1
|
Abstract
We review literature on the metabolism of ribo- and deoxyribonucleotides, nucleosides, and nucleobases in Escherichia coli and Salmonella,including biosynthesis, degradation, interconversion, and transport. Emphasis is placed on enzymology and regulation of the pathways, at both the level of gene expression and the control of enzyme activity. The paper begins with an overview of the reactions that form and break the N-glycosyl bond, which binds the nucleobase to the ribosyl moiety in nucleotides and nucleosides, and the enzymes involved in the interconversion of the different phosphorylated states of the nucleotides. Next, the de novo pathways for purine and pyrimidine nucleotide biosynthesis are discussed in detail.Finally, the conversion of nucleosides and nucleobases to nucleotides, i.e.,the salvage reactions, are described. The formation of deoxyribonucleotides is discussed, with emphasis on ribonucleotidereductase and pathways involved in fomation of dUMP. At the end, we discuss transport systems for nucleosides and nucleobases and also pathways for breakdown of the nucleobases.
Collapse
|
2
|
Cockrell GM, Zheng Y, Guo W, Peterson AW, Truong JK, Kantrowitz ER. New paradigm for allosteric regulation of Escherichia coli aspartate transcarbamoylase. Biochemistry 2013; 52:8036-47. [PMID: 24138583 DOI: 10.1021/bi401205n] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
For nearly 60 years, the ATP activation and the CTP inhibition of Escherichia coli aspartate transcarbamoylase (ATCase) has been the textbook example of allosteric regulation. We present kinetic data and five X-ray structures determined in the absence and presence of a Mg(2+) concentration within the physiological range. In the presence of 2 mM divalent cations (Mg(2+), Ca(2+), Zn(2+)), CTP does not significantly inhibit the enzyme, while the allosteric activation by ATP is enhanced. The data suggest that the actual allosteric inhibitor of ATCase in vivo is the combination of CTP, UTP, and a divalent cation, and the actual allosteric activator is a divalent cation with ATP or ATP and GTP. The structural data reveals that two NTPs can bind to each allosteric site with a divalent cation acting as a bridge between the triphosphates. Thus, the regulation of ATCase is far more complex than previously believed and calls many previous studies into question. The X-ray structures reveal that the catalytic chains undergo essentially no alternations; however, several regions of the regulatory chains undergo significant structural changes. Most significant is that the N-terminal region of the regulatory chains exists in different conformations in the allosterically activated and inhibited forms of the enzyme. Here, a new model of allosteric regulation is proposed.
Collapse
Affiliation(s)
- Gregory M Cockrell
- Department of Chemistry, Boston College , Merkert Chemistry Center, 2609 Beacon Street, Chestnut Hill, MA 02467 U.S.A
| | | | | | | | | | | |
Collapse
|
3
|
Cockrell GM, Kantrowitz ER. Metal ion involvement in the allosteric mechanism of Escherichia coli aspartate transcarbamoylase. Biochemistry 2012; 51:7128-37. [PMID: 22906065 PMCID: PMC3461825 DOI: 10.1021/bi300920m] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Escherichia coli aspartate transcarbamoylase (ATCase) allosterically regulates pyrimidine nucleotide biosynthesis. The enzyme is inhibited by CTP and can be further inhibited by UTP, although UTP alone has little or no influence on activity; however, the mechanism for the synergistic inhibition is still unknown. To determine how UTP is able to synergistically inhibit ATCase in the presence of CTP, we determined a series of X-ray structures of ATCase·nucleotide complexes. Analysis of the X-ray structures revealed that (1) CTP and dCTP bind in a very similar fashion, (2) UTP, in the presence of dCTP or CTP, binds at a site that does not overlap the CTP/dCTP site, and (3) the triphosphates of the two nucleotides are parallel to each other with a metal ion, in this case Mg(2+), coordinated between the β- and γ-phosphates of the two nucleotides. Kinetic experiments showed that the presence of a metal ion such as Mg(2+) is required for synergistic inhibition. Together, these results explain how the binding of UTP can enhance the binding of CTP and why UTP binds more tightly in the presence of CTP. A mechanism for the synergistic inhibition of ATCase is proposed in which the presence of UTP stabilizes the T state even more than CTP alone. These results also call into question many of the past kinetic and binding experiments with ATCase with nucleotides as the presence of metal contamination was not considered important.
Collapse
|
4
|
Peterson AW, Cockrell GM, Kantrowitz ER. A second allosteric site in Escherichia coli aspartate transcarbamoylase. Biochemistry 2012; 51:4776-8. [PMID: 22667327 DOI: 10.1021/bi3006219] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Escherichia coli aspartate transcarbamoylase is feedback inhibited by CTP and UTP in the presence of CTP. Here, we show by X-ray crystallography that UTP binds to a unique site on each regulatory chain of the enzyme that is near but not overlapping with the known CTP site. These results bring into question all of the previously proposed mechanisms of allosteric regulation in aspartate transcarbamoylase.
Collapse
Affiliation(s)
- Alexis W Peterson
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, USA
| | | | | |
Collapse
|
5
|
Allostery and cooperativity in Escherichia coli aspartate transcarbamoylase. Arch Biochem Biophys 2011; 519:81-90. [PMID: 22198283 DOI: 10.1016/j.abb.2011.10.024] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Revised: 10/27/2011] [Accepted: 10/28/2011] [Indexed: 11/20/2022]
Abstract
The allosteric enzyme aspartate transcarbamoylase (ATCase) from Escherichia coli has been the subject of investigations for approximately 50 years. This enzyme controls the rate of pyrimidine nucleotide biosynthesis by feedback inhibition, and helps to balance the pyrimidine and purine pools by competitive allosteric activation by ATP. The catalytic and regulatory components of the dodecameric enzyme can be separated and studied independently. Many of the properties of the enzyme follow the Monod, Wyman Changeux model of allosteric control thus E. coli ATCase has become the textbook example. This review will highlight kinetic, biophysical, and structural studies which have provided a molecular level understanding of how the allosteric nature of this enzyme regulates pyrimidine nucleotide biosynthesis.
Collapse
|
6
|
Mendes KR, Martinez JA, Kantrowitz ER. Asymmetric allosteric signaling in aspartate transcarbamoylase. ACS Chem Biol 2010; 5:499-506. [PMID: 20210358 DOI: 10.1021/cb9003207] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Here we use the fluorescence from a genetically encoded unnatural amino acid, l-(7-hydroxycoumarin-4-yl)ethylglycine (HCE-Gly), replacing an amino acid in the regulatory site of Escherichia coli aspartate transcarbamoylase (ATCase) to decipher the molecular details of regulation of this allosteric enzyme. The fluorescence of HCE-Gly is exquisitely sensitive to the binding of all four nucleotide effectors. Although ATP and CTP are primarily responsible for influencing enzyme activity, the results of our fluorescent binding studies indicate that UTP and GTP bind with similar affinities, suggesting a dissociation between nucleotide binding and control of enzyme activity. Furthermore, while CTP is the strongest regulator of enzyme activity, it binds selectively to only a fraction of regulatory sites, allowing UTP to effectively fill the residual ones. Our results suggest that CTP and UTP are not competing for the same binding sites, but instead reveal an asymmetry between the two allosteric sites on the regulatory subunit of the enzyme. Correlation of binding and activity measurements explain how ATCase uses asymmetric allosteric sites to achieve regulatory sensitivity over a broad range of heterotropic effector concentrations.
Collapse
Affiliation(s)
- Kimberly R. Mendes
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467
| | - Jessica A. Martinez
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467
| | - Evan R. Kantrowitz
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467
| |
Collapse
|
7
|
De Vos D, Xu Y, Aerts T, Van Petegem F, Van Beeumen JJ. Crystal structure of Sulfolobus acidocaldarius aspartate carbamoyltransferase in complex with its allosteric activator CTP. Biochem Biophys Res Commun 2008; 372:40-4. [PMID: 18477471 DOI: 10.1016/j.bbrc.2008.04.173] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2008] [Accepted: 04/28/2008] [Indexed: 10/22/2022]
Abstract
Aspartate carbamoyltransferase (ATCase) is a paradigm for allosteric regulation of enzyme activity. B-class ATCases display very similar homotropic allosteric behaviour, but differ extensively in their heterotropic patterns. The ATCase from the thermoacidophilic archaeon Sulfolobus acidocaldarius, for example, is strongly activated by its metabolic pathway's end product CTP, in contrast with Escherichia coli ATCase which is inhibited by CTP. To investigate the structural basis of this property, we have solved the crystal structure of the S. acidocaldarius enzyme in complex with CTP. Structure comparison reveals that effector binding does not induce similar large-scale conformational changes as observed for the E. coli ATCase. However, shifts in sedimentation coefficients upon binding of the bi-substrate analogue PALA show the existence of structurally distinct allosteric states. This suggests that the so-called "Nucleotide-Perturbation model" for explaining heterotropic allosteric behaviour, which is based on global conformational strain, is not a general mechanism of B-class ATCases.
Collapse
Affiliation(s)
- Dirk De Vos
- Laboratory of Protein Biochemistry and Protein Engineering, Ghent University, K.L. Ledeganckstraat 35, 9000 Gent, Belgium
| | | | | | | | | |
Collapse
|
8
|
Lipscomb WN. Aspartate transcarbamylase from Escherichia coli: activity and regulation. ADVANCES IN ENZYMOLOGY AND RELATED AREAS OF MOLECULAR BIOLOGY 2006; 68:67-151. [PMID: 8154326 DOI: 10.1002/9780470123140.ch3] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- W N Lipscomb
- Department of Chemistry, Harvard University, Cambridge, MA
| |
Collapse
|
9
|
Brombacher E, Baratto A, Dorel C, Landini P. Gene expression regulation by the Curli activator CsgD protein: modulation of cellulose biosynthesis and control of negative determinants for microbial adhesion. J Bacteriol 2006; 188:2027-37. [PMID: 16513732 PMCID: PMC1428138 DOI: 10.1128/jb.188.6.2027-2037.2006] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Curli fibers, encoded by the csgBAC genes, promote biofilm formation in Escherichia coli and other enterobacteria. Curli production is dependent on the CsgD transcription activator, which also promotes cellulose biosynthesis. In this study, we investigated the effects of CsgD expression from a weak constitutive promoter in the biofilm formation-deficient PHL565 strain of E. coli. We found that despite its function as a transcription activator, the CsgD protein is localized in the cytoplasmic membrane. Constitutive CsgD expression promotes biofilm formation by PHL565 and activates transcription from the csgBAC promoter; however, csgBAC expression remains dependent on temperature and the growth medium. Constitutive expression of the CsgD protein results in altered transcription patterns for at least 24 novel genes, in addition to the previously identified CsgD-dependent genes. The cspA and fecR genes, encoding regulatory proteins responding to cold shock and to iron, respectively, and yoaD, encoding a putative negative regulator of cellulose biosynthesis, were found to be some of the novel CsgD-regulated genes. Consistent with the predicted functional role, increased expression of the yoaD gene negatively affects cell aggregation, while yoaD inactivation results in stimulation of cell aggregation and leads to increased cellulose production. Inactivation of fecR results in significant increases in both cell aggregation and biofilm formation, while the effects of cspA are not as strong in the conditions tested. Our results indicate that CsgD can modulate cellulose biosynthesis through activation of the yoaD gene. In addition, the positive effect of CsgD on biofilm formation might be enhanced by repression of the fecR gene.
Collapse
Affiliation(s)
- Eva Brombacher
- Swiss Federal Institute of Environmental Technology, Dübendorf, Switzerland
| | | | | | | |
Collapse
|
10
|
Helmstaedt K, Krappmann S, Braus GH. Allosteric regulation of catalytic activity: Escherichia coli aspartate transcarbamoylase versus yeast chorismate mutase. Microbiol Mol Biol Rev 2001; 65:404-21, table of contents. [PMID: 11528003 PMCID: PMC99034 DOI: 10.1128/mmbr.65.3.404-421.2001] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Allosteric regulation of key metabolic enzymes is a fascinating field to study the structure-function relationship of induced conformational changes of proteins. In this review we compare the principles of allosteric transitions of the complex classical model aspartate transcarbamoylase (ATCase) from Escherichia coli, consisting of 12 polypeptides, and the less complicated chorismate mutase derived from baker's yeast, which functions as a homodimer. Chorismate mutase presumably represents the minimal oligomerization state of a cooperative enzyme which still can be either activated or inhibited by different heterotropic effectors. Detailed knowledge of the number of possible quaternary states and a description of molecular triggers for conformational changes of model enzymes such as ATCase and chorismate mutase shed more and more light on allostery as an important regulatory mechanism of any living cell. The comparison of wild-type and engineered mutant enzymes reveals that current textbook models for regulation do not cover the entire picture needed to describe the function of these enzymes in detail.
Collapse
Affiliation(s)
- K Helmstaedt
- Abteilung Molekulare Mikrobiologie, Institut für Mikrobiologie und Genetik, Georg-August-Universität, Grisebachstr. 8, D-37077 Göttingen, Germany
| | | | | |
Collapse
|
11
|
Sakash JB, Tsen A, Kantrowitz ER. The use of nucleotide analogs to evaluate the mechanism of the heterotropic response of Escherichia coli aspartate transcarbamoylase. Protein Sci 2000; 9:53-63. [PMID: 10739247 PMCID: PMC2144450 DOI: 10.1110/ps.9.1.53] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
As an alternative method to study the heterotropic mechanism of Escherichia coli aspartate transcarbamoylase, a series of nucleotide analogs were used. These nucleotide analogs have the advantage over site-specific mutagenesis experiments in that interactions between the backbone of the protein and the nucleotide could be evaluated in terms of their importance for function. The ATP analogs purine 5'-triphosphate (PTP), 6-chloropurine 5'-triphosphate (Cl-PTP), 6-mercaptopurine 5'-triphosphate (SH-PTP), 6-methylpurine 5'-triphosphate (Me-PTP), and 1-methyladenosine 5'-triphosphate (Me-ATP) were partially synthesized from their corresponding nucleosides. Kinetic analysis was performed on the wild-type enzyme in the presence of these ATP analogs along with GTP, ITP, and XTP. PTP, Cl-PTP, and SH-PTP each activate the enzyme at subsaturating concentrations of L-aspartate and saturating concentrations of carbamoyl phosphate, but not to the same extent as does ATP. These experiments suggest that the interaction between N6-amino group of ATP and the backbone of the regulatory chain is important for orienting the nucleotide and inducing the displacements of the regulatory chain backbone necessary for initiation of the regulatory response. Me-PTP and Me-ATP also activate the enzyme, but in a more complex fashion, which suggests differential binding at the two sites within each regulatory dimer. The purine nucleotides GTP, ITP, and XTP each inhibit the enzyme but to a lesser extent than CTP. The influence of deoxy and dideoxynucleotides on the activity of the enzyme was also investigated. These experiments suggest that the 2' and 3' ribose hydroxyl groups are not of significant importance for binding and orientation of the nucleotide in the regulatory binding site. 2'-dCTP inhibits the enzyme to the same extent as CTP, indicating that the interactions of the enzyme to the O2-carbonyl of CTP are critical for CTP binding, inhibition, and the ability of the enzyme to discriminate between ATP and CTP. Examination of the electrostatic surface potential of the nucleotides and the regulatory chain suggest that the complimentary electrostatic interactions between the nucleotides and the regulatory chain are important for binding and orientation of the nucleotide necessary to induce the local conformational changes that propagate the heterotropic effect.
Collapse
Affiliation(s)
- J B Sakash
- Department of Chemistry, Merkert Chemistry Center, Boston College, Massachusetts 02467, USA
| | | | | |
Collapse
|
12
|
Williams MK, Kantrowitz ER. Threonine 82 in the regulatory chain is important for nucleotide affinity and for the allosteric stabilization of Escherichia coli aspartate transcarbamoylase. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1429:249-58. [PMID: 9920401 DOI: 10.1016/s0167-4838(98)00234-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The three-dimensional structure of Escherichia coli aspartate transcarbamoylase complexed with the allosteric effector CTP, shows an interaction between the hydroxyl of Thr-82 in the regulatory chain (Thr-82r) with the gamma-phosphate of CTP (R.P. Kosman, J.E. Gouaux, W.N. Lipscomb, Crystal structure of CTP-ligated T state aspartate transcarbamoylase at 2.5 A resolution: implications for aspartate transcarbamoylase mutants and the mechanism of negative cooperativity, Proteins Struct. Funct. Genet. 15 (1993) 147-176). In order to determine whether the Thr-82r interaction with the gamma-phosphate of CTP is important for either binding of the nucleotide effectors or their function, site-specific mutagenesis was employed. The mutant enzyme in which Thr-82r was replaced by Ala had almost the identical maximal observed specific activity as the wild-type enzyme; however, the mutant enzyme had a significantly increased [Asp]0.5, the aspartate concentration at one-half the maximal observed specific activity, as well as slightly increased homotropic cooperativity. The mutant enzyme was also activated more by ATP and inhibited less by CTP as compared to the wild-type enzyme. In addition, the nucleotide concentration required for one-half maximal effect was increased approx. 3-fold as compared to the corresponding values for the wild-type enzyme. The maximal inhibition of the mutant enzyme, in the presence of UTP and CTP was similar to that observed for the wild-type enzyme; however, higher concentrations of the nucleotides were required to achieve this level of inhibition. The reduced affinity of CTP, UTP and ATP induced by the mutation indicates that the hydrogen bonding interaction between the gamma-phosphate of the nucleotide effector and the side-chain hydroxyl of Thr-82r is important for the binding of the nucleotide effectors to the allosteric site. Furthermore, this interaction is important for the discrimination between CTP and CDP. Finally, the greater homotropic cooperativity, greater [Asp]0.5, diminished CTP inhibition and greater ATP activation of the mutant enzyme correlates with the X-ray structure of the mutant enzyme which shows that the unligated enzyme is in an 'extreme' T-state. These findings add support to the theory that the global stabilization of the enzyme is critical for both the homotropic and heterotropic properties of aspartate transcarbamoylase.
Collapse
Affiliation(s)
- M K Williams
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA 02167, USA
| | | |
Collapse
|