1
|
Liu X, Wei Y, Zhang J, Zhou Y, Du Y, Zhang Y. Isethionate is an intermediate in the degradation of sulfoacetate by the human gut pathobiont Bilophila wadsworthia. J Biol Chem 2023; 299:105010. [PMID: 37414148 PMCID: PMC10413351 DOI: 10.1016/j.jbc.2023.105010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 07/08/2023] Open
Abstract
The obligately anaerobic sulfite-reducing bacterium Bilophila wadsworthia is a common human pathobiont inhabiting the distal intestinal tract. It has a unique ability to utilize a diverse range of food- and host-derived sulfonates to generate sulfite as a terminal electron acceptor (TEA) for anaerobic respiration, converting the sulfonate sulfur to H2S, implicated in inflammatory conditions and colon cancer. The biochemical pathways involved in the metabolism of the C2 sulfonates isethionate and taurine by B. wadsworthia were recently reported. However, its mechanism for metabolizing sulfoacetate, another prevalent C2 sulfonate, remained unknown. Here, we report bioinformatics investigations and in vitro biochemical assays that uncover the molecular basis for the utilization of sulfoacetate as a source of TEA (STEA) for B. wadsworthia, involving conversion to sulfoacetyl-CoA by an ADP-forming sulfoacetate-CoA ligase (SauCD), and stepwise reduction to isethionate by NAD(P)H-dependent enzymes sulfoacetaldehyde dehydrogenase (SauS) and sulfoacetaldehyde reductase (TauF). Isethionate is then cleaved by the O2-sensitive isethionate sulfolyase (IseG), releasing sulfite for dissimilatory reduction to H2S. Sulfoacetate in different environments originates from anthropogenic sources such as detergents, and natural sources such as bacterial metabolism of the highly abundant organosulfonates sulfoquinovose and taurine. Identification of enzymes for anaerobic degradation of this relatively inert and electron-deficient C2 sulfonate provides further insights into sulfur recycling in the anaerobic biosphere, including the human gut microbiome.
Collapse
Affiliation(s)
- Xumei Liu
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China; Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, China; Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China; Department of Chemistry, Tianjin University, Tianjin, China
| | - Yifeng Wei
- Singapore Institute of Food and Biotechnology Innovation, Agency for Science, Technology and Research (A∗STAR), Singapore, Singapore
| | - Jianing Zhang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Yan Zhou
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Yunfei Du
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Yan Zhang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China; Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, China; Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China; Department of Chemistry, Tianjin University, Tianjin, China.
| |
Collapse
|
2
|
Miller C, Pettee B, Zhang C, Pabst M, McLean J, Anderson A. Copper and cadmium: responses inPseudomonas putidaKT2440. Lett Appl Microbiol 2009; 49:775-83. [DOI: 10.1111/j.1472-765x.2009.02741.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
3
|
Johnson JD, Mehus JG, Tews K, Milavetz BI, Lambeth DO. Genetic evidence for the expression of ATP- and GTP-specific succinyl-CoA synthetases in multicellular eucaryotes. J Biol Chem 1998; 273:27580-6. [PMID: 9765291 DOI: 10.1074/jbc.273.42.27580] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Highly ATP- and GTP-specific isoforms of succinyl-CoA synthetase in pigeon incorporate the same alpha-subunit, but different beta-subunits (Johnson, J. D., Muhonen, W. W., and Lambeth, D. O. (1998) J. Biol. Chem. 273, 27573-27579). The sequences of the mature subunits were determined by methods based on reverse transcription-polymerase chain reaction. The 306-residue mature alpha-subunit in pigeon shows >88% identity to its homologues in pig and rat. The sequences of the mature ATP- and GTP-specific beta-subunits (A-beta and G-beta, respectively) in pigeon are 54% identical. These sequences were used to identify expressed sequence tags for human and mouse that were highly homologous to G-beta and A-beta, respectively. The sequences for mature A-beta and G-beta in mouse and human were completed and verified by polymerase chain reaction. The sequence of A-beta in pig was also obtained. The mammalian A-beta sequences show >89% identity to each other; the G-beta sequences are similarly related. However, pairwise comparisons of the A-beta and G-beta sequences revealed <53% identity. Alignment with two sequences of the beta-subunit in Caenorhabditis elegans suggests that the A-beta and G-beta genes arose by duplication early in the evolution of multicellular eucaryotes. The expression of A-beta is strong in numerous mouse and human tissues, which suggests that ATP-specific succinyl-CoA synthetase also plays an important role in species throughout the animal kingdom.
Collapse
Affiliation(s)
- J D Johnson
- Department of Biochemistry and Molecular Biology, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota 58202, USA
| | | | | | | | | |
Collapse
|
4
|
Ryan DG, Lin T, Brownie E, Bridger WA, Wolodko WT. Mutually exclusive splicing generates two distinct isoforms of pig heart succinyl-CoA synthetase. J Biol Chem 1997; 272:21151-9. [PMID: 9261120 DOI: 10.1074/jbc.272.34.21151] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We have identified two distinct cDNAs encoding the alpha-subunit of pig heart succinyl-CoA synthetase. The derived amino acid sequence of one of these, PHalpha57, is highly similar to the alpha-subunit of the rat liver precursor enzyme. The second cDNA, PHalpha108, was identical throughout its sequence with PHalpha57 except for a stretch of 108 nucleotides which replaced a 57 nucleotide sequence in PHalpha57. Coexpression of either alpha-subunit cDNA with a common pig heart beta-subunit cDNA produced isozymes with GTP-specific enzyme activity. The enzyme produced by the combination of PHalpha57 and the beta-subunit cDNA resembled the "native" enzyme purified from pig heart tissue. In contrast, the expressed enzyme from the combination with PHalpha108 was clearly distinguishable from the native enzyme by, for example, hydroxyapatite chromatography. Moreover, it was now apparent that this isoform had been observed in previous preparations of the native enzyme, but always in very low amounts and, thus, disregarded. We have shown further that the two mRNA transcripts arise from a single gene and are generated by mutually exclusive splicing. The production of the PHalpha108 message involves the use of a non-canonical splice site pair, AT-AA. Finally, we provide evidence for tissue specific regulation in the splicing of the PHalpha108 message.
Collapse
Affiliation(s)
- D G Ryan
- Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | | | | | | | | |
Collapse
|
5
|
Engbring JA, O'Brien JL, Alderete JF. Trichomonas vaginalis adhesin proteins display molecular mimicry to metabolic enzymes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1996; 408:207-23. [PMID: 8895795 DOI: 10.1007/978-1-4613-0415-9_25] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- J A Engbring
- Department of Microbiology, University of Texas Health Science Center, San Antonio 78284-7758, USA
| | | | | |
Collapse
|
6
|
Luo G, Nishimura J. Adenosine 5'-tetraphosphate is synthesized by the histidine alpha 142—-asparagine mutant of Escherichia coli succinyl-CoA synthetase. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)50121-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|