classical quasi-thermodynamic parameters. The mutant is more halophilic than the wild-type protein; it is more sensitive to temperature and requires significantly higher concentrations of NaCl or KCl for equivalent stability. These results highlight the role of acidic amino acids in halophilic behaviour and are in agreement with a model in which these amino acids act cooperatively to organise hydrated ion binding to the protein.
Collapse
Affiliation(s)
- D Madern
- Institut de Biologie Structurale, Grenoble, France
| | | | | |
Collapse
|
15
|
Kern P, Rognan D, Folkers G. MD simulations in Pseudo-Particle Fluids: Applications to active-site Protein Complexes. ACTA ACUST UNITED AC 1995. [DOI: 10.1002/qsar.19950140302] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
16
|
Länge S, Rozario C, Müller M. Primary structure of the hydrogenosomal adenylate kinase of Trichomonas vaginalis and its phylogenetic relationships. Mol Biochem Parasitol 1994; 66:297-308. [PMID: 7808479 DOI: 10.1016/0166-6851(94)90156-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Hydrogenosomal adenylate kinase of the amitochondriate protist, Trichomonas vaginalis, has been purified and the sequence of its 39 amino-terminal residues established. Based on this sequence and a conserved internal region of the enzyme, a probe was obtained by DNA polymerase chain reaction and used to isolate a genomic DNA clone containing the gene of this enzyme. This gene exists probably as a single copy in T. vaginalis and is not interrupted by introns. The open reading frame obtained codes for a large type adenylate kinase with a mature molecular mass of 24.5 kDa. The T. vaginalis enzyme is homologous with adenylate kinases of other eukaryotes and eubacteria. Strongly conserved parts and residues of the molecule are conserved also in this enzyme. Phylogenetic trees obtained with various methods placed the T. vaginalis adenylate kinase close to the point where the different subfamilies of this enzyme branch from each other, indicating that the T. vaginalis enzyme has no close relationship to any of these subfamilies and that it separated early from other adenylate kinases. The conceptual translation predicts the existence of an amino-terminal nonapeptide absent from the protein purified from hydrogenosomes, similar to the processed amino-terminal extensions of other hydrogenosomal proteins. These extensions have been considered as putative targeting and import signals.
Collapse
Affiliation(s)
- S Länge
- Rockefeller University, New York, NY 10021
| | | | | |
Collapse
|
17
|
Gilles AM, Sismeiro O, Munier H, Fabian H, Mantsch HH, Surewicz WK, Craescu CC, Barzu O, Danchin A. Structural and physico-chemical characteristics of Bordetella pertussis adenylate kinase, a tryptophan-containing enzyme. EUROPEAN JOURNAL OF BIOCHEMISTRY 1993; 218:921-7. [PMID: 8281944 DOI: 10.1111/j.1432-1033.1993.tb18448.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The adk gene from the Gram-negative pathogen Bordetella pertussis was cloned by complementing the thermosensitive Escherichia coli adk strain CR341T28. B. pertussis adenylate kinase is a 218-amino-acid protein that has high similarity with adenylate kinase from Escherichia coli and Hemophilus influenzae (57%). A distinct characteristic of enzyme from B. pertussis, not found in other bacterial adenylate kinases, is the presence of a tryptophan residue at position 185. Although distant from the catalytic site, this single tryptophan serves as a convenient probe for monitoring the binding of nucleotide substrates or analogs to the enzyme. Differential scanning calorimetry and equilibrium unfolding experiments in guanidine.HCl indicate similar stabilities for adenylate kinase from B. pertussis and E. coli. An extensive comparison between physico-chemical properties of adenylate kinase from B. pertussis and the enzyme from E. coli showed that the kinetic and structural properties of the two enzymes are very similar. However, infrared spectroscopy has allowed to identify small but significant differences in the secondary structure of the two proteins.
Collapse
Affiliation(s)
- A M Gilles
- Unitë de Biochimie des Régulations Cellulaires, Institut Pasteur, Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Panagiotidis C, Reyes M, Sievertsen A, Boos W, Shuman H. Characterization of the structural requirements for assembly and nucleotide binding of an ATP-binding cassette transporter. The maltose transport system of Escherichia coli. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(19)49516-1] [Citation(s) in RCA: 62] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
19
|
Shi Z, Byeon IJ, Jiang RT, Tsai MD. Mechanism of adenylate kinase. What can be learned from a mutant enzyme with minor perturbation in kinetic parameters? Biochemistry 1993; 32:6450-8. [PMID: 8518288 DOI: 10.1021/bi00076a019] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The structural and functional roles of threonine-23 in the chicken muscle adenylate kinase (AK) were investigated by site-directed mutagenesis coupled with proton nuclear magnetic resonance (NMR) and phosphorus stereochemistry. The residue is potentially important because it is conserved among all types of AK and is part of the consensus P-loop sequence, 15GXPGXGKGT23. A mutant enzyme T23A (replacing threonine-23 with alanine) was constructed. Analyses of conformational stability and proton NMR indicate that the side chain of this residue contributes little to the structure of AK, which suggests that the side chain of Thr-23 does not play a structural role. The steady-state kinetic data of the mutant enzyme T23A showed no change in kcat and only 5-7-fold increases in Km and dissociation constants. Such minor changes in kinetic data are insufficient to suggest a functional role of Thr-23. However, two-dimensional NMR analyses of WT.MgAP5A and T23A.MgAP5A complexes indicated that the side chain of Thr-23 is in proximity to the adenine ring of the ATP moiety in the WT.MgAP5A complex in solution. In addition, T23A showed a significant perturbation in the stereospecificity toward the diastereomers of (Rp)- and (Sp)-adenosine 5'-(1-thiotriphosphate) (ATP alpha S), with the Rp/Sp ratio increased from < 0.02 in wild-type to 0.37 in T23A. Detailed 31P NMR analysis indicated that the stereospecificity at the AMP site was not perturbed. These results suggest that the side chain of Thr-23 is involved in catalysis, most likely via a hydrogen bonding interaction Thr-OH...O-P alpha(ATP).(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- Z Shi
- Department of Chemistry, Ohio State University, Columbus 43210
| | | | | | | |
Collapse
|