1
|
Awais MM, Fei S, Xia J, Feng M, Sun J. Insights into midgut cell types and their crucial role in antiviral immunity in the lepidopteran model Bombyx mori. Front Immunol 2024; 15:1349428. [PMID: 38420120 PMCID: PMC10899340 DOI: 10.3389/fimmu.2024.1349428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 01/18/2024] [Indexed: 03/02/2024] Open
Abstract
The midgut, a vital component of the digestive system in arthropods, serves as an interface between ingested food and the insect's physiology, playing a pivotal role in nutrient absorption and immune defense mechanisms. Distinct cell types, including columnar, enteroendocrine, goblet and regenerative cells, comprise the midgut in insects and contribute to its robust immune response. Enterocytes/columnar cells, the primary absorptive cells, facilitate the immune response through enzyme secretions, while regenerative cells play a crucial role in maintaining midgut integrity by continuously replenishing damaged cells and maintaining the continuity of the immune defense. The peritrophic membrane is vital to the insect's innate immunity, shielding the midgut from pathogens and abrasive food particles. Midgut juice, a mixture of digestive enzymes and antimicrobial factors, further contributes to the insect's immune defense, helping the insect to combat invading pathogens and regulate the midgut microbial community. The cutting-edge single-cell transcriptomics also unveiled previously unrecognized subpopulations within the insect midgut cells and elucidated the striking similarities between the gastrointestinal tracts of insects and higher mammals. Understanding the intricate interplay between midgut cell types provides valuable insights into insect immunity. This review provides a solid foundation for unraveling the complex roles of the midgut, not only in digestion but also in immunity. Moreover, this review will discuss the novel immune strategies led by the midgut employed by insects to combat invading pathogens, ultimately contributing to the broader understanding of insect physiology and defense mechanisms.
Collapse
Affiliation(s)
| | | | | | - Min Feng
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Jingchen Sun
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
2
|
Marshansky V. Discovery and Study of Transmembrane Rotary Ion-Translocating Nano-Motors: F-ATPase/Synthase of Mitochondria/Bacteria and V-ATPase of Eukaryotic Cells. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:702-719. [PMID: 36171652 DOI: 10.1134/s000629792208003x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/08/2022] [Accepted: 07/08/2022] [Indexed: 06/16/2023]
Abstract
This review discusses the history of discovery and study of the operation of the two rotary ion-translocating ATPase nano-motors: (i) F-ATPase/synthase (holocomplex F1FO) of mitochondria/bacteria and (ii) eukaryotic V-ATPase (holocomplex V1VO). Vacuolar adenosine triphosphatase (V-ATPase) is a transmembrane multisubunit complex found in all eukaryotes from yeast to humans. It is structurally and functionally similar to the F-ATPase/synthase of mitochondria/bacteria and the A-ATPase/synthase of archaebacteria, which indicates a common evolutionary origin of the rotary ion-translocating nano-motors built into cell membranes and invented by Nature billions of years ago. Previously we have published several reviews on this topic with appropriate citations of our original research. This review is focused on the historical analysis of the discovery and study of transmembrane rotary ion-translocating ATPase nano-motors functioning in bacteria, eukaryotic cells and mitochondria of animals.
Collapse
|
3
|
Eaton AF, Merkulova M, Brown D. The H +-ATPase (V-ATPase): from proton pump to signaling complex in health and disease. Am J Physiol Cell Physiol 2020; 320:C392-C414. [PMID: 33326313 PMCID: PMC8294626 DOI: 10.1152/ajpcell.00442.2020] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A primary function of the H+-ATPase (or V-ATPase) is to create an electrochemical proton gradient across eukaryotic cell membranes, which energizes fundamental cellular processes. Its activity allows for the acidification of intracellular vesicles and organelles, which is necessary for many essential cell biological events to occur. In addition, many specialized cell types in various organ systems such as the kidney, bone, male reproductive tract, inner ear, olfactory mucosa, and more, use plasma membrane V-ATPases to perform specific activities that depend on extracellular acidification. It is, however, increasingly apparent that V-ATPases are central players in many normal and pathophysiological processes that directly influence human health in many different and sometimes unexpected ways. These include cancer, neurodegenerative diseases, diabetes, and sensory perception, as well as energy and nutrient-sensing functions within cells. This review first covers the well-established role of the V-ATPase as a transmembrane proton pump in the plasma membrane and intracellular vesicles and outlines factors contributing to its physiological regulation in different cell types. This is followed by a discussion of the more recently emerging unconventional roles for the V-ATPase, such as its role as a protein interaction hub involved in cell signaling, and the (patho)physiological implications of these interactions. Finally, the central importance of endosomal acidification and V-ATPase activity on viral infection will be discussed in the context of the current COVID-19 pandemic.
Collapse
Affiliation(s)
- Amity F Eaton
- Program in Membrane Biology and Division of Nephrology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Maria Merkulova
- Program in Membrane Biology and Division of Nephrology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Dennis Brown
- Program in Membrane Biology and Division of Nephrology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
4
|
Schweikl H, Birke M, Gallorini M, Petzel C, Bolay C, Waha C, Hiller KA, Buchalla W. HEMA-induced oxidative stress inhibits NF-κB nuclear translocation and TNF release from LTA- and LPS-stimulated immunocompetent cells. Dent Mater 2020; 37:175-190. [PMID: 33303231 DOI: 10.1016/j.dental.2020.10.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 08/05/2020] [Accepted: 10/31/2020] [Indexed: 12/13/2022]
Abstract
OBJECTIVE The release of inflammatory cytokines from antigen-stimulated cells of the immune system is inhibited by resin monomers such as 2-hydroxyethyl methacrylate (HEMA). Although the formation of oxidative stress in cells exposed to HEMA is firmly established, the mechanism behind the inhibited cytokine secretion is only partly known. The present investigation presents evidence regarding the role of HEMA-induced oxidative stress in the secretion of the pro-inflammatory cytokine TNFα from cells exposed to the antigens LTA (lipoteichoic acid) or LPS (lipopolysaccharide) of cariogenic microorganisms using BSO (L-buthionine sulfoximine) or NAC (N-acetyl cysteine) to inhibit or stabilize the amounts of the antioxidant glutathione. METHOD RAW264.7 mouse macrophages were treated with LTA, LPS or HEMA in the presence of BSO or NAC for 1h or 24h. Secretion of TNFα from cell cultures was analyzed by ELISA, and the formation of reactive oxygen (ROS) or nitrogen species (RNS) was determined by flow cytometry. Protein expression was detected by Western blotting. RESULTS The release of TNFα in both LTA- and LPS-exposed cells was decreased by HEMA, and this concentration-dependent inhibitory effect was amplified by BSO or NAC. LTA- and LPS-stimulated expression of the redox-sensitive transcription factor NF-αB (p65) in cell nuclei decreased in the presence of HEMA because the translocation of p65 from the cytosol was prevented by oxidative stress specifically increased by the monomer. CONCLUSIONS A disturbance of the cellular redox balance, particularly induced by HEMA, is a crucial factor in the inhibition of LTA- and LPS-stimulated signalling pathways leading to TNFα secretion.
Collapse
Affiliation(s)
- Helmut Schweikl
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, University of Regensburg, D-93042 Regensburg, Germany.
| | - Margaritha Birke
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, University of Regensburg, D-93042 Regensburg, Germany
| | - Marialucia Gallorini
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, University of Regensburg, D-93042 Regensburg, Germany; Department of Pharmacy, University "G. d'Annunzio" Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy
| | - Christine Petzel
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, University of Regensburg, D-93042 Regensburg, Germany
| | - Carola Bolay
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, University of Regensburg, D-93042 Regensburg, Germany
| | - Claudia Waha
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, University of Regensburg, D-93042 Regensburg, Germany
| | - Karl-Anton Hiller
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, University of Regensburg, D-93042 Regensburg, Germany
| | - Wolfgang Buchalla
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, University of Regensburg, D-93042 Regensburg, Germany
| |
Collapse
|
5
|
Xie E, Guo H, Jiang L, Xia Q. Identification of the Vo domain of V-ATPase in Bombyx mori silkworm. Int J Biol Macromol 2020; 163:386-392. [DOI: 10.1016/j.ijbiomac.2020.07.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/30/2020] [Accepted: 07/01/2020] [Indexed: 12/20/2022]
|
6
|
Buettner C, von Bergen M, Jehmlich N, Noll M. Pseudomonas spp. are key players in agricultural biogas substrate degradation. Sci Rep 2019; 9:12871. [PMID: 31492882 PMCID: PMC6731289 DOI: 10.1038/s41598-019-49313-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 08/20/2019] [Indexed: 12/11/2022] Open
Abstract
Anaerobic degradation (AD) of heterogeneous agricultural substrates is a complex process involving a diverse microbial community. While microbial community composition of a variety of biogas plants (BPs) is well described, little is known about metabolic processes and microbial interaction patterns. Here, we analyzed 16 large-scale BPs using metaproteomics. All metabolic steps of AD were observed in the metaproteome, and multivariate analyses indicated that they were shaped by temperature, pH, volatile fatty acid content and substrate types. Biogas plants could be subdivided into hydrogenotrophic, acetoclastic or a mixture of both methanogenic pathways based on their process parameters, taxonomic and functional metaproteome. Network analyses showed large differences in metabolic and microbial interaction patterns. Both, number of interactions and interaction partners were highly dependent on the prevalent methanogenic pathway for most species. Nevertheless, we observed a highly conserved metabolism of different abundant Pseudomonas spp. for all BPs indicating a key role during AD in carbohydrate hydrolysis irrespectively of variabilities in substrate input and process parameters. Thus, Pseudomonas spp. are of high importance for robust and versatile AD food webs, which highlight a large variety of downstream metabolic processes for their respective methanogenic pathways.
Collapse
Affiliation(s)
- Christian Buettner
- Coburg University of Applied Sciences and Arts, Institute for Bioanalysis, Friedrich-Streib-Str. 2, 96450, Coburg, Germany
| | - Martin von Bergen
- Helmholtz-Centre for Environmental Research - UFZ GmbH, Department of Molecular Systems Biology, Permoserstraße 15, 04318, Leipzig, Germany.,University of Leipzig, Institute for Biochemistry, Brüderstraße 34, 04103, Leipzig, Germany
| | - Nico Jehmlich
- Helmholtz-Centre for Environmental Research - UFZ GmbH, Department of Molecular Systems Biology, Permoserstraße 15, 04318, Leipzig, Germany
| | - Matthias Noll
- Coburg University of Applied Sciences and Arts, Institute for Bioanalysis, Friedrich-Streib-Str. 2, 96450, Coburg, Germany.
| |
Collapse
|
7
|
Al-Fifi ZI, Mujallid MI. Effect of circadian on the activities of ion transport ATPases and histological structure of kidneys in mice. Saudi J Biol Sci 2018; 26:963-969. [PMID: 31303826 PMCID: PMC6601028 DOI: 10.1016/j.sjbs.2018.06.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 06/17/2018] [Accepted: 06/27/2018] [Indexed: 02/07/2023] Open
Abstract
The impacts of unnatural every day cycles (circadian) for 60 days on the histological structure of kidneys and ATPase activities in MF1 mice were studied. The exposure times were 16 h dark, 16 h light, 24 h dark, and 24 h light, and control exposure times were 12 h dark followed by 12 h light. Our results showed an increase in the total ATPase activity of mice in all groups. Additionally, the activity of the enzyme Na+/K+-ATPase was increased after 24 h darkness, 24 h light, and 16 h light exposures compared to control. The enzyme Mg+2-ATPase activities of the groups were higher when exposed to 16 h light, 24 h light, 24 h darkness and 16 h darkness. The activities of total ATPase, Na+/K+-ATPase and Mg+2-ATPase in kidneys were increased in all groups after 24 h light, 24 h darkness, 16 h darkness and 16 h light exposures. Interestingly, the activity of V-type ATPase was reduced after 16 h darkness, 24 h darkness and 16 h light. Taking everything into account, changes in the day by day cycle prompt neurotic changes, enzymatic and histological changes in the kidneys of mice. More studies should be directed to explore the impacts of light and darkness that can prompt these progressions.
Collapse
Affiliation(s)
- Zarraq I Al-Fifi
- Department of Biology, Faculty of Science, Jazan University, Saudi Arabia
| | - Mohammad I Mujallid
- Department of Biology, Faculty of Science, King Abdulaziz University, Saudi Arabia
| |
Collapse
|
8
|
|
9
|
Heyer R, Kohrs F, Reichl U, Benndorf D. Metaproteomics of complex microbial communities in biogas plants. Microb Biotechnol 2015; 8:749-63. [PMID: 25874383 PMCID: PMC4554464 DOI: 10.1111/1751-7915.12276] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 02/05/2015] [Accepted: 02/11/2015] [Indexed: 11/29/2022] Open
Abstract
Production of biogas from agricultural biomass or organic wastes is an important source of renewable energy. Although thousands of biogas plants (BGPs) are operating in Germany, there is still a significant potential to improve yields, e.g. from fibrous substrates. In addition, process stability should be optimized. Besides evaluating technical measures, improving our understanding of microbial communities involved into the biogas process is considered as key issue to achieve both goals. Microscopic and genetic approaches to analyse community composition provide valuable experimental data, but fail to detect presence of enzymes and overall metabolic activity of microbial communities. Therefore, metaproteomics can significantly contribute to elucidate critical steps in the conversion of biomass to methane as it delivers combined functional and phylogenetic data. Although metaproteomics analyses are challenged by sample impurities, sample complexity and redundant protein identification, and are still limited by the availability of genome sequences, recent studies have shown promising results. In the following, the workflow and potential pitfalls for metaproteomics of samples from full-scale BGP are discussed. In addition, the value of metaproteomics to contribute to the further advancement of microbial ecology is evaluated. Finally, synergistic effects expected when metaproteomics is combined with advanced imaging techniques, metagenomics, metatranscriptomics and metabolomics are addressed.
Collapse
Affiliation(s)
- Robert Heyer
- Bioprocess Engineering, Otto von Guericke University MagdeburgUniversitätsplatz 2, Magdeburg, 39106, Germany
- Max Planck Institute for Dynamics of Complex Technical SystemsSandtorstr. 1, Magdeburg, 39106, Germany
| | - Fabian Kohrs
- Bioprocess Engineering, Otto von Guericke University MagdeburgUniversitätsplatz 2, Magdeburg, 39106, Germany
- Max Planck Institute for Dynamics of Complex Technical SystemsSandtorstr. 1, Magdeburg, 39106, Germany
| | - Udo Reichl
- Bioprocess Engineering, Otto von Guericke University MagdeburgUniversitätsplatz 2, Magdeburg, 39106, Germany
- Max Planck Institute for Dynamics of Complex Technical SystemsSandtorstr. 1, Magdeburg, 39106, Germany
| | - Dirk Benndorf
- Bioprocess Engineering, Otto von Guericke University MagdeburgUniversitätsplatz 2, Magdeburg, 39106, Germany
- Max Planck Institute for Dynamics of Complex Technical SystemsSandtorstr. 1, Magdeburg, 39106, Germany
| |
Collapse
|
10
|
Kohrs F, Heyer R, Magnussen A, Benndorf D, Muth T, Behne A, Rapp E, Kausmann R, Heiermann M, Klocke M, Reichl U. Sample prefractionation with liquid isoelectric focusing enables in depth microbial metaproteome analysis of mesophilic and thermophilic biogas plants. Anaerobe 2014; 29:59-67. [DOI: 10.1016/j.anaerobe.2013.11.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 11/22/2013] [Accepted: 11/25/2013] [Indexed: 12/20/2022]
|
11
|
Nelson CJ, Alexova R, Jacoby RP, Millar AH. Proteins with high turnover rate in barley leaves estimated by proteome analysis combined with in planta isotope labeling. PLANT PHYSIOLOGY 2014; 166:91-108. [PMID: 25082890 PMCID: PMC4149734 DOI: 10.1104/pp.114.243014] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Protein turnover is a key component in cellular homeostasis; however, there is little quantitative information on degradation kinetics for individual plant proteins. We have used (15)N labeling of barley (Hordeum vulgare) plants and gas chromatography-mass spectrometry analysis of free amino acids and liquid chromatography-mass spectrometry analysis of proteins to track the enrichment of (15)N into the amino acid pools in barley leaves and then into tryptic peptides derived from newly synthesized proteins. Using information on the rate of growth of barley leaves combined with the rate of degradation of (14)N-labeled proteins, we calculate the turnover rates of 508 different proteins in barley and show that they vary by more than 100-fold. There was approximately a 9-h lag from label application until (15)N incorporation could be reliably quantified in extracted peptides. Using this information and assuming constant translation rates for proteins during the time course, we were able to quantify degradation rates for several proteins that exhibit half-lives on the order of hours. Our workflow, involving a stringent series of mass spectrometry filtering steps, demonstrates that (15)N labeling can be used for large-scale liquid chromatography-mass spectrometry studies of protein turnover in plants. We identify a series of abundant proteins in photosynthesis, photorespiration, and specific subunits of chlorophyll biosynthesis that turn over significantly more rapidly than the average protein involved in these processes. We also highlight a series of proteins that turn over as rapidly as the well-known D1 subunit of photosystem II. While these proteins need further verification for rapid degradation in vivo, they cluster in chlorophyll and thiamine biosynthesis.
Collapse
Affiliation(s)
- Clark J Nelson
- Australian Research Council Centre of Excellence in Plant Energy Biology and Centre for Comparative Analysis of Biomolecular Networks, University of Western Australia, Perth, Western Australia 6009, Australia
| | - Ralitza Alexova
- Australian Research Council Centre of Excellence in Plant Energy Biology and Centre for Comparative Analysis of Biomolecular Networks, University of Western Australia, Perth, Western Australia 6009, Australia
| | - Richard P Jacoby
- Australian Research Council Centre of Excellence in Plant Energy Biology and Centre for Comparative Analysis of Biomolecular Networks, University of Western Australia, Perth, Western Australia 6009, Australia
| | - A Harvey Millar
- Australian Research Council Centre of Excellence in Plant Energy Biology and Centre for Comparative Analysis of Biomolecular Networks, University of Western Australia, Perth, Western Australia 6009, Australia
| |
Collapse
|
12
|
Flexibility within the rotor and stators of the vacuolar H+-ATPase. PLoS One 2013; 8:e82207. [PMID: 24312643 PMCID: PMC3846802 DOI: 10.1371/journal.pone.0082207] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 10/21/2013] [Indexed: 11/19/2022] Open
Abstract
The V-ATPase is a membrane-bound protein complex which pumps protons across the membrane to generate a large proton motive force through the coupling of an ATP-driven 3-stroke rotary motor (V1) to a multistroke proton pump (Vo). This is done with near 100% efficiency, which is achieved in part by flexibility within the central rotor axle and stator connections, allowing the system to flex to minimise the free energy loss of conformational changes during catalysis. We have used electron microscopy to reveal distinctive bending along the V-ATPase complex, leading to angular displacement of the V1 domain relative to the Vo domain to a maximum of ~30°. This has been complemented by elastic network normal mode analysis that shows both flexing and twisting with the compliance being located in the rotor axle, stator filaments, or both. This study provides direct evidence of flexibility within the V-ATPase and by implication in related rotary ATPases, a feature predicted to be important for regulation and their high energetic efficiencies.
Collapse
|
13
|
Heyer R, Kohrs F, Benndorf D, Rapp E, Kausmann R, Heiermann M, Klocke M, Reichl U. Metaproteome analysis of the microbial communities in agricultural biogas plants. N Biotechnol 2013; 30:614-22. [DOI: 10.1016/j.nbt.2013.01.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 12/07/2012] [Accepted: 01/11/2013] [Indexed: 11/25/2022]
|
14
|
Nelson CJ, Li L, Jacoby RP, Millar AH. Degradation Rate of Mitochondrial Proteins in Arabidopsis thaliana Cells. J Proteome Res 2013; 12:3449-59. [DOI: 10.1021/pr400304r] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Clark J. Nelson
- ARC Centre of Excellence in Plant Energy Biology & Centre for Comparative Analysis of Biomolecular Networks, M316, The University of Western Australia, 35 Stirling Highway, Crawley WA 6009, Australia
| | - Lei Li
- ARC Centre of Excellence in Plant Energy Biology & Centre for Comparative Analysis of Biomolecular Networks, M316, The University of Western Australia, 35 Stirling Highway, Crawley WA 6009, Australia
| | - Richard P. Jacoby
- ARC Centre of Excellence in Plant Energy Biology & Centre for Comparative Analysis of Biomolecular Networks, M316, The University of Western Australia, 35 Stirling Highway, Crawley WA 6009, Australia
| | - A. Harvey Millar
- ARC Centre of Excellence in Plant Energy Biology & Centre for Comparative Analysis of Biomolecular Networks, M316, The University of Western Australia, 35 Stirling Highway, Crawley WA 6009, Australia
| |
Collapse
|
15
|
Hanreich A, Schimpf U, Zakrzewski M, Schlüter A, Benndorf D, Heyer R, Rapp E, Pühler A, Reichl U, Klocke M. Metagenome and metaproteome analyses of microbial communities in mesophilic biogas-producing anaerobic batch fermentations indicate concerted plant carbohydrate degradation. Syst Appl Microbiol 2013; 36:330-8. [PMID: 23694815 DOI: 10.1016/j.syapm.2013.03.006] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Revised: 03/01/2013] [Accepted: 03/07/2013] [Indexed: 11/27/2022]
Abstract
Microbial communities in biogas batch fermentations, using straw and hay as co-substrates, were analyzed at the gene and protein level by metagenomic and metaproteomic approaches. The analysis of metagenomic data revealed that the Clostridiales and Bacteroidales orders were prevalent in the community. However, the number of sequences assigned to the Clostridiales order decreased during fermentation, whereas the number of sequences assigned to the Bacteroidales order increased. In addition, changes at the functional level were monitored and the metaproteomic analyses detected transporter proteins and flagellins, which were expressed mainly by members of the Bacteroidetes and Firmicutes phyla. A high number of sugar transporters, expressed by members of the Bacteroidetes, proved their potential to take up various glycans efficiently. Metagenome data also showed that methanogenic organisms represented less than 4% of the community, while 20-30% of the identified proteins were of archeal origin. These data suggested that methanogens were disproportionally active. In conclusion, the community studied was capable of digesting the recalcitrant co-substrate. Members of the Firmicutes phylum seemed to be the main degraders of cellulose, even though expression of only a few glycoside hydrolases was detected. The Bacteroidetes phylum expressed a high number of sugar transporters and seemed to specialize in the digestion of other polysaccharides. Finally, it was found that key enzymes of methanogenesis were expressed in high quantities, indicating the high metabolic activity of methanogens, although they only represented a minor group within the microbial community.
Collapse
Affiliation(s)
- Angelika Hanreich
- Leibniz-Institut für Agrartechnik Potsdam-Bornim e.V., Abteilung Bioverfahrenstechnik, Max-Eyth-Allee 100, 14469 Potsdam, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Gomes FM, Carvalho DB, Machado EA, Miranda K. Ultrastructural and functional analysis of secretory goblet cells in the midgut of the lepidopteran Anticarsia gemmatalis. Cell Tissue Res 2013; 352:313-26. [PMID: 23397424 DOI: 10.1007/s00441-013-1563-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Accepted: 01/03/2013] [Indexed: 11/25/2022]
Abstract
Defoliation caused by Anticarsia gemmatalis larvae affects the commercial production of the soybean. Although regulation of the digestion of soybean components has become part of the suggested strategy to overcome problems caused by Anticarsia larvae, few studies have focused on the morphological and cellular aspects of Anticarsia intestinal tissue. We have therefore further analyzed the morphology and ultrastructure of the midgut of 5th instar larvae of A. gemmatalis. Dissected midgut was subjected to chemical or cryo-fixation and then to several descriptive and analytical techniques associated with both light and electron microscopy in order to correlate anatomical and physiological aspects of this organ. Histological analysis revealed typical anatomy composed of a cell layer limited by a peritrophic membrane. The identified lepidoptera-specific goblet cells were shown to contain several mitochondria inside microvilli of the goblet cell cavity and a vacuolar H(+)-ATPase possibly coupled to a K(+)-pumping system. Columnar cells were present and exhibited microvilli dispersed along the apical region that also presented secretory characteristics. We additionally found evidence for the secretion of polyphosphate (PolyP) into the midgut, a result corroborating previous reports suggesting an excretion route from the goblet cell cavity toward the luminal space. Thus, our results suggest that the Anticarsia midgut not only possesses several typical lepidopteran features but also presents some unique aspects such as the presence of a tubular network and PolyP-containing apocrine secretions, plus an apparent route for the release of cellular debris by the goblet cells.
Collapse
Affiliation(s)
- F M Gomes
- Instituto de Biofísica Carlos Chagas Filho and Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagens, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | |
Collapse
|
17
|
Tomlinson S, Mathialagan PD, Maloney SK. Special K: testing the potassium link between radioactive rubidium (86Rb) turnover and metabolic rate. J Exp Biol 2013; 217:1040-5. [DOI: 10.1242/jeb.096222] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Summary
The measurement of 86Rb turnover recently has been suggested as a useful method of measuring field metabolic rate in small animals. We investigated a proposed mechanism of 86Rb turnover, its analogy for K+, by comparing the turnover of 86Rb in a model insect, the rhinoceros beetle Xylotrupes gideon, fed diets of plum jam, or plum jam enriched with K+ or Rb+. The turnover of 86Rb in the beetles on the K+ and the Rb+ diets was higher than on the Jam diet (F2, 311 = 32.4; p = 1.58 × 10-13). We also exposed the beetles to different ambient temperatures to induce differences in metabolic rate (VCO2) while feeding them the Jam and K+ diets. VCO2 was higher at higher Ta for both Jam (F1,11 = 14.56; p = 0.003) and K+ (F1,8 = 15.39; p = 0.004) dietary groups, and the turnover of 86Rb was higher at higher Ta for both Jam (F1,11 = 10.80; p = 0.007) and K+ (F1,8 = 12.34; p = 0.008) dietary groups. There was a significant relationship between 86Rb turnover and VCO2 for both the Jam (F1,11 = 35.00; p = 1.0× 10-3) and the K+ (F1,8 = 64.33; p = 4.3 × 10-5) diets, but the relationship differed between the diets (F1,19 = 14.07; p = 0.001), with a higher 86Rb turnover on the K+-enriched than the Jam diet at all Ta. We conclude that 86Rb turnover is related to K+ metabolism, and that this is the mechanism of the relationship between 86Rb turnover and VCO2. Studies relating the 86Rb turnover to VCO2 should maintain dietary [K+] as close as possible to natural diets for the most accurate calibrations for free-ranging animals.
Collapse
Affiliation(s)
- Sean Tomlinson
- The University of Western Australia; Kings Park and Botanic Gardens, Australia
| | | | | |
Collapse
|
18
|
Baumann O, Walz B. The blowfly salivary gland - a model system for analyzing the regulation of plasma membrane V-ATPase. JOURNAL OF INSECT PHYSIOLOGY 2012; 58:450-458. [PMID: 22133312 DOI: 10.1016/j.jinsphys.2011.11.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Revised: 11/17/2011] [Accepted: 11/18/2011] [Indexed: 05/31/2023]
Abstract
Vacuolar H(+)-ATPases (V-ATPases) are heteromultimeric proteins that use the energy of ATP hydrolysis for the electrogenic transport of protons across membranes. They are common to all eukaryotic cells and are located in the plasma membrane or in membranes of acid organelles. In many insect epithelia, V-ATPase molecules reside in large numbers in the apical plasma membrane and create an electrochemical proton gradient that is used for the acidification or alkalinization of the extracellular space, the secretion or reabsorption of ions and fluids, the import of nutrients, and diverse other cellular activities. Here, we summarize our results on the functions and regulation of V-ATPase in the tubular salivary gland of the blowfly Calliphora vicina. In this gland, V-ATPase activity energizes the secretion of a KCl-rich saliva in response to the neurohormone serotonin (5-HT). Because of particular morphological and physiological features, the blowfly salivary glands are a superior and exemplary system for the analysis of the intracellular signaling pathways and mechanisms that modulate V-ATPase activity and solute transport in an insect epithelium.
Collapse
Affiliation(s)
- Otto Baumann
- Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24/25, 14476 Potsdam, Germany.
| | | |
Collapse
|
19
|
Dow JAT. William R. Harvey: an appreciation. JOURNAL OF INSECT PHYSIOLOGY 2012; 58:428-430. [PMID: 22586714 DOI: 10.1016/j.jinsphys.2011.09.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Affiliation(s)
- Julian A T Dow
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK.
| |
Collapse
|
20
|
Oelze ML, Vogel MO, Alsharafa K, Kahmann U, Viehhauser A, Maurino VG, Dietz KJ. Efficient acclimation of the chloroplast antioxidant defence of Arabidopsis thaliana leaves in response to a 10- or 100-fold light increment and the possible involvement of retrograde signals. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:1297-313. [PMID: 22131159 PMCID: PMC3276092 DOI: 10.1093/jxb/err356] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Chloroplasts are equipped with a nuclear-encoded antioxidant defence system the components of which are usually expressed at high transcript and activity levels. To significantly challenge the chloroplast antioxidant system, Arabidopsis thaliana plants, acclimated to extremely low light slightly above the light compensation point or to normal growth chamber light, were moved to high light corresponding to a 100- and 10-fold light jump, for 6 h and 24 h in order to observe the responses of the water-water cycle at the transcript, protein, enzyme activity, and metabolite levels. The plants coped efficiently with the high light regime and the photoinhibition was fully reversible. Reactive oxygen species (ROS), glutathione and ascorbate levels as well as redox states, respectively, revealed no particular oxidative stress in low-light-acclimated plants transferred to 100-fold excess light. Strong regulation of the water-water cycle enzymes at the transcript level was only partly reflected at the protein and activity levels. In general, low light plants had higher stromal (sAPX) and thylakoid ascorbate peroxidase (tAPX), dehydroascorbate reductase (DHAR), and CuZn superoxide dismutase (CuZnSOD) protein contents than normal light-grown plants. Mutants defective in components relevant for retrograde signalling, namely stn7, ex1, tpt1, and a mutant expressing E .coli catalase in the chloroplast showed unaltered transcriptional responses of water-water cycle enzymes. These findings, together with the response of marker transcripts, indicate that abscisic acid is not involved and that the plastoquinone redox state and reactive oxygen species do not play a major role in regulating the transcriptional response at t=6 h, while other marker transcripts suggest a major role for reductive power, metabolites, and lipids as signals for the response of the water-water cycle.
Collapse
Affiliation(s)
- Marie-Luise Oelze
- Biochemistry and Physiology of Plants, Bielefeld University, D-33501 Bielefeld, Germany
| | - Marc Oliver Vogel
- Biochemistry and Physiology of Plants, Bielefeld University, D-33501 Bielefeld, Germany
| | - Khalid Alsharafa
- Biochemistry and Physiology of Plants, Bielefeld University, D-33501 Bielefeld, Germany
| | - Uwe Kahmann
- Zentrum für Ultrastrukturelle Diagnostik, Bielefeld University, D-33501 Bielefeld, Germany
| | - Andrea Viehhauser
- Biochemistry and Physiology of Plants, Bielefeld University, D-33501 Bielefeld, Germany
| | - Veronica G. Maurino
- Entwicklungs- und Molekularbiologie der Pflanzen, Heinrich-Heine-Universität, Universitätsstr. 1, D-40225 Düsseldorf, Germany
| | - Karl-Josef Dietz
- Biochemistry and Physiology of Plants, Bielefeld University, D-33501 Bielefeld, Germany
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
21
|
Li L, Nelson CJ, Solheim C, Whelan J, Millar AH. Determining degradation and synthesis rates of arabidopsis proteins using the kinetics of progressive 15N labeling of two-dimensional gel-separated protein spots. Mol Cell Proteomics 2012; 11:M111.010025. [PMID: 22215636 DOI: 10.1074/mcp.m111.010025] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The growth and development of plant tissues is associated with an ordered succession of cellular processes that are reflected in the appearance and disappearance of proteins. The control of the kinetics of protein turnover is central to how plants can rapidly and specifically alter protein abundance and thus molecular function in response to environmental or developmental cues. However, the processes of turnover are largely hidden during periods of apparent steady-state protein abundance, and even when proteins accumulate it is unclear whether enhanced synthesis or decreased degradation is responsible. We have used a (15)N labeling strategy with inorganic nitrogen sources coupled to a two-dimensional fluorescence difference gel electrophoresis and mass spectrometry analysis of two-dimensional IEF/SDS-PAGE gel spots to define the rate of protein synthesis (K(S)) and degradation (K(D)) of Arabidopsis cell culture proteins. Through analysis of MALDI-TOF/TOF mass spectra from 120 protein spots, we were able to quantify K(S) and K(D) for 84 proteins across six functional groups and observe over 65-fold variation in protein degradation rates. K(S) and K(D) correlate with functional roles of the proteins in the cell and the time in the cell culture cycle. This approach is based on progressive (15)N labeling that is innocuous for the plant cells and, because it can be used to target analysis of proteins through the use of specific gel spots, it has broad applicability.
Collapse
Affiliation(s)
- Lei Li
- Australian Research Council Centre of Excellence in Plant Energy Biology & Centre for Comparative Analysis of Biomolecular Networks, M316, The University of Western Australia, Crawley, Western Australia 6009, Australia
| | | | | | | | | |
Collapse
|
22
|
Tiburcy F, Beyenbach KW, Wieczorek H. Protein kinase A dependent and independent activation of the V-ATPase in Malpighian tubules of Aedes aegypti. J Exp Biol 2012. [DOI: 10.1242/jeb.078360] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Summary
Transepithelial ion transport in insect Malpighian tubules is energized by an apical V-ATPase. In hematophagous insects, a blood meal during which the animal ingests huge amounts of salt and water stimulates transepithelial transport processes linked to V-ATPase activation, but how this is accomplished is still unclear. Here we report that membrane-permeant derivatives of cAMP increase the bafilomycin-sensitive ATPase activity in Malpighian tubules of Aedes aegypti twofold and activate ATP-dependent transport processes. In parallel, membraneassociation of the V1 subunits C and D increases, consistent with the assembly of the holoenzyme. The protein kinase A inhibitor H-89 abolishes all cAMP-induced effects, consistent with PKA being involved in V-ATPase activation. Metabolic inhibition induced by KCN, azide and 2,4-dinitrophenol, respectively, also induces assembly of functional V-ATPases at the membrane without protein kinase A involvement, indicating a phosphorylation independent activation mechanism.
Collapse
|
23
|
|
24
|
Wieczorek H, Beyenbach KW, Huss M, Vitavska O. Vacuolar-type proton pumps in insect epithelia. ACTA ACUST UNITED AC 2009; 212:1611-9. [PMID: 19448071 DOI: 10.1242/jeb.030007] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Active transepithelial cation transport in insects was initially discovered in Malpighian tubules, and was subsequently also found in other epithelia such as salivary glands, labial glands, midgut and sensory sensilla. Today it appears to be established that the cation pump is a two-component system of a H(+)-transporting V-ATPase and a cation/nH(+) antiporter. After tracing the discovery of the V-ATPase as the energizer of K(+)/nH(+) antiport in the larval midgut of the tobacco hornworm Manduca sexta we show that research on the tobacco hornworm V-ATPase delivered important findings that emerged to be of general significance for our knowledge of V-ATPases, which are ubiquitous and highly conserved proton pumps. We then discuss the V-ATPase in Malpighian tubules of the fruitfly Drosophila melanogaster where the potential of post-genomic biology has been impressively illustrated. Finally we review an integrated physiological approach in Malpighian tubules of the yellow fever mosquito Aedes aegypti which shows that the V-ATPase delivers the energy for both transcellular and paracellular ion transport.
Collapse
Affiliation(s)
- Helmut Wieczorek
- Department of Biology/Chemistry, University of Osnabrück, 49069 Osnabrück, Germany.
| | | | | | | |
Collapse
|
25
|
Maue L, Meissner D, Merzendorfer H. Purification of an active, oligomeric chitin synthase complex from the midgut of the tobacco hornworm. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2009; 39:654-659. [PMID: 19576988 DOI: 10.1016/j.ibmb.2009.06.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2009] [Revised: 06/24/2009] [Accepted: 06/26/2009] [Indexed: 05/28/2023]
Abstract
Chitin formation depends on the activity of a family II glycosyltransferase known as chitin synthase, whose biochemical and structural properties are largely unknown. Previously, we have demonstrated that the chitin portion of the peritrophic matrix in the midgut of the tobacco hornworm, Manduca sexta, is produced by chitin synthase 2 (CHS-2), one of two isoenzymes encoded by the Chs-1 and Chs-2 genes (also named Chs-A and Chs-B), and that CHS-2 is located at the apical tips of the brush border microvilli. Here we report the purification of the chitin synthase from the Manduca midgut as monitored by its activity and immuno-reactivity with antibodies to the chitin synthase. After gel permeation chromatography, the final step of the developed purification protocol, the active enzyme eluted in a fraction corresponding to a molecular mass between 440 and 670 kDa. Native PAGE revealed a single, immuno-reactive band of about 520 kDa, thrice the molecular mass of the chitin synthase monomer. SDS-PAGE and immunoblotting indicated finally that an active, oligomeric complex of the chitin synthase was purified. In summary, the chitin synthase from the midgut of Manduca may prove to be a good model for investigating the enzymes' mode of action.
Collapse
Affiliation(s)
- Lars Maue
- Department of Biology/Chemistry, Division of Animal Physiology, University of Osnabrück, 49069 Osnabrück, Germany
| | | | | |
Collapse
|
26
|
Harvey WR. Voltage coupling of primary H+ V-ATPases to secondary Na+- or K+-dependent transporters. J Exp Biol 2009; 212:1620-9. [PMID: 19448072 PMCID: PMC2683009 DOI: 10.1242/jeb.031534] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/07/2009] [Indexed: 01/23/2023]
Abstract
This review provides alternatives to two well established theories regarding membrane energization by H(+) V-ATPases. Firstly, we offer an alternative to the notion that the H(+) V-ATPase establishes a protonmotive force (pmf) across the membrane into which it is inserted. The term pmf, which was introduced by Peter Mitchell in 1961 in his chemiosmotic hypothesis for the synthesis of ATP by H(+) F-ATP synthases, has two parts, the electrical potential difference across the phosphorylating membrane, Deltapsi, and the pH difference between the bulk solutions on either side of the membrane, DeltapH. The DeltapH term implies three phases - a bulk fluid phase on the H(+) input side, the membrane phase and a bulk fluid phase on the H(+) output side. The Mitchell theory was applied to H(+) V-ATPases largely by analogy with H(+) F-ATP synthases operating in reverse as H(+) F-ATPases. We suggest an alternative, voltage coupling model. Our model for V-ATPases is based on Douglas B. Kell's 1979 'electrodic view' of ATP synthases in which two phases are added to the Mitchell model - an unstirred layer on the input side and another one on the output side of the membrane. In addition, we replace the notion that H(+) V-ATPases normally acidify the output bulk solution with the hypothesis, which we introduced in 1992, that the primary action of a H(+) V-ATPase is to charge the membrane capacitance and impose a Deltapsi across the membrane; the translocated hydrogen ions (H(+)s) are retained at the outer fluid-membrane interface by electrostatic attraction to the anions that were left behind. All subsequent events, including establishing pH differences in the outside bulk solution, are secondary. Using the surface of an electrode as a model, Kell's 'electrodic view' has five phases - the outer bulk fluid phase, an outer fluid-membrane interface, the membrane phase, an inner fluid-membrane interface and the inner bulk fluid phase. Light flash, H(+) releasing and binding experiments and other evidence provide convincing support for Kell's electrodic view yet Mitchell's chemiosmotic theory is the one that is accepted by most bioenergetics experts today. First we discuss the interaction between H(+) V-ATPase and the K(+)/2H(+) antiporter that forms the caterpillar K(+) pump, and use the Kell electrodic view to explain how the H(+)s at the outer fluid-membrane interface can drive two H(+) from lumen to cell and one K(+) from cell to lumen via the antiporter even though the pH in the bulk fluid of the lumen is highly alkaline. Exchange of outer bulk fluid K(+) (or Na(+)) with outer interface H(+) in conjunction with (K(+) or Na(+))/2H(+) antiport, transforms the hydrogen ion electrochemical potential difference, mu(H), to a K(+) electrochemical potential difference, mu(K) or a Na(+) electrochemical potential difference, mu(Na). The mu(K) or mu(Na) drives K(+)- or Na(+)-coupled nutrient amino acid transporters (NATs), such as KAAT1 (K(+) amino acid transporter 1), which moves Na(+) and an amino acid into the cell with no H(+)s involved. Examples in which the voltage coupling model is used to interpret ion and amino acid transport in caterpillar and larval mosquito midgut are discussed.
Collapse
Affiliation(s)
- William R Harvey
- Whitney Laboratory for Marine Bioscience, University of Florida, 9505 Ocean Shore Boulevard, St Augustine, FL 32080, USA.
| |
Collapse
|
27
|
Muench SP, Huss M, Song CF, Phillips C, Wieczorek H, Trinick J, Harrison MA. Cryo-electron Microscopy of the Vacuolar ATPase Motor Reveals its Mechanical and Regulatory Complexity. J Mol Biol 2009; 386:989-99. [DOI: 10.1016/j.jmb.2009.01.014] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
28
|
Abstract
SUMMARYClassical physiological study of the Malpighian tubule has led to a detailed understanding of fluid transport and its control across several species. With the sequencing of the Drosophila genome, and the concurrent development of post-genomic technologies such as microarrays,proteomics, metabolomics and systems biology, completely unexpected roles for the insect Malpighian tubule have emerged. As the insect body plan is simpler than that of mammals, tasks analogous to those performed by multiple mammalian organ systems must be shared out among insect tissues. As well as the classical roles in osmoregulation, the Malpighian tubule is highly specialized for organic solute transport, and for metabolism and detoxification. In Drosophila, the adult Malpighian tubule is the key tissue for defence against insecticides such as DDT; and it can also detect and mount an autonomous defence against bacterial invasion. While it is vital to continue to set insights obtained in Drosophila into the context of work in other species, the combination of post-genomic technologies and physiological validation can provide insights that might not otherwise have been apparent for many years.
Collapse
Affiliation(s)
- Julian A. T. Dow
- Integrative and Systems Biology, Faculty of Biomedical and Life Sciences,University of Glasgow, Glasgow G11 6NU, UK
| |
Collapse
|
29
|
A K(+)/H (+) P-ATPase transport in the accessory cell membrane of the blowfly taste chemosensilla sustains the transepithelial potential. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2008; 194:981-8. [PMID: 18818932 DOI: 10.1007/s00359-008-0371-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2008] [Revised: 09/03/2008] [Accepted: 09/05/2008] [Indexed: 10/21/2022]
Abstract
An electrogenic K(+) transport in the tormogen cell of insect chemosensilla is involved in the generation and maintenance of the transepithelial potential (TEP). To gain more information about the K(+) transport system underlying the TEP generation and the location of its components in the plasma membrane of the tormogen cell, we studied the effects of inhibitors of K(+)/H(+) P-ATPase (bafilomycin A1, omeprazole and Na-orthovanadate), of K(+)/Cl(-) co-transport (bumetanide), of Cl(-) channels (NPPB) and of a K(+) channel blocker (BaCl(2)). The relationship between TEP amplitude and spike firing activity was also studied. Experiments were performed on the labellar chemosensilla of the blowfly Protophormia terraenovae using a modified tip-recording technique. Results show that: (a) K(+)/H(+) P-ATPase inhibitors significantly decrease the TEP, when properly applied to the labellum for 20 min, so as to reach the basolateral side of the plasma membrane, while no effect was detected when applied to the apical side, (b) bumetanide, NPPB and BaCl(2) decrease the TEP value only when administered to the apical side, (c) spike activity is positively correlated with the TEP. A model is proposed of the active and passive K(+) transports sustaining the TEP associated with the blowfly chemosensilla.
Collapse
|
30
|
Okech BA, Boudko DY, Linser PJ, Harvey WR. Cationic pathway of pH regulation in larvae of Anopheles gambiae. ACTA ACUST UNITED AC 2008; 211:957-68. [PMID: 18310121 DOI: 10.1242/jeb.012021] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Anopheles gambiae larvae (Diptera: Culicidae) live in freshwater with low Na(+) concentrations yet they use Na(+) for alkalinization of the alimentary canal, for electrophoretic amino acid uptake and for nerve function. The metabolic pathway by which larvae accomplish these functions has anionic and cationic components that interact and allow the larva to conserve Na(+) while excreting H(+) and HCO(3)(-). The anionic pathway consists of a metabolic CO(2) diffusion process, carbonic anhydrase and Cl(-)/HCO(3)(-) exchangers; it provides weak HCO(3)(-) and weaker CO(3)(2-) anions to the lumen. The cationic pathway consists of H(+) V-ATPases and Na(+)/H(+) antiporters (NHAs), Na(+)/K(+) P-ATPases and Na(+)/H(+) exchangers (NHEs) along with several (Na(+) or K(+)):amino acid(+/-) symporters, a.k.a. nutrient amino acid transporters (NATs). This paper considers the cationic pathway, which provides the strong Na(+) or K(+) cations that alkalinize the lumen in anterior midgut then removes them and restores a lower pH in posterior midgut. A key member of the cationic pathway is a Na(+)/H(+) antiporter, which was cloned recently from Anopheles gambiae larvae, localized strategically in plasma membranes of the alimentary canal and named AgNHA1 based upon its phylogeny. A phylogenetic comparison of all cloned NHAs and NHEs revealed that AgNHA1 is the first metazoan NHA to be cloned and localized and that it is in the same clade as electrophoretic prokaryotic NHAs that are driven by the electrogenic H(+) F-ATPase. Like prokaryotic NHAs, AgNHA1 is thought to be electrophoretic and to be driven by the electrogenic H(+) V-ATPase. Both AgNHA1 and alkalophilic bacterial NHAs face highly alkaline environments; to alkalinize the larva mosquito midgut lumen, AgNHA1, like the bacterial NHAs, would have to move nH(+) inwardly and Na(+) outwardly. Perhaps the alkaline environment that led to the evolution of electrophoretic prokaryotic NHAs also led to the evolution of an electrophoretic AgNHA1 in mosquito larvae. In support of this hypothesis, antibodies to both AgNHA1 and H(+) V-ATPase label the same membranes in An. gambiae larvae. The localization of H(+) V-ATPase together with (Na(+) or K(+)):amino acid(+/-) symporter, AgNAT8, on the same apical membrane in posterior midgut cells constitutes the functional equivalent of an NHE that lowers the pH in the posterior midgut lumen. All NATs characterized to date are Na(+) or K(+) symporters so the deduction is likely to have wide application. The deduced colocalization of H(+) V-ATPase, AgNHA1 and AgNAT8, on this membrane forms a pathway for local cycling of H(+) and Na(+) in posterior midgut. The local H(+) cycle would prevent unchecked acidification of the lumen while the local Na(+) cycle would regulate pH and support Na(+):amino acid(+/-) symport. Meanwhile, a long-range Na(+) cycle first transfers Na(+) from the blood to gastric caeca and anterior midgut lumen where it initiates alkalinization and then returns Na(+) from the rectal lumen to the blood, where it prevents loss of Na(+) during H(+) and HCO(3)(-) excretion. The localization of H(+) V-ATPase and Na(+)/K(+)-ATPase in An. gambiae larvae parallels that reported for Aedes aegypti larvae. The deduced colocalization of the two ATPases along with NHA and NAT in the alimentary canal constitutes a cationic pathway for Na(+)-conserving midgut alkalinization and de-alkalinization which has never been reported before.
Collapse
Affiliation(s)
- Bernard A Okech
- The Whitney Laboratory for Marine Bioscience, University of Florida, St Augustine, FL 32080, USA
| | | | | | | |
Collapse
|
31
|
Voss M, Vitavska O, Walz B, Wieczorek H, Baumann O. Stimulus-induced phosphorylation of vacuolar H(+)-ATPase by protein kinase A. J Biol Chem 2007; 282:33735-33742. [PMID: 17872947 DOI: 10.1074/jbc.m703368200] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Eukaryotic vacuolar-type H(+)-ATPases (V-ATPases) are regulated by the reversible disassembly of the active V(1)V(0) holoenzyme into a cytosolic V(1) complex and a membrane-bound V(0) complex. The signaling cascades that trigger these events in response to changing cellular conditions are largely unknown. We report that the V(1) subunit C of the tobacco hornworm Manduca sexta interacts with protein kinase A and is the only V-ATPase subunit that is phosphorylated by protein kinase A. Subunit C can be phosphorylated as single polypeptide as well as a part of the V(1) complex but not as a part of the V(1)V(0) holoenzyme. Both the phosphorylated and the unphosphorylated form of subunit C are able to reassociate with the V(1) complex from which subunit C had been removed before. Using salivary glands of the blowfly Calliphora vicina in which V-ATPase reassembly and activity is regulated by the neurohormone serotonin via protein kinase A, we show that the membrane-permeable cAMP analog 8-(4-chlorophenylthio)adenosine-3',5'-cyclic monophosphate (8-CPT-cAMP) causes phosphorylation of subunit C in a tissue homogenate and that phosphorylation is reduced by incubation with antibodies against subunit C. Similarly, incubation of intact salivary glands with 8-CPT-cAMP or serotonin leads to the phosphorylation of subunit C, but this is abolished by H-89, an inhibitor of protein kinase A. These data suggest that subunit C binds to and serves as a substrate for protein kinase A and that this phosphorylation may be a regulatory switch for the formation of the active V(1)V(0) holoenzyme.
Collapse
Affiliation(s)
- Martin Voss
- Institut für Biochemie und Biologie, Zoophysiologie, Universität Potsdam, Karl-Liebknecht-Strasse 24/25, D-14476 Potsdam, Germany
| | - Olga Vitavska
- Fachbereich Biologie und Chemie, Tierphysiologie, Universität Osnabrück, Barbarastrasse 11, D-49076 Osnabrück, Germany
| | - Bernd Walz
- Institut für Biochemie und Biologie, Zoophysiologie, Universität Potsdam, Karl-Liebknecht-Strasse 24/25, D-14476 Potsdam, Germany
| | - Helmut Wieczorek
- Fachbereich Biologie und Chemie, Tierphysiologie, Universität Osnabrück, Barbarastrasse 11, D-49076 Osnabrück, Germany
| | - Otto Baumann
- Institut für Biochemie und Biologie, Zoophysiologie, Universität Potsdam, Karl-Liebknecht-Strasse 24/25, D-14476 Potsdam, Germany.
| |
Collapse
|
32
|
Kostál V, Yanagimoto M, Bastl J. Chilling-injury and disturbance of ion homeostasis in the coxal muscle of the tropical cockroach (Nauphoeta cinerea). Comp Biochem Physiol B Biochem Mol Biol 2006; 143:171-9. [PMID: 16364670 DOI: 10.1016/j.cbpb.2005.11.005] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2005] [Revised: 10/27/2005] [Accepted: 11/06/2005] [Indexed: 10/25/2022]
Abstract
Adults of warm- and cold-acclimated tropical cockroaches, Nauphoeta cinerea were exposed to low temperatures of 0 or 5 degrees C for various time intervals (hours to days). Development of chilling-injury (defects in crawling and uncoordinated movements) and mortality during the exposure were assessed and correlated with the changes in concentrations of metal ions (Na(+), K(+) and Mg(2+)) in the haemolymph and coxal muscle tissue. Warm-acclimated insects entered chill-coma at both low temperatures. In their haemolymph, the [Na(+)] and [Mg(2+)] linearly decreased and [K(+)] increased with the increasing time of exposure. The rate of concentration changes was higher at 0 than at 5 degrees C. The concentration changes resulted in gradually dissipating equilibrium potentials across the muscle cell membranes. For instance, E(K) decreased from -49.8 to -20.7 mV during 7 days at 5 degrees C. Such a disturbance of ion homeostasis was paralleled by the gradual development of chilling-injury and mortality. Most of the cockroaches showed chilling-injury when the molar ratio of [Na(+)]/[K(+)] in their haemolymph decreased from an initial of 4.4 to 2.1-2.5. In contrast, the cold-acclimated cockroaches did not enter chill-coma. They maintained constant concentrations of ions in their haemolymph, constant equilibrium potentials across muscle cell membranes and the development of chilling-injury was significantly suppressed at 5 degrees C for 7 days.
Collapse
Affiliation(s)
- V Kostál
- Institute of Entomology, Academy of Sciences, Branisovská 31, 370 05 Ceske Budejovice, Czech Republic.
| | | | | |
Collapse
|
33
|
Zimoch L, Hogenkamp DG, Kramer KJ, Muthukrishnan S, Merzendorfer H. Regulation of chitin synthesis in the larval midgut of Manduca sexta. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2005; 35:515-527. [PMID: 15857758 DOI: 10.1016/j.ibmb.2005.01.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2004] [Revised: 01/13/2005] [Accepted: 01/20/2005] [Indexed: 05/24/2023]
Abstract
In insects, chitin is not only synthesized by ectodermal cells that form chitinous cuticles, but also by endodermal cells of the midgut that secrete a chitinous peritrophic matrix. Using anti-chitin synthase (CHS) antibodies, we previously demonstrated that in the midgut of Manduca sexta, CHS is expressed by two cell types, tracheal cells forming a basal tracheal network and columnar cells forming the apical brush border [Zimoch and Merzendorfer, 2002, Cell Tissue Res. 308, 287-297]. Now, we show that two different genes, MsCHS1 and MsCHS2, encode CHSs of midgut tracheae and columnar cells, respectively. To investigate MsCHS2 expression and activity in the course of the larval development, we monitored chitin synthesis, enzyme levels as well as mRNA amounts. All of the tested parameters were significantly reduced during molting and in the wandering stage when compared to the values obtained from intermolt feeding larvae. By contrast, MsCHS1 appeared to be inversely regulated because its mRNA was detectable only during the molt at the time when tracheal growth occurs at the basal site of the midgut. To further examine midgut chitin synthesis, we measured enzyme activity in crude midgut extracts and different membrane fractions. When we analysed trypsin-mediated proteolytic activation, a phenomenon previously reported for insect and fungal systems, we recognized that midgut chitin synthesis was only activated in crude extracts, but not in the 12,000 g membrane fraction. However, proteolytic activation by trypsin in the 12,000 g membrane fraction could be reconstituted by re-adding a soluble fraction, indicating that limited proteolysis affects an unknown soluble factor, a process that in turn activates chitin synthesis.
Collapse
Affiliation(s)
- L Zimoch
- Department of Biology/Chemistry, Division of Animal Physiology, University of Osnabrück, Barbarastr. 11, D-49069 Osnabrück, Germany
| | | | | | | | | |
Collapse
|
34
|
Vitavska O, Merzendorfer H, Wieczorek H. The V-ATPase Subunit C Binds to Polymeric F-actin as Well as to Monomeric G-actin and Induces Cross-linking of Actin Filaments. J Biol Chem 2005; 280:1070-6. [PMID: 15525650 DOI: 10.1074/jbc.m406797200] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Previously, we have shown that the V-ATPase holoenzyme as well as the V1 complex isolated from the midgut of the tobacco hornworm (Manduca sexta) exhibits the ability of binding to actin filaments via the V1 subunits B and C (Vitavska, O., Wieczorek, H., and Merzendorfer,H. (2003) J. Biol. Chem. 278, 18499-18505). Since the recombinant subunit C not only enhances actin binding of the V1 complex but also can bind separately to F-actin, we analyzed the interaction of recombinant subunit C with actin. We demonstrate that it binds not only to F-actin but also to monomeric G-actin. With dissociation constants of approximately 50 nm, the interaction exhibits a high affinity, and no difference could be observed between binding to ATP-G-actin or ADP-G-actin, respectively. Unlike other proteins such as members of the ADF/cofilin family, which also bind to G- as well as to F-actin, subunit C does not destabilize actin filaments. On the contrary, under conditions where the disassembly of F-actin into G-actin usually occurred, subunit C stabilized F-actin. In addition, it increased the initial rate of actin polymerization in a concentration-dependent manner and was shown to cross-link actin filaments to bundles of varying thickness. Apparently bundling is enabled by the existence of at least two actin-binding sites present in the N- and in the C-terminal halves of subunits C, respectively. Since subunit C has the possibility to dimerize or even to oligomerize, spacing between actin filaments could be variable in size.
Collapse
Affiliation(s)
- Olga Vitavska
- Department of Biology/Chemistry, Division of Animal Physiology, University of Osnabrück, 49069 Osnabrück, Germany
| | | | | |
Collapse
|
35
|
Kostál V, Vambera J, Bastl J. On the nature of pre-freeze mortality in insects: water balance, ion homeostasis and energy charge in the adults of Pyrrhocoris apterus. ACTA ACUST UNITED AC 2004; 207:1509-21. [PMID: 15037645 DOI: 10.1242/jeb.00923] [Citation(s) in RCA: 175] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Three acclimation groups [i.e. non-diapause (LD), diapause (SD) and diapause, cold-acclimated (SDA)] of the adult bugs Pyrrhocoris apterus differed markedly in their levels of chill tolerance. Survival time at a sub-zero, but non-freezing, temperature of -5 degrees C (Lt50) extended from 7.6 days, through 35.6 days, to >60 days in the LD, SD and SDA insects, respectively. The time necessary for recovery after chill-coma increased linearly with the increasing time of exposure to -5 degrees C, and the steepness of the slope of linear regression decreased in the order LD>SD>SDA. The capacity to prevent/counteract leakage of Na(+) down the electrochemical gradient (from haemolymph to tissues) during the exposure to -5 degrees C increased in the order LD<SD<SDA. As a result, the rates of counteractive outward movement of K(+), and of the E(K) dissipation, decreased in the same order. The least chill-tolerant insects (LD) showed the highest rate of body-water loss. Most of the water was lost from the haemolymph compartment. The ability to regulate a certain fraction of ion pools into the hindgut fluid was the highest in the SDA group, medium in the SD group and missing in the LD group. The adenylate energy charge in the fat body cells was constant in all three groups. The total pools of ATP, ADP and AMP, however, decreased in the SD and SDA groups but remained constant in the LD group. The inability of insects to maintain ion gradients at sub-zero temperature is discussed as an important cause of pre-freeze mortality.
Collapse
Affiliation(s)
- V Kostál
- Institute of Entomology, Academy of Sciences, Ceské Budejovice, Czech Republic.
| | | | | |
Collapse
|
36
|
Abstract
SUMMARYMembrane transport in insect epithelia appears to be energized through proton-motive force generated by the vacuolar type proton ATPase (V-ATPase). However, secondary transport mechanisms that are coupled to V-ATPase activity have not been fully elucidated. Following a blood meal, the female mosquito regulates fluid and ion homeostasis through a series of characteristic behaviors that require brain-derived factors to regulate ion secretion. Despite the knowledge on the behaviors of the mosquito, little is known of the targets of several factors that have been implicated in cellular changes following a blood meal. This review discusses current models of membrane transport in insects and specific data on mosquito ion regulation together with the molecular aspects of membrane transport systems that are potentially linked to V-ATPase activity, which collectively determine the functioning of mosquito midgut and Malpighian tubules. Ion transport mechanisms will be discussed from a comparative physiology perspective to gain appreciation of the exquisite mechanisms of mosquito ion regulation.
Collapse
Affiliation(s)
- Ashok K Pullikuth
- Department of Cell Biology and Neuroscience, University of California, Riverside, CA 92521, USA
| | | | | |
Collapse
|
37
|
Dow JT, Davies SA. Integrative physiology and functional genomics of epithelial function in a genetic model organism. Physiol Rev 2003; 83:687-729. [PMID: 12843407 DOI: 10.1152/physrev.00035.2002] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Classically, biologists try to understand their complex systems by simplifying them to a level where the problem is tractable, typically moving from whole animal and organ-level biology to the immensely powerful "cellular" and "molecular" approaches. However, the limitations of this reductionist approach are becoming apparent, leading to calls for a new, "integrative" physiology. Rather than use the term as a rallying cry for classical organismal physiology, we have defined it as the study of how gene products integrate into the function of whole tissues and intact organisms. From this viewpoint, the convergence between integrative physiology and functional genomics becomes clear; both seek to understand gene function in an organismal context, and both draw heavily on transgenics and genetics in genetic models to achieve their goal. This convergence between historically divergent fields provides powerful leverage to those physiologists who can phrase their research questions in a particular way. In particular, the use of appropriate genetic model organisms provides a wealth of technologies (of which microarrays and knock-outs are but two) that allow a new precision in physiological analysis. We illustrate this approach with an epithelial model system, the Malpighian (renal) tubule of Drosophila melanogaster. With the use of the beautiful genetic tools and extensive genomic resources characteristic of this genetic model, it has been possible to gain unique insights into the structure, function, and control of epithelia.
Collapse
Affiliation(s)
- Julian T Dow
- Division of Molecular Genetics, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow G11 6NU, UK.
| | | |
Collapse
|
38
|
Zimmermann B, Dames P, Walz B, Baumann O. Distribution and serotonin-induced activation of vacuolar-type H+-ATPase in the salivary glands of the blowfly Calliphora vicina. J Exp Biol 2003; 206:1867-76. [PMID: 12728008 DOI: 10.1242/jeb.00376] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Secretory activity in blowfly salivary glands is activated by the hormone serotonin. We have investigated the distribution and activity of two cation pumps that are possibly involved with transepithelial ion transport, i.e. Na(+)/K(+)-ATPase and vacuolar-type H(+)-ATPase (V-ATPase). By immunofluorescence labelling of secretory cells, Na(+)/K(+)-ATPase was localized on the basolateral plasma membrane and V-ATPase on the highly folded apical membrane. Activities of both ATPases were probed in salivary gland homogenates by applying specific inhibitors for these ion pumps, namely ouabain and bafilomycin A(1). In control glands, bafilomycin-A(1)-sensitive V-ATPase activity and ouabain-sensitive Na(+)/K(+)-ATPase activity accounted for 36% and 19%, respectively, of the total ATPase activity. V-ATPase activity increased approximately twofold after stimulation with serotonin, whereas Na(+)/K(+)-ATPase activity was not significantly affected. Biochemical assays provided evidence that the serotonin-induced activation of V-ATPase activity was accompanied by a recruitment of peripheral V(1) subunits from the cytosol to the plasma membrane, indicative of the assembly of V(0)V(1) holoenzymes. These data show that a V-ATPase located in the apical plasma membranes of the secretory cells is a component of the apical "potassium pump" that has been identified previously by physiological approaches. The V-ATPase energizes the apical membrane and provides the primary driving force for fuelling a putative K(+)/nH(+) antiporter and, thus, for fluid secretion. Serotonin-induced assembly of V(0)V(1) holoenzymes might constitute a regulatory mechanism for the control of pump activity.
Collapse
Affiliation(s)
- Bernhard Zimmermann
- Institut für Biochemie und Biologie, Zoophysiologie, Universität Potsdam, Lennéstrasse 7a, D-14471 Potsdam, Germany
| | | | | | | |
Collapse
|
39
|
Vitavska O, Wieczorek H, Merzendorfer H. A novel role for subunit C in mediating binding of the H+-V-ATPase to the actin cytoskeleton. J Biol Chem 2003; 278:18499-505. [PMID: 12606563 DOI: 10.1074/jbc.m212844200] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Primary proton transport by V-ATPases is regulated via the reversible dissociation of the V(1)V(0) holoenzyme into its V(1) and V(0) subcomplexes. Laser scanning microscopy of different tissues from the tobacco hornworm revealed co-localization of the holoenzyme and F-actin close to the apical membranes of the epithelial cells. In midgut goblet cells, no co-localization was observed under conditions where the V(1) complex detaches from the apical membrane. Binding studies, however, demonstrated that both the V(1) complex and the holoenzyme interact with F-actin, the latter with an apparently higher affinity. To identify F-actin binding subunits, we performed overlay blots that revealed two V(1) subunits as binding partners, namely subunit B, resembling the situation in the osteoclast V-ATPase (Holliday, L. S., Lu, M., Lee, B. S., Nelson, R. D., Solivan, S., Zhang, L., and Gluck, S. L. (2000) J. Biol. Chem. 275, 32331-32337), but, in addition, subunit C, which gets released during reversible dissociation of the holoenzyme. Overlay blots and co-pelleting assays showed that the recombinant subunit C also binds to F-actin. When the V(1) complex was reconstituted with recombinant subunit C, enhanced binding to F-actin was observed. Thus, subunit C may function as an anchor protein regulating the linkage between V-ATPase and the actin-based cytoskeleton.
Collapse
Affiliation(s)
- Olga Vitavska
- Department of Biology/Chemistry, Division of Animal Physiology, University of Osnabrück, D-49069 Osnabrück, Germany
| | | | | |
Collapse
|
40
|
Wu DS, Beyenbach KW. The dependence of electrical transport pathways in Malpighian tubules on ATP. J Exp Biol 2003; 206:233-43. [PMID: 12477894 DOI: 10.1242/jeb.00066] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The relationship between the intracellular ATP concentration [ATP](i) and the electrical properties of principal cells was investigated in Malpighian tubules of the yellow fever mosquito, Aedes aegypti. Under control conditions, [ATP](i) was 0.91 mmol l(-1), the input resistance of the principal cell (R(pc)) was 334.1 k Omega, and the basolateral membrane was marked by a large K(+)-conductance and a membrane voltage (V(bl)) of -75.8 mV. Peritubular cyanide (CN, 0.3 mmol l(-1)) reduced [ATP](i) to 0.08 mmol l(-1) in less than 2 min; however, V(bl) dropped to -8 mV and R(pc) increased to 3150.8 k Omega in 8 min, while the K(+)-conductance of the basolateral membrane disappeared. Upon washout of CN, V(bl) and R(pc) returned to control values within 2 min, and the basolateral membrane recovered its K(+)-conductance. The recovery of normal [ATP](i) took 15 min. Dose-dependence and EC(50) values for the CN-inhibition of V(bl) and the increase in R(pc) were strikingly similar (184.0 micromol l(-1) and 164.4 micromol l(-1)). Similar effects of metabolic inhibition were observed with dinitrophenol (DNP), but the EC(50) values were 50.3 micromol l(-1) and 71.7 micromol l(-1) for the effects on V(bl) and R(pc), respectively. Barium, a blocker of K(+)-channels, significantly hyperpolarized V(bl) to -89.1 mV and increased R(pc) to 769.4 k Omega under control conditions, but had no effects during metabolic inhibition. These results illustrate a temporal relationship between [ATP](i) and electrogenic and conductive transport pathways in principal cells that is consistent with the role of ATP as an integrator of transport steps at apical and basolateral membranes of the cell. When [ATP](i) drops to levels that are 10% of control, the V-type H(+)-ATPase is inhibited, preventing the extrusion of K(+) to the tubule lumen. At the same time, basolateral membrane K(+)-channels close, preventing the entry of K(+) from the hemolymph. Intracellular K(+) homeostasis is thus protected during metabolic inhibition, allowing the cell to re-establish K(+) transport when ATP is synthesized again.
Collapse
Affiliation(s)
- Daniel S Wu
- Department of Biomedical Sciences, VRT 8014, Cornell University, Ithaca, NY 14853, USA
| | | |
Collapse
|
41
|
Huss M, Ingenhorst G, König S, Gassel M, Dröse S, Zeeck A, Altendorf K, Wieczorek H. Concanamycin A, the specific inhibitor of V-ATPases, binds to the V(o) subunit c. J Biol Chem 2002; 277:40544-8. [PMID: 12186879 DOI: 10.1074/jbc.m207345200] [Citation(s) in RCA: 212] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Vacuolar-type ATPase (V-ATPase) purified from the midgut of the tobacco hornworm Manduca sexta is inhibited 50% by 10 nm of the plecomacrolide concanamycin A, the specific inhibitor of V-ATPases. To determine the binding site(s) of that antibiotic in the enzyme complex, labeling with the semisynthetic 9-O-[p-(trifluoroethyldiazirinyl)-benzoyl]-21,23-dideoxy-23-[(125)I]iodo-concanolide A (J-concanolide A) was performed, which still inhibits the V-ATPase 50% at a concentration of 15-20 microm. Upon treatment with UV light, a highly reactive carbene is generated from this concanamycin derivative, resulting in the formation of a covalent bond to the enzyme. In addition, the radioactive tracer (125)I makes the detection of the labeled subunit(s) feasible. Treatment of the V(1)/V(o) holoenzyme, the V(o) complex, and the V-ATPase containing goblet cell apical membranes with concanolide resulted in the labeling of only the proteolipid, subunit c, of the proton translocating V(o) complex. Binding of J-concanolide A to subunit c was prevented in a concentration-dependent manner by concanamycin A, indicating that labeling was specific. Binding was also prevented by the plecomacrolides bafilomycin A(1) and B(1), respectively, but not by the benzolactone enamide salicylihalamide, a member of a novel class of V-ATPase inhibitors.
Collapse
Affiliation(s)
- Markus Huss
- Universität Osnabrück, Fachbereich Biologie/Chemie, Abteilung Tierphysiologie, 49069 Osnabrück, Germany
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Al-Fifi ZIA, Al-Robai A, Khoja SM. Properties of the V-type ATPase from the excretory system of the usherhopper, Poekilocerus bufonius. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2002; 32:1143-1150. [PMID: 12213249 DOI: 10.1016/s0965-1748(02)00050-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The bafilomycin A(1) and N-ethylmaleimide (NEM)-sensitive (V-type) ATPase was partially purified from the apical membrane-rich fractions of excretory system (Malpighian tubules and hind gut) of P. bufonius. Enzymatic activity was inhibited by bafilomycin A(1) (IC(50) = 1.3 nM) and NEM (IC(50) = 10.1 microM). The V-type ATPase activity is confined to the apical membrane fraction, while the activity of Na(+)/K(+) -ATPase forms the major part of the basal membrane fraction. The optimal pH required for maximal activity of V-type ATPase was pH 7.5. The effect of 30 mM of various salts on ATPase activity was investigated. NaCl and KCl caused increases of 175% and 184%, respectively. Other chloride salts also caused an increase in activity in the following ascending order: RbCl, LiCI, choline Cl, NaCI, KCl and tris-HCl. The activity of V-type ATPase was stimulated by a variety of different anions and cations, and HCO(3)(-) was found to be the most potent cationic activator of ATPase activity. The present results show that the properties of V-type ATPase of P. bufonius are similar to those reported for other insect tissues.
Collapse
Affiliation(s)
- Z I A Al-Fifi
- King Abdulaziz University, Faculty of Science, Department of Biological Sciences, P.O. Box 80203, Jeddah 21589, Saudi Arabia.
| | | | | |
Collapse
|
43
|
Hakim RS, Baldwin KM, Loeb M. The role of stem cells in midgut growth and regeneration. In Vitro Cell Dev Biol Anim 2001; 37:338-42. [PMID: 11515964 DOI: 10.1007/bf02577567] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The Manduca sexta (L.) [Lepidoptera: Sphingidae] and Heliothis virescens (F.) [Lepidoptera: Noctuidae] midguts consist of a pseudostratified epithelium surrounded by striated muscle and tracheae. This epithelium contains goblet, columnar, and basal stem cells. The stem cells are critically important in that they are capable of massive proliferation and differentiation. This growth results in a fourfold enlargement of the midgut at each larval molt. The stem cells are also responsible for limited cell replacement during repair. While the characteristics of the stem cell population vary over the course of an instar, stem cells collected early in an instar and those collected late can start in vitro cultures. Cultures of larval stem, goblet, and columnar cells survive in vitro for several mo through proliferation and differentiation of the stem cells. One of the two polypeptide differentiation factors which have been identified and characterized from the culture medium has now been shown to be present in midgut in vivo. Thus the ability to examine lepidopteran midgut stem cell growth in vitro and in vivo is proving to be effective in determining the basic features of stem cell action and regulation.
Collapse
Affiliation(s)
- R S Hakim
- Department of Anatomy, College of Medicine, Howard University, Washington, DC 20059, USA.
| | | | | |
Collapse
|
44
|
Gräf R. Maltose-binding protein as a fusion tag for the localization and purification of cloned proteins in Dictyostelium. Anal Biochem 2001; 289:297-300. [PMID: 11161327 DOI: 10.1006/abio.2000.4961] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- R Gräf
- Adolf-Butenandt-Institut/Zellbiologie, Schillerstrasse 42, D-80336 Münich, Germany.
| |
Collapse
|
45
|
Bandani AR, Amiri B, Butt TM, Gordon-Weeks R. Effects of efrapeptin and destruxin, metabolites of entomogenous fungi, on the hydrolytic activity of a vacuolar type ATPase identified on the brush border membrane vesicles of Galleria mellonella midgut and on plant membrane bound hydrolytic enzymes. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1510:367-77. [PMID: 11342173 DOI: 10.1016/s0005-2736(00)00370-9] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The brush border membrane of the insect midgut is an initial site for interaction of insecticidal proteins. We have investigated the possibility that it may contain a target site for two insecticidal fungal toxins, destruxin and efrapeptin, both of which are ATPase inhibitors. We have studied the effects of the toxins on the hydrolytic activity of a vacuolar type ATPase (V-ATPase) that we have identified from Galleria mellonella midgut columnar cell brush border membrane vesicles (BBMV) by its cation and pH dependence, sensitivity to proton pump inhibitors and K(m) (0.49 mM ATP). Efrapeptin strongly inhibited the BBMV V-ATPase but destruxin had little effect. We compared the effects of the inhibitors on known plant membrane hydrolytic enzymes, and although the vacuolar pyrophosphatase and plasma membrane ATPase were not inhibited by the toxins, the V-ATPase from mung bean, but not barley, was inhibited (50%) by 10 microM concentrations of both compounds. Different forms of the toxins were tested on the ATPases and destruxin B and efrapeptin F were the most effective. Kinetic analysis showed that the purified forms of both compounds inhibited the V-ATPases uncompetitively and modelling of data for inhibition of the BBMV V-ATPase by efrapeptin at concentrations of 0.06--12 microM yielded a K(i) of 0.125 microM.
Collapse
Affiliation(s)
- A R Bandani
- IACR-Rothamsted, Harpenden, Hertfordshire AL5 2JQ, UK
| | | | | | | |
Collapse
|
46
|
Holmes SP, Frazier SK, Pietrantonio PV. Cloning of the 16-kDa V-ATPase proteolipid subunit from the red imported fire ant Solenopsis invicta buren (Hymenoptera: Formicidae). ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2000; 45:109-116. [PMID: 11169750 DOI: 10.1002/1520-6327(200011)45:3<109::aid-arch2>3.0.co;2-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
V-ATPases are ubiquitous proton pumps found in eukaryotes, and are important in regulating the pH of cell compartments and in creating membrane potentials. The V-ATPase creates a proton gradient that is used as an energy source for the transport of other ions. The 16-kDa proteolipid is the proton-translocating subunit c of V-ATPases. Using PCR methods, we have cloned the fire ant 16-kDa subunit c, providing the first molecular characterization of this protein in a social insect. Northern blot analysis revealed three possible different transcripts. The presence of V-ATPases in ant Malpighian tubules had been previously demonstrated, where they provide the proton gradient necessary for the excretion of other ions and the formation of primary urine. The 16-kDa proteolipid is highly conserved among insects, and in ants may be important to the critical processes of diuresis and olfaction as a key component of the V-ATPase. Arch.
Collapse
Affiliation(s)
- S P Holmes
- Department of Entomology, Texas A&M University, College Station, TX 77843-2475, USA
| | | | | |
Collapse
|
47
|
Grüber G, Svergun DI, Godovac-Zimmermann J, Harvey WR, Wieczorek H, Koch MH. Evidence for major structural changes in the Manduca sexta midgut V1 ATPase due to redox modulation. A small angle X-ray scattering study. J Biol Chem 2000; 275:30082-7. [PMID: 10893230 DOI: 10.1074/jbc.m002976200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The shape and overall dimensions of the oxidized and reduced form of the V(1) ATPase from Manduca sexta were investigated by synchrotron radiation x-ray solution scattering. The radius of gyration of the oxidized and reduced complex differ noticeably, with dimensions of 6. 20 +/- 0.06 and 5.84 +/- 0.06 nm, respectively, whereas the maximum dimensions remain constant at 22.0 +/- 0.1 nm. Comparison of the low resolution shapes of both forms, determined ab initio, indicates that the main structural alteration occurs in the head piece, where the major subunits A and B are located, and at the bottom of the stalk. In conjunction with the solution scattering data, decreased susceptibility to tryptic digestion and tryptophan fluorescence of the reduced V(1) molecule provide the first strong evidence for major structural changes in the V(1) ATPase because of redox modulation.
Collapse
Affiliation(s)
- G Grüber
- Universität Osnabrück, Fachbereich Biologie/Chemie, D-49069 Osnabrück, Germany.
| | | | | | | | | | | |
Collapse
|
48
|
Merzendorfer H, Reineke S, Zhao XF, Jacobmeier B, Harvey WR, Wieczorek H. The multigene family of the tobacco hornworm V-ATPase: novel subunits a, C, D, H, and putative isoforms. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1467:369-79. [PMID: 11030595 DOI: 10.1016/s0005-2736(00)00233-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The plasma membrane V-ATPase from Manduca sexta (Lepidoptera, Sphingidae) larval midgut is composed of at least 12 subunits, eight of which have already been identified molecularly [Wieczorek et al., J. Bioenerg. Biomembr. 31 (1999) 67-74]. Here we report primary sequences of subunits C, D, H and a, which previously had not been identified in insects. Expression of recombinant proteins, immunostaining and protein sequencing demonstrated that the corresponding proteins are subunits of the Manduca V-ATPase. Genomic Southern blot analysis indicated the existence of multiple genes encoding subunits G, a, c, d and e. Moreover, multiple transcripts were detected in Northern blots from midgut poly(A) RNA for subunits B, G, c and d. Thus, these polypeptides appear to exist as multiple isoforms that could be expressed either in different tissues or at distinct locations within a cell. By contrast subunits A, C, D, E, F and H appear to be encoded by single transcripts and therefore should be present in any Manduca V-ATPase, independent of its subcellular or cell specific origin.
Collapse
|
49
|
Grüber G, Radermacher M, Ruiz T, Godovac-Zimmermann J, Canas B, Kleine-Kohlbrecher D, Huss M, Harvey WR, Wieczorek H. Three-dimensional structure and subunit topology of the V(1) ATPase from Manduca sexta midgut. Biochemistry 2000; 39:8609-16. [PMID: 10913268 DOI: 10.1021/bi000103u] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The three-dimensional structure of the Manduca sexta midgut V(1) ATPase has been determined at 3.2 nm resolution from electron micrographs of negatively stained specimens. The V(1) complex has a barrel-like structure 11 nm in height and 13.5 nm in diameter. It is hexagonal in the top view, whereas in the side view, the six large subunits A and B are interdigitated for most of their length (9 nm). The topology and importance of the individual subunits of the V(1) complex have been explored by protease digestion, resistance to chaotropic agents, MALDI-TOF mass spectrometry, and CuCl(2)-induced disulfide formation. Treatment of V(1) with trypsin or chaotropic iodide resulted in a rapid cleavage or release of subunit D from the enzyme, indicating that this subunit is exposed in the complex. Trypsin cleavage of V(1) decreased the ATPase activity with a time course that was in line with the cleavage of subunits B, C, G, and F. When CuCl(2) was added to V(1) in the presence of CaADP, the cross-linked products A-E-F and B-H were generated. In experiments where CuCl(2) was added after preincubation of CaATP, the cross-linked products E-F and E-G were formed. These changes in cross-linking of subunit E to near-neighbor subunits support the hypothesis that these are nucleotide-dependent conformational changes of the E subunit.
Collapse
Affiliation(s)
- G Grüber
- Universität Osnabrück, Fachbereich Biologie/Chemie, Osnabrück, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Hernando N, David P, Tarsio M, Bartkiewicz M, Horne WC, Kane PM, Baron R. The presence of the alternatively spliced A2 cassette in the vacuolar H+-ATPase subunit A prevents assembly of the V1 catalytic domain. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 266:293-301. [PMID: 10542077 DOI: 10.1046/j.1432-1327.1999.00874.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Vacuolar ATPases (V-ATPases) are multisubunit enzymes that couple the hydrolysis of ATP to the transport of H+ across membranes, and thus acidify several intracellular compartments and some extracellular spaces. Despite the high degree of genetic and pharmacological homogeneity of V-ATPases, cells differentially modulate the lumenal pH of organelles and, in some cells, V-ATPases are selectively targetted to the plasma membrane. Although the mechanisms underlying such differences are not known, the subunit isoform composition of V-ATPases could contribute to altered assembly, targeting or activity. We previously identified an alternatively spliced variant of the chicken A subunit in which a 30 amino acid cassette (A1) containing the Walker consensus sequence for ATP binding is replaced by a 24 amino acid cassette (A2) that lacks this feature. We have examined the ability of chimeric yeast/chicken A subunits containing either the A1 or the A2 cassette to restore the V-ATPase activity of yeast that lack the A subunit. The A1-containing chimeric subunit, but not the chimera that contains the A2 cassette, partially restores the ability of the mutated yeast to grow at neutral pH. Both chimeric proteins are expressed, although at lower levels than the similarly transfected yeast A subunit. The A2-containing subunit fails to associate with the vacuolar membrane or support the assembly of V-ATPase complexes. Thus, the substitution of the A1 sequence by A2 not only removes the Walker nucleotide binding sequence but also compromises the ability of the A subunit to assemble with other V-ATPase subunits.
Collapse
Affiliation(s)
- N Hernando
- Department of Cell Biology, Yale Cancer Center, Yale University School of Medicine, New Haven, CT, USA
| | | | | | | | | | | | | |
Collapse
|