1
|
Wang L, Kuo HT, Chapple DE, Chen CC, Kurkowska S, Colpo N, Uribe C, Bénard F, Lin KS. Synthesis and Evaluation of 68Ga- and 177Lu-Labeled [Pro 14]bombesin(8-14) Derivatives for Detection and Radioligand Therapy of Gastrin-Releasing Peptide Receptor-Expressing Cancer. Mol Pharm 2024. [PMID: 39460729 DOI: 10.1021/acs.molpharmaceut.4c00952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2024]
Abstract
The gastrin-releasing peptide receptor (GRPR) is overexpressed in a variety of cancers and represents a promising target for diagnosis and therapy. However, the extremely high accumulation in the pancreas observed for most of the clinically evaluated GRPR-targeted radiopharmaceuticals could limit their applications. In this study, we synthesized one GRPR antagonist (ProBOMB5) and two GRPR agonists (LW02056 and LW02057) by replacing the 4-thiazolidinecarboxylic acid (Thz14) residue in our previously reported GRPR-targeted tracers with Pro14. The 68Ga and 177Lu labeling were conducted in HEPES (2 M, pH 5.0) buffer and acetate (0.1 M, pH 4.5) buffer, respectively, and the radiolabeled products were obtained in a 24-57% decay-corrected radiochemical yield and >92% radiochemical purity. The binding affinities (Ki) of Ga-ProBOMB5, Ga-LW02056, Ga-LW02057, and Lu-ProBOMB5 were measured via in vitro competition binding assays and were 12.2 ± 1.89, 14.7 ± 4.81, 13.8 ± 2.24, and 13.6 ± 0.25 nM, respectively. The PET imaging and ex vivo biodistribution studies were conducted in PC-3 tumor-bearing mice at 1 h post injection. [68Ga]Ga-ProBOMB5, [68Ga]Ga-LW02056, and [68Ga]Ga-LW02057 enabled clear tumor visualization in PET images. The tumor uptake values of [68Ga]Ga-ProBOMB5, [68Ga]Ga-LW02056, and [68Ga]Ga-LW02057 were 12.4 ± 1.35, 8.93 ± 1.96, and 7.64 ± 0.55%ID/g, respectively, and their average pancreas uptake values were minimal (0.60-1.37%ID/g). Longitudinal SPECT imaging and ex vivo biodistribution studies were also conducted for [177Lu]Lu-ProBOMB5 and clinically validated [177Lu]Lu-RM2. Despite comparable tumor uptake at 1 h post injection ([177Lu]Lu-ProBOMB5:8.09 ± 1.70%ID/g; [177Lu]Lu-RM2:7.73 ± 0.96%ID/g), a faster clearance from PC-3 tumor xenografts was observed for [177Lu]Lu-ProBOMB5, leading to a lower radiation-absorbed dose delivered to tumors. Our data demonstrate that [68Ga]Ga-ProBOMB5 is a promising tracer for clinical translation for detecting GRPR-expressing tumor lesions. However, further optimizations are needed for [177Lu]Lu-ProBOMB5 to prolong tumor retention for therapeutic applications.
Collapse
Affiliation(s)
- Lei Wang
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, British Columbia V5Z 1L3, Canada
| | - Hsiou-Ting Kuo
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, British Columbia V5Z 1L3, Canada
| | - Devon E Chapple
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, British Columbia V5Z 1L3, Canada
| | - Chao-Cheng Chen
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, British Columbia V5Z 1L3, Canada
| | - Sara Kurkowska
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, British Columbia V5Z 1L3, Canada
- Department of Nuclear Medicine, Pomeranian Medical University, Szczecin 70-204, Poland
| | - Nadine Colpo
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, British Columbia V5Z 1L3, Canada
- Department of Molecular Imaging and Therapy, BC Cancer Research Institute, Vancouver, British Columbia V5Z 4E6, Canada
| | - Carlos Uribe
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, British Columbia V5Z 1L3, Canada
- Department of Molecular Imaging and Therapy, BC Cancer Research Institute, Vancouver, British Columbia V5Z 4E6, Canada
- Department of Radiology, University of British Columbia, Vancouver, British Columbia V5Z 1M9, Canada
| | - François Bénard
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, British Columbia V5Z 1L3, Canada
- Department of Molecular Imaging and Therapy, BC Cancer Research Institute, Vancouver, British Columbia V5Z 4E6, Canada
- Department of Radiology, University of British Columbia, Vancouver, British Columbia V5Z 1M9, Canada
| | - Kuo-Shyan Lin
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, British Columbia V5Z 1L3, Canada
- Department of Molecular Imaging and Therapy, BC Cancer Research Institute, Vancouver, British Columbia V5Z 4E6, Canada
- Department of Radiology, University of British Columbia, Vancouver, British Columbia V5Z 1M9, Canada
| |
Collapse
|
2
|
D’Onofrio A, Engelbrecht S, Läppchen T, Rominger A, Gourni E. GRPR-targeting radiotheranostics for breast cancer management. Front Med (Lausanne) 2023; 10:1250799. [PMID: 38020178 PMCID: PMC10657217 DOI: 10.3389/fmed.2023.1250799] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/12/2023] [Indexed: 12/01/2023] Open
Abstract
Breast Cancer (BC) is the most common cancer worldwide and, despite the advancements made toward early diagnosis and novel treatments, there is an urgent need to reduce its mortality. The Gastrin-Releasing Peptide Receptor (GRPR) is a promising target for the development of theranostic radioligands for luminal BC with positive estrogen receptor (ER) expression, because GRPR is expressed not only in primary lesions but also in lymph nodes and distant metastasis. In the last decades, several GRPR-targeting molecules have been evaluated both at preclinical and clinical level, however, most of the studies have been focused on prostate cancer (PC). Nonetheless, given the relevance of non-invasive diagnosis and potential treatment of BC through Peptide Receptor Radioligand Therapy (PRRT), this review aims at collecting the available preclinical and clinical data on GRPR-targeting radiopeptides for the imaging and therapy of BC, to better understand the current state-of-the-art and identify future perspectives and possible limitations to their clinical translation. In fact, since luminal-like tumors account for approximately 80% of all BC, many BC patients are likely to benefit from the development of GRPR-radiotheranostics.
Collapse
Affiliation(s)
| | | | | | | | - Eleni Gourni
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
3
|
Proniewicz E. Metallic nanoparticles as effective sensors of bio-molecules. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 288:122207. [PMID: 36502763 DOI: 10.1016/j.saa.2022.122207] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/23/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
This work describes biologically important nanostructures of metals (AgNPs, AuNPs, and PtNPs) and metal oxides (Cu2ONPs, CuONSs, γ-Fe2O3NPs, ZnONPs, ZnONPs-GS, anatase-TiO2NPs, and rutile-TiO2NPs) synthesized by different methods (wet-chemical, electrochemical, and green-chemistry methods). The nanostructures were characterized by molecular spectroscopic methods, including scanning/transmission electron microscopy (SEM/TEM), energy dispersive X-ray spectroscopy (EDS), X-ray diffraction analysis (XRD), photoelectron spectroscopy (XPS), ultraviolet-visible spectroscopy (UV-vis), dynamic light scattering (DLS), Raman scattering spectroscopy (RS), and infrared light spectroscopy (IR). Then, a peptide (bombesin, BN) was adsorbed onto the surface of these nanostructures from an aqueous solution with pH of 7 that did not contain surfactants. Adsorption was monitored using surface-enhanced Raman scattering spectroscopy (SERS) to determine the influence of the nature of the metal surface and surface evolution on peptide geometry. Information from the SERS studies was compared with information on the biological activity of the peptide. The SERS enhancement factor was determined for each of the metallic surfaces.
Collapse
Affiliation(s)
- E Proniewicz
- Faculty of Foundry Engineering, AGH University of Science and Technology, 30-059 Krakow, Poland.
| |
Collapse
|
4
|
Case TC, Merkel A, Ramirez-Solano M, Liu Q, Sterling JA, Jin R. Blocking GRP/GRP-R signaling decreases expression of androgen receptor splice variants and inhibits tumor growth in castration-resistant prostate cancer. Transl Oncol 2021; 14:101213. [PMID: 34461557 PMCID: PMC8405941 DOI: 10.1016/j.tranon.2021.101213] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 08/24/2021] [Indexed: 01/19/2023] Open
Abstract
The results of our study strongly indicate that blocking GRP/GRP-R signaling by targeting GRP-R is sufficient to inhibit ARVs expression. In addition, the combination of blocking GRP/GRP-R signaling (targeting ARVs) and anti-androgens (targeting AR-FL) is a potential new therapeutic approach for treatment of CRPC and therapy-induced tNEPC. Clinical management of castration-resistant prostate cancer (CRPC) resulting from androgen deprivation therapy (ADT) remains challenging. Many studies indicate that androgen receptor splice variants (ARVs) play a critical role in the development of CRPC, including resistance to the new generation of inhibitors of androgen receptor (AR) action. ARVs are constitutively active and lack the ligand-binding domain (LBD), thereby allowing prostate cancer (PC) to maintain AR activity despite therapies that target the AR (full-length AR; AR-FL). Previously, we have reported that long-term ADT increases the neuroendocrine (NE) hormone – Gastrin Releasing Peptide (GRP) and its receptor (GRP-R) expression in PC cells. Further, we demonstrated that activation of GRP/GRP-R signaling increases ARVs expression by activating NF-κB signaling, thereby promoting cancer progression to CRPC. Most importantly, as a cell surface protein, GRP-R is easily targeted by drugs to block GRP/GRP-R signaling. In this study, we tested if blocking GRP/GRP-R signaling by targeting GRP-R using GRP-R antagonist is sufficient to control CRPC progression. Our studies show that blocking GRP/GRP-R signaling by targeting GRP-R using RC-3095, a selective GRP-R antagonist, efficiently inhibits NF-κB activity and ARVs (AR-V7) expression in CRPC and therapy-induced NEPC (tNEPC) cells. In addition, blocking of GRP/GRP-R signaling by targeting GRP-R can sensitize CRPC cells to anti-androgen treatment (such as MDV3100). Further, preclinical animal studies indicate combination of GRP-R antagonist (targeting ARVs) with anti-androgen (targeting AR-FL) is sufficient to inhibit CRPC and tNEPC tumor growth.
Collapse
Affiliation(s)
- Thomas C Case
- Department of Urology, Vanderbilt University Medical Center, A1329, MCN, 1161 21st Ave. South, Nashville, TN 37232, USA
| | - Alyssa Merkel
- Department of Cancer Biology, Medicine, Division of Clinical Pharmacology, Bone Biology Center, and Biomedical Engineering, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Qi Liu
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Julie A Sterling
- Department of Cancer Biology, Medicine, Division of Clinical Pharmacology, Bone Biology Center, and Biomedical Engineering, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Renjie Jin
- Department of Urology, Vanderbilt University Medical Center, A1329, MCN, 1161 21st Ave. South, Nashville, TN 37232, USA.
| |
Collapse
|
5
|
Proniewicz E, Burnat G, Domin H, Małuch I, Makowska M, Prahl A. Application of Alanine Scanning to Determination of Amino Acids Essential for Peptide Adsorption at the Solid/Solution Interface and Binding to the Receptor: Surface-Enhanced Raman/Infrared Spectroscopy versus Bioactivity Assays. J Med Chem 2021; 64:8410-8422. [PMID: 34110823 PMCID: PMC8279479 DOI: 10.1021/acs.jmedchem.1c00397] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Indexed: 12/02/2022]
Abstract
The article describes the application of the alanine-scanning technique used in combination with Raman, surface-enhanced Raman, attenuated total reflection Fourier transform infrared, and surface-enhanced infrared absorption (SEIRA) spectroscopies, which allowed defining the role of individual amino acid residues in the C-terminal 6-14 fragment of the bombesin chain (BN6-14) on the path of its adsorption on the surface of Ag (AgNPs) and Au nanoparticles (AuNPs). A reliable analysis of the SEIRA spectra of these peptides was possible, thanks to a curve fitting of these spectra. By combining alanine-scanning with biological activity studies using cell lines overexpressing bombesin receptors and the intracellular inositol monophosphate assay, it was possible to determine which peptide side chains play a significant role in binding a peptide to membrane-bound G protein-coupled receptors (GPCRs). Based on the analysis of spectral profiles and bioactivity results, conclusions for the specific peptide-metal and peptide-GPCR interactions were drawn and compared.
Collapse
Affiliation(s)
- Edyta Proniewicz
- Faculty
of Foundry Engineering, AGH University of
Science and Technology, 30-059 Krakow, Poland
| | - Grzegorz Burnat
- Maj
Institute of Pharmacology, Polish Academy of Sciences, Department of Neurobiology, 31-343 Kraków, 12 Smętna Street, Poland
| | - Helena Domin
- Maj
Institute of Pharmacology, Polish Academy of Sciences, Department of Neurobiology, 31-343 Kraków, 12 Smętna Street, Poland
| | - Izabela Małuch
- Faculty
of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland
| | - Marta Makowska
- Faculty
of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland
| | - Adam Prahl
- Faculty
of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland
| |
Collapse
|
6
|
Mitran B, Tolmachev V, Orlova A. Radiolabeled GRPR Antagonists for Imaging of Disseminated Prostate Cancer - Influence of Labeling Chemistry on Targeting Properties. Curr Med Chem 2021; 27:7090-7111. [PMID: 32164503 DOI: 10.2174/0929867327666200312114902] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/31/2019] [Accepted: 01/10/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND Radionuclide molecular imaging of Gastrin-Releasing Peptide Receptor (GRPR) expression promises unparalleled opportunities for visualizing subtle prostate tumors, which due to small size, adjacent benign tissue, or a challenging location would otherwise remain undetected by conventional imaging. Achieving high imaging contrast is essential for this purpose and the molecular design of any probe for molecular imaging of prostate cancer should be aimed at obtaining as high tumor-to-organ ratios as possible. OBJECTIVE This short review summarizes the key imaging modalities currently used in prostate cancer, with a special focus on radionuclide molecular imaging. Emphasis is laid mainly on the issue of radiometals labeling chemistry and its influence on the targeting properties and biodistribution of radiolabeled GRPR antagonists for imaging of disseminated prostate cancer. METHODS A comprehensive literature search of the PubMed/MEDLINE, and Scopus library databases was conducted to find relevant articles. RESULTS The combination of radionuclide, chelator and required labeling chemistry was shown to have a significant influence on the stability, binding affinity and internalization rate, off-target interaction with normal tissues and blood proteins, interaction with enzymes, activity uptake and retention in excretory organs and activity uptake in tumors of radiolabeled bombesin antagonistic analogues. CONCLUSION Labeling chemistry has a very strong impact on the biodistribution profile of GRPRtargeting peptide based imaging probes and needs to be considered when designing a targeting probe for high contrast molecular imaging. Taking into account the complexity of in vivo interactions, it is not currently possible to accurately predict the optimal labeling approach. Therefore, a detailed in vivo characterization and optimization is essential for the rational design of imaging agents.
Collapse
Affiliation(s)
- Bogdan Mitran
- Department of Medicianl Chemistry, Faculty of Pharmacy, Uppsala University, Uppsala, Sweden
| | - Vladimir Tolmachev
- Department of Immunology, Genetics and Pathology, Faculty of Medicine, Uppsala University, Uppsala, Sweden
| | - Anna Orlova
- Department of Medicianl Chemistry, Faculty of Pharmacy, Uppsala University, Uppsala, Sweden
| |
Collapse
|
7
|
Li X, Cai H, Wu X, Li L, Wu H, Tian R. New Frontiers in Molecular Imaging Using Peptide-Based Radiopharmaceuticals for Prostate Cancer. Front Chem 2020; 8:583309. [PMID: 33335885 PMCID: PMC7736158 DOI: 10.3389/fchem.2020.583309] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 10/27/2020] [Indexed: 02/05/2023] Open
Abstract
The high incidence of prostate cancer (PCa) increases the need for progress in its diagnosis, staging, and precise treatment. The overexpression of tumor-specific receptors for peptides in human cancer cells, such as gastrin-releasing peptide receptor, natriuretic peptide receptor, and somatostatin receptor, has indicated the ideal molecular basis for targeted imaging and therapy. Targeting these receptors using radiolabeled peptides and analogs have been an essential topic on the current forefront of PCa studies. Radiolabeled peptides have been used to target receptors for molecular imaging in human PCa with high affinity and specificity. The radiolabeled peptides enable optimal quick elimination from blood and normal tissues, producing high contrast for positron emission computed tomography and single-photon emission computed tomography imaging with high tumor-to-normal tissue uptake ratios. Owing to their successful application in visualization, peptide derivatives with therapeutic radionuclides for peptide receptor radionuclide therapy in PCa have been explored in recent years. These developments offer the promise of personalized, molecular medicine for individual patients. Hence, we review the preclinical and clinical literature in the past 20 years and focus on the newer developments of peptide-based radiopharmaceuticals for the imaging and therapy of PCa.
Collapse
Affiliation(s)
- Xin Li
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Huawei Cai
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoai Wu
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Li Li
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Haoxing Wu
- Department of Nuclear Medicine, Frontiers Science Center for Disease-Related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital and West China School of Medicine, Sichuan University, Chengdu, China
| | - Rong Tian
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
8
|
Rečnik LM, Kandioller W, Mindt TL. 1,4-Disubstituted 1,2,3-Triazoles as Amide Bond Surrogates for the Stabilisation of Linear Peptides with Biological Activity. Molecules 2020; 25:E3576. [PMID: 32781656 PMCID: PMC7465391 DOI: 10.3390/molecules25163576] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/03/2020] [Accepted: 08/04/2020] [Indexed: 12/20/2022] Open
Abstract
Peptides represent an important class of biologically active molecules with high potential for the development of diagnostic and therapeutic agents due to their structural diversity, favourable pharmacokinetic properties, and synthetic availability. However, the widespread use of peptides and conjugates thereof in clinical applications can be hampered by their low stability in vivo due to rapid degradation by endogenous proteases. A promising approach to circumvent this potential limitation includes the substitution of metabolically labile amide bonds in the peptide backbone by stable isosteric amide bond mimetics. In this review, we focus on the incorporation of 1,4-disubstituted 1,2,3-triazoles as amide bond surrogates in linear peptides with the aim to increase their stability without impacting their biological function(s). We highlight the properties of this heterocycle as a trans-amide bond surrogate and summarise approaches for the synthesis of triazole-containing peptidomimetics via the Cu(I)-catalysed azide-alkyne cycloaddition (CuAAC). The impacts of the incorporation of triazoles in the backbone of diverse peptides on their biological properties such as, e.g., blood serum stability and affinity as well as selectivity towards their respective molecular target(s) are discussed.
Collapse
Affiliation(s)
- Lisa-Maria Rečnik
- Ludwig Boltzmann Institute Applied Diagnostics, General Hospital Vienna, 1090 Vienna, Austria;
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria;
- Department of Biomedical Imaging and Image Guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, 1090 Vienna, Austria
| | - Wolfgang Kandioller
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria;
| | - Thomas L. Mindt
- Ludwig Boltzmann Institute Applied Diagnostics, General Hospital Vienna, 1090 Vienna, Austria;
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria;
- Department of Biomedical Imaging and Image Guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
9
|
Previti S, Vivancos M, Rémond E, Beaulieu S, Longpré JM, Ballet S, Sarret P, Cavelier F. Insightful Backbone Modifications Preventing Proteolytic Degradation of Neurotensin Analogs Improve NT S1-Induced Protective Hypothermia. Front Chem 2020; 8:406. [PMID: 32582624 PMCID: PMC7291367 DOI: 10.3389/fchem.2020.00406] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 04/17/2020] [Indexed: 12/31/2022] Open
Abstract
Therapeutic hypothermia represents a brain-protective strategy for multiple emergency situations, such as stroke or traumatic injury. Neurotensin (NT), which exerts its effects through activation of two G protein-coupled receptors, namely NTS1 and NTS2, induces a strong and long-lasting decrease in core body temperature after its central administration. Growing evidence demonstrates that NTS1 is the receptor subtype mediating the hypothermic action of NT. As such, potent NTS1 agonists designed on the basis of the minimal C-terminal NT(8-13) bioactive fragment have been shown to produce mild hypothermia and exert neuroprotective effects under various clinically relevant conditions. The high susceptibility of NT(8-13) to protease degradation (half-life <2 min) represents, however, a serious limitation for its use in pharmacological therapy. In light of this, we report here a structure-activity relationship study in which pairs of NT(8-13) analogs have been developed, based on the incorporation of a reduced Lys8-Lys9 bond. To further stabilize the peptide bonds, a panel of backbone modifications was also inserted along the peptide sequence, including Sip10, D-Trp11, Dmt11, Tle12, and TMSAla13. Our results revealed that the combination of appropriate chemical modifications leads to compounds exhibiting improved resistance to proteolytic cleavages (>24 h; 16). Among them, the NT(8-13) analogs harboring the reduced amine bond combined with the unnatural amino acids TMSAla13 (4) and Sip10 (6) or the di-substitution Lys11 - TMSAla13 (12), D-Trp11-TMSAla13 (14), and Dmt11-Tle12 (16) produced sustained hypothermic effects (−3°C for at least 1 h). Importantly, we observed that hypothermia was mainly driven by the increased stability of the NT(8-13) derivatives, instead of the high binding-affinity at NTS1. Altogether, these results reveal the importance of the reduced amine bond in optimizing the metabolic properties of the NT(8-13) peptide and support the development of stable NTS1 agonists as first drug candidate in neuroprotective hypothermia.
Collapse
Affiliation(s)
- Santo Previti
- Institut des Biomolécules Max Mousseron, IBMM, UMR-5247, CNRS, Université de Montpellier, ENSCM, Montpellier, France.,Departments of Bioengineering Sciences and Chemistry, Research Group of Organic Chemistry, Vrije Universiteit Brussel, Brussels, Belgium
| | - Mélanie Vivancos
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Emmanuelle Rémond
- Institut des Biomolécules Max Mousseron, IBMM, UMR-5247, CNRS, Université de Montpellier, ENSCM, Montpellier, France
| | - Sabrina Beaulieu
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Jean-Michel Longpré
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Steven Ballet
- Departments of Bioengineering Sciences and Chemistry, Research Group of Organic Chemistry, Vrije Universiteit Brussel, Brussels, Belgium
| | - Philippe Sarret
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Florine Cavelier
- Institut des Biomolécules Max Mousseron, IBMM, UMR-5247, CNRS, Université de Montpellier, ENSCM, Montpellier, France
| |
Collapse
|
10
|
Rousseau E, Lau J, Zhang Z, Zhang C, Kwon D, Uribe CF, Kuo HT, Zeisler J, Bratanovic I, Lin KS, Bénard F. Comparison of biological properties of [ 177 Lu]Lu-ProBOMB1 and [ 177 Lu]Lu-NeoBOMB1 for GRPR targeting. J Labelled Comp Radiopharm 2020; 63:56-64. [PMID: 31715025 DOI: 10.1002/jlcr.3815] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 10/15/2019] [Accepted: 11/04/2019] [Indexed: 11/06/2022]
Abstract
The gastrin-releasing peptide receptor (GRPR) is overexpressed in prostate cancer and other solid malignancies. Following up on our work on [68 Ga]Ga-ProBOMB1 that had better imaging characteristics than [68 Ga]Ga-NeoBOMB1, we investigated the effects of substituting 68 Ga for 177 Lu to determine if the resulting radiopharmaceuticals could be used with a therapeutic aim. We radiolabeled the bombesin antagonist ProBOMB1 (DOTA-pABzA-DIG-D-Phe-Gln-Trp-Ala-Val-Gly-His-Leu-ψ-Pro-NH2 ) with lutetium-177 and compared it with [177 Lu]Lu-NeoBOMB1 (obtained in 54.2 ± 16.5% isolated radiochemical yield with >96% radiochemical purity and 440.8 ± 165.1 GBq/μmol molar activity) for GRPR targeting. Lu-NeoBOMB1 had better binding affinity for GRPR than Lu-ProBOMB1 (Ki values: 2.26 ± 0.24 and 30.2 ± 3.23nM). [177 Lu]Lu-ProBOMB1 was obtained in 53.7 ± 5.4% decay-corrected radiochemical yield with 444.2 ± 193.2 GBq/μmol molar activity and >95% radiochemical purity. In PC-3 prostate cancer xenograft mice, tumor uptake of [177 Lu]Lu-ProBOMB1 was 3.38 ± 1.00, 1.32 ± 0.24, and 0.31 ± 0.04%ID/g at 1, 4, and 24 hours pi. However, the uptake in tumor was lower than [177 Lu]Lu-NeoBOMB1 at all time points. [177 Lu]Lu-ProBOMB1 was inferior to [177 Lu]Lu-NeoBOMB1, which had better therapeutic index for the organs receiving the highest doses.
Collapse
Affiliation(s)
- Etienne Rousseau
- Department of Molecular Oncology, BC Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Joseph Lau
- Department of Molecular Oncology, BC Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Zhengxing Zhang
- Department of Molecular Oncology, BC Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Chengcheng Zhang
- Department of Molecular Oncology, BC Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Daniel Kwon
- Department of Molecular Oncology, BC Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Carlos F Uribe
- Department of Molecular Oncology, BC Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Hsiou-Ting Kuo
- Department of Molecular Oncology, BC Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Jutta Zeisler
- Department of Molecular Oncology, BC Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Ivica Bratanovic
- Department of Molecular Oncology, BC Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Kuo-Shyan Lin
- Department of Molecular Oncology, BC Cancer Research Centre, Vancouver, British Columbia, Canada
- Department of Radiology, University of British Columbia, Vancouver, British Columbia, Canada
| | - François Bénard
- Department of Molecular Oncology, BC Cancer Research Centre, Vancouver, British Columbia, Canada
- Department of Radiology, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
11
|
Ramos-Alvarez I, Lee L, Mantey SA, Jensen RT. Development and Characterization of a Novel, High-Affinity, Specific, Radiolabeled Ligand for BRS-3 Receptors. J Pharmacol Exp Ther 2019; 369:454-465. [PMID: 30971479 PMCID: PMC6519687 DOI: 10.1124/jpet.118.255141] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 04/05/2019] [Indexed: 02/06/2023] Open
Abstract
Bombesin (Bn) receptor subtype 3(BRS-3) is an orphan G-protein-coupled receptor of the Bn family, which does not bind any natural Bn peptide with high affinity. Receptor knockout studies show that the animals develop diabetes, obesity, altered temperature control, and other central nervous system (CNS)/endocrine/gastrointestinal changes. It is present in CNS, peripheral tissues, and tumors; however, its role in normal physiology/pathophysiology, as well as its receptor localization/pharmacology is largely unknown, in part due to the lack of a convenient, specific, direct radiolabeled ligand. This study was designed to address this problem and to develop and characterize a specific radiolabeled ligand for BRS-3. The peptide antagonist Bantag-1 had >10,000-fold selectivity for human BRS-3 (hBRS-3) over other mammalian Bn receptors (BnRs) [i.e., gastrin-releasing peptide receptor (GRPR) and neuromedin B receptor (NMBR)]. Using iodogen and basic conditions, it was radiolabeled to high specific activity (2200 Ci/mmol) and found to bind with high affinity/specificity to hBRS-3. Binding was saturable, rapid, and reversible. The ligand only interacted with known BRS-3 ligands, and not with other specific GRPR/NMBR ligands or ligands for unrelated receptors. The magnitude of 125I-Bantag-1 binding correlated with BRS-3 mRNA expression and the magnitude of activation of phospholipase C in lung cancer cells, as well as readily identifying BRS-3 in lung cancer cells and normal tissues, allowing the direct assessment of BRS-3 receptor pharmacology/numbers on cells containing BRS-3 with other BnRs, which is usually the case. This circumvents the need for subtraction assays, which are now frequently used to assess BRS-3 indirectly using radiolabeled pan-ligands, which interact with all BnRs.
Collapse
Affiliation(s)
- Irene Ramos-Alvarez
- Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Lingaku Lee
- Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Samuel A Mantey
- Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Robert T Jensen
- Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
12
|
Lau J, Rousseau E, Zhang Z, Uribe CF, Kuo HT, Zeisler J, Zhang C, Kwon D, Lin KS, Bénard F. Positron Emission Tomography Imaging of the Gastrin-Releasing Peptide Receptor with a Novel Bombesin Analogue. ACS OMEGA 2019; 4:1470-1478. [PMID: 30775647 PMCID: PMC6372246 DOI: 10.1021/acsomega.8b03293] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 01/03/2019] [Indexed: 06/09/2023]
Abstract
The gastrin-releasing peptide receptor (GRPR), a G protein-coupled receptor, is overexpressed in solid malignancies and particularly in prostate cancer. We synthesized a novel bombesin derivative, [68Ga]Ga-ProBOMB1, evaluated its pharmacokinetics and potential to image GRPR expression with positron emission tomography (PET), and compared it with [68Ga]Ga-NeoBOMB1. ProBOMB1 (DOTA-pABzA-DIG-d-Phe-Gln-Trp-Ala-Val-Gly-His-Leu-ψ(CH2N)-Pro-NH2) was synthesized by solid-phase peptide synthesis. The polyaminocarboxylate chelator 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) was coupled to the N-terminal and separated from the GRPR-targeting sequence by a p-aminomethylaniline-diglycolic acid (pABzA-DIG) linker. The binding affinity to GRPR was determined using a cell-based competition assay, whereas the agonist/antagonist property was determined with a calcium efflux assay. ProBOMB1 was radiolabeled with 68GaCl3. PET imaging and biodistribution studies were performed in male immunocompromised mice bearing PC-3 prostate cancer xenografts. Blocking experiments were performed with coinjection of [d-Phe6,Leu-NHEt13,des-Met14]bombesin(6-14). Dosimetry calculations were performed with OLINDA software. ProBOMB1 and the nonradioactive Ga-ProBOMB were obtained in 1.1 and 67% yield, respectively. The K i value of Ga-ProBOMB1 for GRPR was 3.97 ± 0.76 nM. Ga-ProBOMB1 behaved as an antagonist for GRPR. [68Ga]Ga-ProBOMB1 was obtained in 48.2 ± 10.9% decay-corrected radiochemical yield with 121 ± 46.9 GBq/μmol molar activity and >95% radiochemical purity. Imaging/biodistribution studies showed that the excretion of [68Ga]Ga-ProBOMB1 was primarily through the renal pathway. At 1 h postinjection (p.i.), PC-3 tumor xenografts were clearly delineated in PET images with excellent contrast. The tumor uptake for [68Ga]Ga-ProBOMB1 was 8.17 ± 2.57 percent injected dose per gram (% ID/g) and 9.83 ± 1.48% ID/g for [68Ga]Ga-NeoBOMB1, based on biodistribution studies at 1 h p.i. This corresponded to tumor-to-blood and tumor-to-muscle uptake ratios of 20.6 ± 6.79 and 106 ± 57.7 for [68Ga]Ga-ProBOMB1 and 8.38 ± 0.78 and 39.0 ± 12.6 for [68Ga]Ga-NeoBOMB1, respectively. Blockade with [d-Phe6,Leu-NHEt13,des-Met14]bombesin(6-14) significantly reduced the average uptake of [68Ga]Ga-ProBOMB1 in tumors by 62%. The total absorbed dose was lower for [68Ga]Ga-ProBOMB1 in all organs except for bladder compared with [68Ga]Ga-NeoBOMB1. Our data suggest that [68Ga]Ga-ProBOMB1 is an excellent radiotracer for imaging GRPR expression with PET. [68Ga]Ga-ProBOMB1 achieved a similar uptake as [68Ga]Ga-NeoBOMB1 in tumors, with enhanced contrast and lower whole-body absorbed dose.
Collapse
Affiliation(s)
- Joseph Lau
- Department
of Molecular Oncology, BC Cancer Research
Centre, 675 West 10th
Avenue, V5Z 1L3 Vancouver, British Columbia, Canada
| | - Etienne Rousseau
- Department
of Molecular Oncology, BC Cancer Research
Centre, 675 West 10th
Avenue, V5Z 1L3 Vancouver, British Columbia, Canada
- Département
de Médecine Nucléaire et Radiobiologie, Université de Sherbrooke, 3001 12e Avenue Nord, J1H 5N4 Sherbrooke, Quebec, Canada
| | - Zhengxing Zhang
- Department
of Molecular Oncology, BC Cancer Research
Centre, 675 West 10th
Avenue, V5Z 1L3 Vancouver, British Columbia, Canada
| | - Carlos F. Uribe
- Department
of Molecular Oncology, BC Cancer Research
Centre, 675 West 10th
Avenue, V5Z 1L3 Vancouver, British Columbia, Canada
| | - Hsiou-Ting Kuo
- Department
of Molecular Oncology, BC Cancer Research
Centre, 675 West 10th
Avenue, V5Z 1L3 Vancouver, British Columbia, Canada
| | - Jutta Zeisler
- Department
of Molecular Oncology, BC Cancer Research
Centre, 675 West 10th
Avenue, V5Z 1L3 Vancouver, British Columbia, Canada
| | - Chengcheng Zhang
- Department
of Molecular Oncology, BC Cancer Research
Centre, 675 West 10th
Avenue, V5Z 1L3 Vancouver, British Columbia, Canada
| | - Daniel Kwon
- Department
of Molecular Oncology, BC Cancer Research
Centre, 675 West 10th
Avenue, V5Z 1L3 Vancouver, British Columbia, Canada
| | - Kuo-Shyan Lin
- Department
of Molecular Oncology, BC Cancer Research
Centre, 675 West 10th
Avenue, V5Z 1L3 Vancouver, British Columbia, Canada
- Department
of Radiology, University of British Columbia, 2211 Wesbrook Mall, V6T 1Z7 Vancouver, British Columbia, Canada
| | - François Bénard
- Department
of Molecular Oncology, BC Cancer Research
Centre, 675 West 10th
Avenue, V5Z 1L3 Vancouver, British Columbia, Canada
- Department
of Radiology, University of British Columbia, 2211 Wesbrook Mall, V6T 1Z7 Vancouver, British Columbia, Canada
| |
Collapse
|
13
|
Zhang J, Niu G, Fan X, Lang L, Hou G, Chen L, Wu H, Zhu Z, Li F, Chen X. PET Using a GRPR Antagonist 68Ga-RM26 in Healthy Volunteers and Prostate Cancer Patients. J Nucl Med 2018; 59:922-928. [PMID: 29123014 PMCID: PMC6004560 DOI: 10.2967/jnumed.117.198929] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 10/30/2017] [Indexed: 01/22/2023] Open
Abstract
This study was designed to analyze the safety, biodistribution, and radiation dosimetry of a gastrin-releasing peptide receptor (GRPR) antagonist PET tracer, 68Ga-RM26; to assess its clinical diagnostic value in prostate cancer patients; and to perform a direct comparison between GRPR antagonist 68Ga-RM26 and agonist 68Ga-BBN. Methods: Five healthy volunteers were enrolled to validate the safety of 68Ga-RM26 and calculate dosimetry. A total of 28 patients with prostate cancer (17 newly diagnosed and 11 posttherapy) were recruited and provided written informed consent. All the cancer patients underwent PET/CT at 15-30 min after intravenous injection of 1.85 MBq (0.05 mCi) per kilogram of body weight of 68Ga-RM26. Among them, 22 patients (11 newly diagnosed and 11 posttherapy) underwent 68Ga-BBN PET/CT for comparison within 1 wk. 99mTc-MDP (methylene diphosphonate) bone scans were obtained within 2 wk for comparison. GRPR immunohistochemical staining of tumor samples was performed. Results: The administration of 68Ga-M26 was well tolerated by all subjects, with no adverse symptoms being noticed or reported during the procedure and at 2-wk follow-up. The total effective dose equivalent and effective dose were 0.0912 ± 0.0140 and 0.0657 ± 0.0124 mSv/MBq, respectively. In the 17 patients with newly diagnosed prostate cancer, 68Ga-RM26 PET/CT showed positive prostate-confined findings in 15 tumors with an SUVmax of 6.49 ± 2.37. In the 11 patients who underwent prostatectomy or brachytherapy with or without androgen deprivation therapy, 68Ga-RM26 PET/CT detected 8 metastatic lymph nodes in 3 patients with an SUVmax of 4.28 ± 1.25 and 21 bone lesions in 8 patients with an SUVmax of 3.90 ± 3.07. Compared with 68Ga-RM26 PET/CT, GRPR agonist 68Ga-BBN PET/CT detected fewer primary lesions and lymph node metastases as well as demonstrated lower tracer accumulation. There was a significant positive correlation between SUV derived from 68Ga-RM26 PET and the expression level of GRPR (P < 0.001). Conclusion: This study indicates the safety and significant efficiency of GRPR antagonist 68Ga-RM26. 68Ga-RM26 PET/CT would have remarkable value in detecting both primary prostate cancer and metastasis. 68Ga-RM26 is also expected to be better than GRPR agonist as an imaging marker to evaluate GRPR expression in prostate cancer.
Collapse
Affiliation(s)
- Jingjing Zhang
- Department of Nuclear Medicine, Peking Union Medical College (PUMC) Hospital, Chinese Academy of Medical Science & PUMC, Beijing, China
- Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Beijing, China
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, Maryland
| | - Gang Niu
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, Maryland
| | - Xinrong Fan
- Department of Urology, Peking Union Medical College (PUMC) Hospital, Chinese Academy of Medical Science & PUMC, Beijing, China; and
| | - Lixin Lang
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, Maryland
| | - Guozhu Hou
- Department of Nuclear Medicine, Peking Union Medical College (PUMC) Hospital, Chinese Academy of Medical Science & PUMC, Beijing, China
- Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Beijing, China
| | - Libo Chen
- Department of Nuclear Medicine, Peking Union Medical College (PUMC) Hospital, Chinese Academy of Medical Science & PUMC, Beijing, China
- Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Beijing, China
| | - Huanwen Wu
- Department of Pathology, Peking Union Medical College (PUMC) Hospital, Chinese Academy of Medical Science & PUMC, Beijing, China
| | - Zhaohui Zhu
- Department of Nuclear Medicine, Peking Union Medical College (PUMC) Hospital, Chinese Academy of Medical Science & PUMC, Beijing, China
- Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Beijing, China
| | - Fang Li
- Department of Nuclear Medicine, Peking Union Medical College (PUMC) Hospital, Chinese Academy of Medical Science & PUMC, Beijing, China
- Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Beijing, China
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, Maryland
| |
Collapse
|
14
|
Martinez J. Joseph Rudinger memorial lecture: Unexpected functions of angiotensin converting enzyme, beyond its enzymatic activity. J Pept Sci 2017. [DOI: 10.1002/psc.3022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Jean Martinez
- Institut des Biomolécules Max Mousseron; UMR 5247 CNRS-Université de Montpellier-ENSCM; Faculté de Pharmacie, 15 Avenue Charles Flahault 34093 Montpellier Cedex 5 France
| |
Collapse
|
15
|
Tąta A, Szkudlarek A, Kim Y, Proniewicz E. Interaction of bombesin and its fragments with gold nanoparticles analyzed using surface-enhanced Raman spectroscopy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2017; 173:251-256. [PMID: 27665193 DOI: 10.1016/j.saa.2016.09.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 09/07/2016] [Accepted: 09/17/2016] [Indexed: 06/06/2023]
Abstract
This work demonstrates the application of commercially available stable surface composed of gold nanograins with diameters ranging from 70 to 226nm deposited onto silicon wafer for surface-enhanced Raman scattering investigations of biologically active compounds, such as bombesin (BN) and its fragments. BN is an important neurotransmitter involved in a complex signaling pathways and biological responses; for instance, hypertensive action, contractive on uterus, colon or ileum, locomotor activity, stimulation of gastric and insulin secretion as well as growth promotion of various tumor cell lines, including: lung, prostate, stomach, colon, and breast. It has also been shown that 8-14 BN C-terminal fragment partially retains the biological activity of BN. The SERS results for BN and its fragment demonstrated that (1) three amino acids from these peptides sequence; i.e., l-histidine, l-methionine, and l-tryptophan, are involved in the interaction with gold coated silicon wafer and (2) the strength of these interactions depends upon the aforementioned amino acids position in the peptide sequence.
Collapse
Affiliation(s)
- Agnieszka Tąta
- Faculty of Foundry Engineering, AGH University of Science and Technology, 30-059 Krakow, Poland
| | - Aleksandra Szkudlarek
- Academic Centre for Materials and Nanotechnology, AGH University of Science and Technology, 30-055 Krakow, Poland
| | - Younkyoo Kim
- Department of Chemistry, Hankuk University of Foreign Studies, Yongin, Kyunggi-Do 449-791, Republic of Korea
| | - Edyta Proniewicz
- Faculty of Foundry Engineering, AGH University of Science and Technology, 30-059 Krakow, Poland.
| |
Collapse
|
16
|
Valverde IE, Vomstein S, Mindt TL. Toward the Optimization of Bombesin-Based Radiotracers for Tumor Targeting. J Med Chem 2016; 59:3867-77. [PMID: 27054526 DOI: 10.1021/acs.jmedchem.6b00025] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The peptide bombesin (BBN) is a peptide with high affinity for the gastrin-releasing peptide receptor (GRPr), a receptor that is overexpressed by, for example, breast and prostate cancers. Thus, GRPr agonists can be used as cancer-targeting vectors to shuttle diagnostic and therapeutic agents into tumor cells. With the aim of optimizing the tumor targeting properties of a radiolabeled [Nle(14)]BBN(7-14) moiety, novel BBN(7-14)- and BBN(6-14)-based radioconjugates were synthesized, labeled with Lu-177, and fully evaluated in vitro and in vivo. The effect of residue and backbone modification on several parameters such as the internalization of the radiolabeled peptides into PC3 and AR42J tumor cells, their affinity toward the human GRPr, metabolic stability in blood plasma, and biodistribution in mice bearing GRPr-expressing PC3 xenografts was studied. As a result of our investigations, a novel radiolabeled GRPr agonist with a high tumor uptake and a high tumor-to-kidney ratio was identified.
Collapse
Affiliation(s)
- Ibai E Valverde
- Division of Radiopharmaceutical Chemistry, University of Basel Hospital , Petersgraben 4, 4031 Basel, Switzerland
| | - Sandra Vomstein
- Division of Radiopharmaceutical Chemistry, University of Basel Hospital , Petersgraben 4, 4031 Basel, Switzerland
| | - Thomas L Mindt
- Division of Radiopharmaceutical Chemistry, University of Basel Hospital , Petersgraben 4, 4031 Basel, Switzerland.,Ludwig Boltzmann Institute for Applied Diagnostics, General Hospital of Vienna , Währinger Gürtel 18-20, A-1090 Vienna, Austria
| |
Collapse
|
17
|
Ramos-Álvarez I, Moreno P, Mantey SA, Nakamura T, Nuche-Berenguer B, Moody TW, Coy DH, Jensen RT. Insights into bombesin receptors and ligands: Highlighting recent advances. Peptides 2015; 72:128-144. [PMID: 25976083 PMCID: PMC4641779 DOI: 10.1016/j.peptides.2015.04.026] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 04/29/2015] [Accepted: 04/30/2015] [Indexed: 12/22/2022]
Abstract
This following article is written for Prof. Abba Kastin's Festschrift, to add to the tribute to his important role in the advancement of the role of peptides in physiological, as well as pathophysiological processes. There have been many advances during the 35 years of his prominent role in the Peptide field, not only as editor of the journal Peptides, but also as a scientific investigator and editor of two volumes of the Handbook of Biological Active Peptides [146,147]. Similar to the advances with many different peptides, during this 35 year period, there have been much progress made in the understanding of the pharmacology, cell biology and the role of (bombesin) Bn receptors and their ligands in various disease states, since the original isolation of bombesin from skin of the European frog Bombina bombina in 1970 [76]. This paper will briefly review some of these advances over the time period of Prof. Kastin 35 years in the peptide field concentrating on the advances since 2007 when many of the results from earlier studies were summarized [128,129]. It is appropriate to do this because there have been 280 articles published in Peptides during this time on bombesin-related peptides and it accounts for almost 5% of all publications. Furthermore, 22 Bn publications we have been involved in have been published in either Peptides [14,39,55,58,81,92,93,119,152,216,225,226,231,280,302,309,355,361,362] or in Prof. Kastin's Handbook of Biological Active Peptides [137,138,331].
Collapse
Affiliation(s)
- Irene Ramos-Álvarez
- Digestive Diseases Branch, NIDDK, National Institutes of Health, Bethesda, MD 20892-1804, United States
| | - Paola Moreno
- Digestive Diseases Branch, NIDDK, National Institutes of Health, Bethesda, MD 20892-1804, United States
| | - Samuel A Mantey
- Digestive Diseases Branch, NIDDK, National Institutes of Health, Bethesda, MD 20892-1804, United States
| | - Taichi Nakamura
- Digestive Diseases Branch, NIDDK, National Institutes of Health, Bethesda, MD 20892-1804, United States
| | - Bernardo Nuche-Berenguer
- Digestive Diseases Branch, NIDDK, National Institutes of Health, Bethesda, MD 20892-1804, United States
| | - Terry W Moody
- Center for Cancer Research, Office of the Director, NCI, National Institutes of Health, Bethesda, MD 20892-1804, United States
| | - David H Coy
- Peptide Research Laboratory, Department of Medicine, Tulane University Health Sciences Center, New Orleans, LA 70112-2699, United States
| | - Robert T Jensen
- Digestive Diseases Branch, NIDDK, National Institutes of Health, Bethesda, MD 20892-1804, United States.
| |
Collapse
|
18
|
Valverde IE, Vomstein S, Fischer CA, Mascarin A, Mindt TL. Probing the Backbone Function of Tumor Targeting Peptides by an Amide-to-Triazole Substitution Strategy. J Med Chem 2015; 58:7475-84. [DOI: 10.1021/acs.jmedchem.5b00994] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Ibai E. Valverde
- Division
of Radiopharmaceutical Chemistry, University of Basel Hospital, Petersgraben
4, 4031 Basel, Switzerland
| | - Sandra Vomstein
- Division
of Radiopharmaceutical Chemistry, University of Basel Hospital, Petersgraben
4, 4031 Basel, Switzerland
| | - Christiane A. Fischer
- Division
of Radiopharmaceutical Chemistry, University of Basel Hospital, Petersgraben
4, 4031 Basel, Switzerland
| | - Alba Mascarin
- Division
of Radiopharmaceutical Chemistry, University of Basel Hospital, Petersgraben
4, 4031 Basel, Switzerland
| | - Thomas L. Mindt
- Division
of Radiopharmaceutical Chemistry, University of Basel Hospital, Petersgraben
4, 4031 Basel, Switzerland
| |
Collapse
|
19
|
Mansi R, Abiraj K, Wang X, Tamma ML, Gourni E, Cescato R, Berndt S, Reubi JC, Maecke HR. Evaluation of three different families of bombesin receptor radioantagonists for targeted imaging and therapy of gastrin releasing peptide receptor (GRP-R) positive tumors. J Med Chem 2014; 58:682-91. [PMID: 25474596 DOI: 10.1021/jm5012066] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Two new classes of radiolabeled GRP receptor antagonists are studied and compared with the well-established statine-based receptor antagonist DOTA-4-amino-1-carboxymethylpiperidine-d-Phe-Gln-Trp-Ala-Val-Gly-His-Sta-Leu-NH2 (RM2, 1; DOTA:1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid; Sta:(3S,4S)-4-amino-3-hydroxy-6-methylheptanoic acid). The bombesin-based pseudopeptide DOTA-4-amino-1-carboxymethylpiperidine-d-Phe-Gln-Trp-Ala-Val-Gly-His-Leuψ(CHOH-CH2)-(CH2)2-CH3 (RM7, 2), and the methyl ester DOTA-4-amino-1-carboxymethylpiperidine-d-Phe-Gln-Trp-Ala-Val-Gly-His-Leu-OCH3 (ARBA05, 3) analogues are labeled with (111)In and evaluated in vitro in PC-3 cell line and in vivo in PC-3 tumor-bearing nude mice. Antagonist potency was assessed by immunofluorescence-based receptor internalization and Ca(2+) mobilization assays. The conjugates showed good binding affinity, the IC50 value of 2 (3.2 ± 1.8 nM) being 2 and 10 times lower than 1 and 3. Compared to (111)In-1, (111)In-2 showed higher uptake in target tissues such as pancreas (1.5 ± 0.5%IA/g and 39.8 ± 9.3%IA/g at 4 h, respectively), whereas the compounds had similar tumor uptake (11.5 ± 2.4%IA/g and 11.8 ± 3.9%IA/g at 4h, respectively). The displacement of the radioligand in vivo was different in different receptor positive organs and depended on the displacing peptide.
Collapse
Affiliation(s)
- Rosalba Mansi
- Division of Radiological Chemistry, University Hospital Basel , Petersgraben 4, CH-4031 Basel, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Bourguet CB, Claing A, Laporte SA, Hébert TE, Chemtob S, Lubell WD. Synthesis of azabicycloalkanone amino acid and azapeptide mimics and their application as modulators of the prostaglandin F2α receptor for delaying preterm birth. CAN J CHEM 2014. [DOI: 10.1139/cjc-2014-0289] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Premature birth (<37 weeks gestation) is the major cause of perinatal mortality and morbidity and has been steadily increasing worldwide. Towards the rational design of more effective therapeutic agents for inhibiting uterine contractions and prolonging gestation (a so-called tocolytic drug), our team has targeted the prostaglandin F2α receptor (FP) employing a peptidomimetic approach designed to provide modulators of this novel target. We identified first a lead peptide (PDC113) (1) based on the sequence of the second extracellular loop of FP on the basis that the loop itself might modulate receptor activation. Systematic study of the structure−activity relationships of 1 generated hypotheses concerning the conformation and side-chains responsible for activity that led to the synthesis of PDC113.31 (2), a potent all d-amino acid peptide, which has successfully completed Phase 1b clinical trials. Employing indolizidinone amino acids, peptide mimics were developed that served to probe the mechanism of FP modulation. For example, PDC113.824 (9) was shown to allosterically regulate FP activity contingent on the presence of prostaglandin F2α by a mechanism implicating biased signalling. Although attempts to understand the turn geometry responsible for the activity of 9 by replacement of its indolizidin-2-one moiety with other azabicycloalkanones failed to produce biologically active analogs, employment of aza-aminoacyl-proline analogs resulted in a series of FP modulators exhibiting distinct effects on different G protein-mediated signalling pathways. Our program has thus contributed novel probes for understanding the chemical biology of FP as well as new therapeutic agents with promise for inhibiting uterine contractions and preventing preterm birth.
Collapse
Affiliation(s)
- Carine B. Bourguet
- Département de Chimie, Université de Montréal, C.P.6128. Succursale Centre-Ville, Montréal, QC H3C 3J7, Canada
| | - Audrey Claing
- Département de Pharmacologie, Université de Montréal, C.P.6128. Succursale Centre-Ville, Montréal, QC H3C 3J7, Canada
| | - Stéphane A. Laporte
- Department of Medicine, McGill University Health Center Research Institute, Montréal, QC H3A 1A1, Canada
| | - Terence E. Hébert
- Department of Pharmacology and Therapeutics, McGill University, Montréal, QC H3G 1Y6, Canada
| | - Sylvain Chemtob
- Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, QC H3T 1C5, Canada
| | - William D. Lubell
- Département de Chimie, Université de Montréal, C.P.6128. Succursale Centre-Ville, Montréal, QC H3C 3J7, Canada
| |
Collapse
|
21
|
Valverde IE, Bauman A, Kluba CA, Vomstein S, Walter MA, Mindt TL. 1,2,3-Triazole als Mimetika der Amid-Bindung: Ein Triazol-Scan führt zu Protease-resistenten Peptidmimetika für das Tumor-Targeting. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201303108] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
22
|
Valverde IE, Bauman A, Kluba CA, Vomstein S, Walter MA, Mindt TL. 1,2,3-Triazoles as Amide Bond Mimics: Triazole Scan Yields Protease-Resistant Peptidomimetics for Tumor Targeting. Angew Chem Int Ed Engl 2013; 52:8957-60. [DOI: 10.1002/anie.201303108] [Citation(s) in RCA: 132] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2013] [Revised: 05/24/2013] [Indexed: 12/24/2022]
|
23
|
Abstract
Gastrin releasing peptide (GRP) is a regulatory peptide that acts through its receptor (GRPR) to regulate physiological functions in various organs. GRPR is overexpressed in neoplastic cells of most prostate cancers and some renal cell cancers and in the tumoral vessels of urinary tract cancers. Thus, targeting these tumours with specifically designed GRP analogues has potential clinical application. Potent and specific radioactive, cytotoxic or nonradioactive GRP analogues have been designed and tested in various animal tumour models with the aim of receptor targeting for tumour diagnosis or therapy. All three categories of compound were found suitable for tumour targeting in animal models. The cytotoxic and nonradioactive GRP analogues have not yet shown convincing tumour-reducing effects in human trials; however, the first clinical studies of radioactive GRP analogues--both agonists and antagonists--suggest promising opportunities for both diagnostic tumour imaging and radiotherapy of prostate and other GRPR-expressing cancers.
Collapse
|
24
|
Sayegh AI. The Role of Bombesin and Bombesin-Related Peptides in the Short-term Control of Food Intake. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2013; 114:343-70. [DOI: 10.1016/b978-0-12-386933-3.00010-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
25
|
Sharma P, Singh P, Bisetty K, Perez JJ. A computational study of Neuromedin B. COMPUT THEOR CHEM 2011. [DOI: 10.1016/j.comptc.2011.05.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
26
|
Thomas N, Pernot M, Vanderesse R, Becuwe P, Kamarulzaman E, Da Silva D, François A, Frochot C, Guillemin F, Barberi-Heyob M. Photodynamic therapy targeting neuropilin-1: Interest of pseudopeptides with improved stability properties. Biochem Pharmacol 2010; 80:226-35. [PMID: 20380812 DOI: 10.1016/j.bcp.2010.03.036] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2010] [Revised: 03/29/2010] [Accepted: 03/31/2010] [Indexed: 12/24/2022]
Abstract
The general strategy developed aims to favor the vascular effect of photodynamic therapy by targeting tumor vasculature. Since angiogenic endothelial cells represent an interesting target to potentiate this vascular effect, we previously described the conjugation of a photosensitizer to a peptide targeting neuropilins (NRPs) over-expressed specially in tumor angiogenic vessels and we recently characterized the mechanism of photosensitization-induced thrombogenic events. Nevertheless, in glioma-bearing nude mice, we demonstrated that the peptide moiety was degraded to various rates according to time after intravenous administration. In this study, new peptidases-resistant pseudopeptides were tested, demonstrating a molecular affinity for NRP-1 and NRP-2 recombinant chimeric proteins and devoid of affinity for VEGF receptor type 1 (Flt-1). To argue the involvement of NRP-1, MDA-MB-231 breast cancer cells were used, strongly over-expressing NRP-1 receptor. We evidenced a statistically significant decrease of the different peptides-conjugated photosensitizers uptake after RNA interference-mediated silencing of NRP-1. Peptides-conjugated photosensitizers allowed a selective accumulation into cells. In mice, no degradation was observed in plasma in vivo 4h after intravenous injection by MALDI-TOF mass spectrometry. This study draws attention to this potential problem with peptides, especially in the case of targeting strategies, and provides useful information for the future design of more stable molecules.
Collapse
Affiliation(s)
- Noémie Thomas
- Centre de Recherche en Automatique de Nancy, Nancy-University, CNRS, Vandoeuvre-lès-Nancy, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Podstawka E, Niaura G, Proniewicz LM. Potential-dependent studies on the interaction between phenylalanine-substituted bombesin fragments and roughened Ag, Au, and Cu electrode surfaces. J Phys Chem B 2010; 114:1010-29. [PMID: 20025214 DOI: 10.1021/jp909268c] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In this work, we report systematic surface-enhanced Raman spectroscopy (SERS) and generalized two-dimensional correlation analysis (G2DCA) studies of the structures of five specifically modified phenylalanine-substituted C-terminal bombesin 6-14 fragments (BN(6-14)). The fragments studied have all been tested as chemotherapeutic agents in cancer therapy, and they form amino acid sequences in bombesin: cyclo[d-Phe(6),His(7),Leu(14)]BN(6-14), [D-Phe(6),Leu-NHEt(13),des-Met(14)]BN(6-14), [D-Phe(6),Leu(13)-((R))-p-Cl-Phe(14)]BN(6-14), [D-Phe(6),beta-Ala(11),Phe(13),Nle(14)]BN(6-14), and [D-Tyr(6),beta-Ala(11),Phe(13),Nle(14)]BN(6-14). We adsorbed these fragments onto roughened Ag, Au, and Cu electrode surfaces, using a potential range from -1.200 to 0.400 V, at physiological pH. We compared the adsorption mechanism of each fragment on these substrates, as well any changes observed with varying electrode potential, to determine the relationship between adsorption strength and geometry of each of the peptides wherever it was possible. For example, we showed that none of these fragments directly interact with the Ag, Au, and Cu surfaces via residues of Phe (phenylalanine) and Trp(8) (L-tryptophane at position 8 of the BN amino acid sequence) or by an amide bond, due to a very small shift in wavenumber of their characteristic vibrations. Specific interactions were recognized from the broadening, wavenumber shift, and increase in intensity of the W18 Trp(8) mode near 759 cm(-1) and decrease in nu(12) vibration frequency of the Phe residue. In general, more intense SERS bands were observed due to the Phe ring, compared with the Trp(8) ring, which suggested a preferential adsorption of phenylalanine over tryptophane. For [D-Tyr(6),beta-Ala(11),Phe(13),Nle(14)]BN(6-14), the data also suggest some interaction of a D-Tyr(6) residue (D-tyrosine at position 6). Finally, only slight rearrangements of these moieties on the substrates are observed with changes in electrode potential.
Collapse
Affiliation(s)
- Edyta Podstawka
- Faculty of Chemistry, Jagiellonian University, ul. Ingardena 3, 30-060 Krakow, Poland.
| | | | | |
Collapse
|
28
|
González N, Mantey SA, Pradhan TK, Sancho V, Moody TW, Coy DH, Jensen RT. Characterization of putative GRP- and NMB-receptor antagonist's interaction with human receptors. Peptides 2009; 30:1473-86. [PMID: 19463875 PMCID: PMC2766550 DOI: 10.1016/j.peptides.2009.05.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2009] [Revised: 05/11/2009] [Accepted: 05/11/2009] [Indexed: 01/08/2023]
Abstract
The mammalian bombesin (Bn) peptides neuromedin B (NMB) and gastrin-releasing peptide (GRP) actions are mediated by two receptors (NMB-receptor, GRP-receptor) which are widely distributed in the GI tract and CNS. From primarily animal studies NMB/GRP-receptor activation has physiological/pathophysiological effects in the CNS and GI tract including stimulating of growth of cancers and normal tissues. Whereas these Bn-receptors' effects have been extensively studied in nonhuman cells and animals, little is known of the physiological/pathological role(s) in humans, largely due to lack of potent antagonists. To address this issue we compared NMB/GRP-receptor affinity/potency of 10 chemical classes of putative antagonists (35 compounds) for human Bn-receptors by performing binding studies or assessing abilities to activate hGRP/hNMB-receptor [assessing phospholipase C activation] in four different cells containing native Bn-receptors or transfected receptors. From binding studies 23 were GRP-receptor-preferring, 4 were NMB-receptor, and 8 nonselective. For the hGRP-receptor-preferring analogues none showed hGRP-receptor agonist activity, but 13 were full or partial hNMB-receptor agonists at hNMB-receptors. For hNMB-receptor-preferring analogues none were agonists. Analogue #24 ([(3-Ph-Pr(6)), His(7), d-Ala(11), d-Pro(13), Psi(13-14), Phe(14)]Bn(6-14)NH2) and analogue #7 [d-Phe(6), Leu(13), Psi(CH(2)NH), Cpa(14)]Bn(6-14) were the most potent (0.2-1.4nM) and selective (>10,000-fold) for the hGRP-receptor with analogue #7.5 [d-Tpi(6), Leu(13), Psi(CH2NH), Leu(14)]Bn(6-14)[RC-3095] (0.2-1.4nM) slightly less selective. Analogue #34 (PD168368) had the highest affinity for hNMB-receptor (1.32-1.58nM) and the greatest selectivity (2298-6952-fold) for the hNMB-receptor. These results demonstrate numerous putative hGRP/hNMB-receptor antagonists identified in nonhuman cells and/or animals have agonist activity at the hNMB-receptor, limiting their potential usefulness. However, a number were identified which were potent/selective for human Bn-receptors and should be useful for investigating their roles in human physiological/pathophysiological conditions.
Collapse
Affiliation(s)
- Nieves González
- Digestive Diseases Branch, NIDDK, and Department of Health and Human
Services, National Institutes of Health, Bethesda, Maryland 20892-1804
| | - Samuel A. Mantey
- Digestive Diseases Branch, NIDDK, and Department of Health and Human
Services, National Institutes of Health, Bethesda, Maryland 20892-1804
| | - Tapas K. Pradhan
- Digestive Diseases Branch, NIDDK, and Department of Health and Human
Services, National Institutes of Health, Bethesda, Maryland 20892-1804
| | - Veronica Sancho
- Digestive Diseases Branch, NIDDK, and Department of Health and Human
Services, National Institutes of Health, Bethesda, Maryland 20892-1804
| | - Terry W. Moody
- NCI Office of the Director, CCR, NCI and Department of Health and
Human Services, National Institutes of Health, Bethesda, Maryland 20892-1804
| | - David H. Coy
- Peptide Research Laboratories, Department of Medicine, Tulane Health
Sciences Center, New Orleans, Louisiana 70112-2699
| | - Robert T. Jensen
- Digestive Diseases Branch, NIDDK, and Department of Health and Human
Services, National Institutes of Health, Bethesda, Maryland 20892-1804
| |
Collapse
|
29
|
Podstawka E, Niaura G. Potential-Dependent Characterization of Bombesin Adsorbed States on Roughened Ag, Au, and Cu Electrode Surfaces at Physiological pH. J Phys Chem B 2009; 113:10974-83. [DOI: 10.1021/jp903847c] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Edyta Podstawka
- Regional Laboratory of Physicochemical Analysis and Structural Research, Faculty of Chemistry, Jagiellonian University, ul. Ingardena 3, 30-060 Krakow, Poland, Department of Bioelectrochemistry and Biospectroscopy, Institute of Biochemistry, Mokslininku̧ 12, LT-08662 Vilnius, Lithuania
| | - Gediminas Niaura
- Regional Laboratory of Physicochemical Analysis and Structural Research, Faculty of Chemistry, Jagiellonian University, ul. Ingardena 3, 30-060 Krakow, Poland, Department of Bioelectrochemistry and Biospectroscopy, Institute of Biochemistry, Mokslininku̧ 12, LT-08662 Vilnius, Lithuania
| |
Collapse
|
30
|
Podstawka E, Proniewicz LM. The Orientation of BN-Related Peptides Adsorbed on SERS-Active Silver Nanoparticles: Comparison with a Silver Electrode Surface. J Phys Chem B 2009; 113:4978-85. [DOI: 10.1021/jp8110716] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Edyta Podstawka
- Regional Laboratory of Physicochemical Analysis and Structural Research, Faculty of Chemistry, Jagiellonian University, ul. Ingardena 3, 30-060 Krakow, Poland, and Chemical Physics Division, Faculty of Chemistry, Jagiellonian University, ul. Ingardena 3, 30-060 Krakow, Poland
| | - Leonard M. Proniewicz
- Regional Laboratory of Physicochemical Analysis and Structural Research, Faculty of Chemistry, Jagiellonian University, ul. Ingardena 3, 30-060 Krakow, Poland, and Chemical Physics Division, Faculty of Chemistry, Jagiellonian University, ul. Ingardena 3, 30-060 Krakow, Poland
| |
Collapse
|
31
|
|
32
|
|
33
|
Podstawka E, Ozaki Y, Proniewicz LM. Structures and bonding on a colloidal silver surface of the various length carboxyl terminal fragments of bombesin. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2008; 24:10807-10816. [PMID: 18759412 DOI: 10.1021/la8012415] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Raman (RS) and surface-enhanced Raman scattering spectra (SERS) were measured for various length carboxyl terminal fragments (X-14 of amino acid sequence) of bombesin ( BN): BN13-14, BN12-14, BN11-14, BN10-14, BN9-14, and BN8-14 in silver colloidal solutions. Density functional theory (DFT) calculations of Raman wavenumbers and intensities with extended basis sets (B3LYP/6-31++G**) were performed with the aim of providing the definitive band allocations to the normal coordinates. The proposed band assignment is consistent with the assignment for similar compounds reported in the literature. The nonadsorbed and adsorbed molecular structures were deducted by detailed spectral analysis of the RS and SERS spectra, respectively. This analysis also allowed us to propose the particular surface geometry and orientation of these peptides on silver surface, and their specific interaction with the surface. For example, a SERS spectrum of BN8-14 indicates that the interaction of a thioether atom and Trp8 with the silver surface is favorable and may dictate the orientation and conformation of adsorbed peptide. One of the most prominent and common features in all of the fragments' SERS spectra is a approximately 692 cm (-1) band due to nu(C-S) accompanied by two or three bands of different C-S conformers for all, except BN8-14, which suggests that all of the above-mentioned compounds adsorb on the silver surface through the thioether atom and that the attachment of Trp8 produces limitation in a number of possible C-S conformers adopted on this surface. Our results also show clearly that His12 and CO do not interact with the colloid surface, which supports our earlier results.
Collapse
Affiliation(s)
- Edyta Podstawka
- Department of Chemistry, School of Science and Technology, Kwansei-Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan.
| | | | | |
Collapse
|
34
|
Podstawka E, Ozaki Y. Surface-enhanced Raman difference between bombesin and its modified analogues on the colloidal and electrochemically roughen silver surfaces. Biopolymers 2008; 89:807-19. [PMID: 18491414 DOI: 10.1002/bip.21017] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
In this article, surface-enhanced Raman scattering (SERS) spectra of bombesin (BN) and its six modified analogues ([D-Phe(12)]BN, [Tyr(4)]BN, [Tyr(4),D-Phe(12)]BN, [D-Phe(12),Leu(14)]BN, [Leu(13)-(R)-Leu(14)]BN, and [Lys(3)]BN) on a colloidal silver surface are reported and compared with SERS spectra of these species immobilized onto an ellectrochemically roughen silver electrode. Changes in enhancement and wavenumber of proper bands upon adsorption on different silver surfaces are consistent with BN and its analogues adsorption primarily through Trp(8). Slightly different adsorption states of these molecules are observed depending upon natural amino acids substitution. For example, the indole ring in all the peptides interacts with silver nanoparticles in a edge-on orientation. It is additionally coordinated to the silver through the N(1)--H bond for all the peptides, except [Phe(12)]BN. This is in contrary to the results obtained for the silver roughen electrode that show direct but not strong N(1)--H/Ag interaction for all peptides except [D-Phe(12),Leu(14)]BN and [Leu(13)-(R)-Leu(14)]BN. For BN only C==O is not involved in the chemical coordination with the colloidal surface. [Lys(3)]BN and BN also adsorb with the C--N bond of NH(2) group normal and horizontal, respectively, to the colloidal surface, whereas C--NH(2) in other peptides is tilted to this surface. Also, the Trp(8) --CH(2)-- moiety of only [Tyr(4)]BN, [Lys(3)]BN, and [Tyr(4),D-Phe(12)]BN coordinates to Ag, whereas the Phe(12) ring of [Phe(12)]BN, [Tyr(4),D-Phe(12)]BN, and [D-Phe(12),Leu(14)]BN assists in the peptides binding only on the colloidal silver.
Collapse
Affiliation(s)
- Edyta Podstawka
- Department of Chemistry, School of Science and Technology, Kwansei-Gakuin University 2-1, Gakuen, Sanda, Hyogo 669-1337, Japan.
| | | |
Collapse
|
35
|
Jensen RT, Battey JF, Spindel ER, Benya RV. International Union of Pharmacology. LXVIII. Mammalian bombesin receptors: nomenclature, distribution, pharmacology, signaling, and functions in normal and disease states. Pharmacol Rev 2008; 60:1-42. [PMID: 18055507 PMCID: PMC2517428 DOI: 10.1124/pr.107.07108] [Citation(s) in RCA: 423] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The mammalian bombesin receptor family comprises three G protein-coupled heptahelical receptors: the neuromedin B (NMB) receptor (BB(1)), the gastrin-releasing peptide (GRP) receptor (BB(2)), and the orphan receptor bombesin receptor subtype 3 (BRS-3) (BB(3)). Each receptor is widely distributed, especially in the gastrointestinal (GI) tract and central nervous system (CNS), and the receptors have a large range of effects in both normal physiology and pathophysiological conditions. The mammalian bombesin peptides, GRP and NMB, demonstrate a broad spectrum of pharmacological/biological responses. GRP stimulates smooth muscle contraction and GI motility, release of numerous GI hormones/neurotransmitters, and secretion and/or hormone release from the pancreas, stomach, colon, and numerous endocrine organs and has potent effects on immune cells, potent growth effects on both normal tissues and tumors, potent CNS effects, including regulation of circadian rhythm, thermoregulation; anxiety/fear responses, food intake, and numerous CNS effects on the GI tract as well as the spinal transmission of chronic pruritus. NMB causes contraction of smooth muscle, has growth effects in various tissues, has CNS effects, including effects on feeding and thermoregulation, regulates thyroid-stimulating hormone release, stimulates various CNS neurons, has behavioral effects, and has effects on spinal sensory transmission. GRP, and to a lesser extent NMB, affects growth and/or differentiation of various human tumors, including colon, prostate, lung, and some gynecologic cancers. Knockout studies show that BB(3) has important effects in energy balance, glucose homeostasis, control of body weight, lung development and response to injury, tumor growth, and perhaps GI motility. This review summarizes advances in our understanding of the biology/pharmacology of these receptors, including their classification, structure, pharmacology, physiology, and role in pathophysiological conditions.
Collapse
Affiliation(s)
- R T Jensen
- Digestive Diseases Branch, National Institute of Diabetes Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA.
| | | | | | | |
Collapse
|
36
|
|
37
|
Okarvi SM. Peptide-based radiopharmaceuticals and cytotoxic conjugates: potential tools against cancer. Cancer Treat Rev 2007; 34:13-26. [PMID: 17870245 DOI: 10.1016/j.ctrv.2007.07.017] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2007] [Revised: 06/28/2007] [Accepted: 07/25/2007] [Indexed: 02/08/2023]
Abstract
A hope for the diagnosis and treatment of cancer is the development of new tumor-specific peptide-based radiopharmaceuticals. The overexpression of many peptide receptors on human tumors makes such receptors an attractive potential target for diagnostic imaging and radiotherapy with specifically designed radiolabeled peptides. The use of solid-phase peptide synthesis, and the availability of a wide range of bifunctional chelating agents for the convenient radiolabeling of bioactive peptides with different radionuclides have produced a wide variety of medicinally useful peptide radiopharmaceuticals. A few of these peptides, such as somatostatin, bombesin, cholecystokinin/gastrin, neurotensin and vasoactive intestinal peptide are currently under investigation for their possible clinical applications in nuclear oncology. This article presents the recent development in radiolabeled small peptides, with major emphasis on somatostatin and bombesin analogs.
Collapse
Affiliation(s)
- S M Okarvi
- Cyclotron and Radiopharmaceuticals Department, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia.
| |
Collapse
|
38
|
Perissutti E, Frecentese F, Fiorino F, Severino B, Cirillo D, Santagada V, Caliendo G. Microwave solvent free regioselective 1,3 dipolar cycloaddition in the synthesis of 1,4 substituted [1,2,3]-triazoles as amide bond isosteres. J Heterocycl Chem 2007. [DOI: 10.1002/jhet.5570440410] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
39
|
Fekete EM, Bagi EE, Tóth K, Lénárd L. Neuromedin C microinjected into the amygdala inhibits feeding. Brain Res Bull 2007; 71:386-92. [PMID: 17208656 DOI: 10.1016/j.brainresbull.2006.10.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2006] [Revised: 10/05/2006] [Accepted: 10/13/2006] [Indexed: 11/24/2022]
Abstract
Bombesin-like peptides including gastrin releasing peptide and neuromedin C are known to inhibit feeding. Bombesin receptors have been found in moderate to high densities in the amygdaloid body, which is essentially involved in the regulation of feeding and body weight. In the present experiments neuromedin C (15, 30, and 60 ng), a carboxyterminal decapeptid fragment of gastrin releasing peptide, was bilaterally microinjected into the central part of the amygdala in ad libitum fed male CFY rats. Food intake was measured every 5 min for 30 min and also 6 min following neuromedin C or vehicle microinjections. Fifteen nanograms neuromedin C significantly suppressed liquid food consumption for 5 min and 30 ng for 25 min. However, 60 ng was not effective. Neuromedin C effects were blocked by prior application of the bombesin receptor antagonist [Leu(13)-psi(CH(2)NH)-Leu(14)]-bombesin. Neuromedin C treatment increased latency to feeding, decreased food intake, decreased the time spent feeding and their ratio, the number and the duration of feeding episodes during the first 5 min, without modifying body temperature or stereotype activity. Results indicate that neuromedin C may decrease the efficiency of feeding and that activation of bombesin receptors in the central amygdala may reduce appetite.
Collapse
Affiliation(s)
- Eva Mónika Fekete
- Institute of Physiology and Neurophysiology Research Group of the Hungarian Academy of Sciences, Pécs University Medical School, Szigeti str. 12, Pf. 99, Pécs H-7602, Hungary
| | | | | | | |
Collapse
|
40
|
Mantey SA, Gonzalez N, Schumann M, Pradhan TK, Shen L, Coy DH, Jensen RT. Identification of bombesin receptor subtype-specific ligands: effect of N-methyl scanning, truncation, substitution, and evaluation of putative reported selective ligands. J Pharmacol Exp Ther 2006; 319:980-989. [PMID: 16943256 DOI: 10.1124/jpet.106.107011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mammalian bombesin (Bn) receptors include the gastrin-releasing peptide receptor, neuromedin B receptor, and bombesin receptor subtype 3 (BRS-3). These receptors are involved in a variety of physiological/pathologic processes, including thermoregulation, secretion, motility, chemotaxis, and mitogenic effects on both normal and malignant cells. Tumors frequently overexpress these receptors, and their presence is now used for imaging and receptor-mediated cytotoxicity. For these reasons, there is an increased need to develop synthetic, selective receptor subtype-specific ligands, especially agonists for these receptors. In this study, we used a number of strategies to identify useful receptor subtype-selective ligands, including synthesizing new analogs (N-methyl-substituted constrained analogs, truncations, and substitutions) in [d-Tyr(6),betaAla(11),Phe(13),Nle(14)]Bn(6-14), which has high affinity for all Bn receptors and is metabolically stable, as well as completely pharmacologically characterized analogs recently reported to be selective for these receptors in [Ca(2+)](i) assays. Affinities and potencies of each analog were determined for each human Bn receptor subtype. N-Methyl substitutions in positions 14, 12, 11, 10, 9, and 8 did not result in selective analogs, with the exception of position 11, which markedly decreased affinity/potency. N-Terminal truncations or position 12 substitutions did not increase selectivity as previously reported by others. Of the four shortened analogs of [d-Phe(6),betaAla(11),Phe(13),Nle(14)]Bn(6-14) reported to be potent selective BRS-3 ligands on [Ca(2+)](i) assays, only AcPhe,Trp,Ala,His(tauBzl),Nip,Gly,Arg-NH(2) had moderate selectivity for hBRS-3; however, it was less selective than previously reported Apa(11) analogs, demonstrating these are still the most selective BRS-3 analogs available. However, both of these analogs should be useful templates to develop more selective BRS-3 ligands.
Collapse
Affiliation(s)
- Samuel A Mantey
- DHHS/NIH, NIDDK, DDB, Bldg. 10, Rm. 9C103, 31 Center Drive, Bethesda, MD 20892, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
Wen JJ, Spatola AF. Synthesis of a cyclic pseudopeptide containing a flexible β-Alaψ[CH2NH]unit. Tetrahedron Lett 2005. [DOI: 10.1016/j.tetlet.2005.01.171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
42
|
Todorovic A, Holder JR, Scott JW, Haskell-Luevano C. Synthesis and activity of the melanocortin Xaa-d-Phe-Arg-Trp-NH2 tetrapeptides with amide bond modifications. ACTA ACUST UNITED AC 2004; 63:270-8. [PMID: 15049839 DOI: 10.1111/j.1399-3011.2004.00137.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The melanocortin receptor (MCR) pathway has been identified as participating in several physiologically important pathways including pigmentation, energy homeostasis, inflammation, obesity, hypertension, and sexual function. All the endogenous MCR agonists contain a core His-Phe-Arg-Trp sequence identified as important for receptor molecular recognition and stimulation. Several structure-activity studies using the Ac-His-d-Phe-Arg-Trp-NH2 tetrapeptide template have been performed in the context of modifying N-terminal 'capping' groups and amino acid constituents. Herein, we report the synthesis and pharmacologic characterization of modified Xaa-d-Phe-Arg-Trp-NH2 (Xaa = His or Phe) melanocortin tetrapeptides (N-site selective methylation, permethylation, or amide bond reduction) at the mouse MC1, MC3, MC4 and MC5 receptors. The modified peptides generated in this study resulted in equipotent or reduced MCR potency when compared with control ligands. The reduced amide bond analog of the Phe-d-Phe-Arg-Trp-NH2 peptide converted its agonist activity into an antagonistic at the central mMC3 and mMC4 receptors involved in the regulation of energy homeostasis, while retaining full agonist activity at the peripheral MC1 and MC5 receptors.
Collapse
Affiliation(s)
- A Todorovic
- Department of Medicinal Chemistry, University of Florida, Gainesville, FL, USA
| | | | | | | |
Collapse
|
43
|
Feurle GE, Meyer HE, Hamscher G. Metabolism and potency of xenin and of its reduced hexapseudopeptide Ψ fragment in the dog. Life Sci 2003; 74:697-707. [PMID: 14654163 DOI: 10.1016/j.lfs.2003.05.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Xenin is a 25 amino acid peptide hormone, secreted into the circulation by specific endocrine cells in the duodenal mucosa. Plasma concentrations are elevated after sham feeding and feeding. In the present study the metabolism of xenin and of a C-terminal fragment was investigated. Xenin, its C-terminal hexapeptide, and a pseudopeptide analog psi (CH2NH) hexapeptide in which a psi reduced bond is introduced in the biologically important dibasic motif of the C-terminus were infused or injected intravenously in 14 anaesthetized dogs. Plasma disappearance time, metabolic clearance rate, the generation of metabolites, and biological effects on exocrine pancreatic secretion were determined employing radioimmunoassay, high pressure liquid chromatography, mass spectrometry (MALDI-MS), and sequence analysis. Half time after steady state infusion of xenin was 3.1 min(-1), that of psi xenin 6 was 6.2(-1) (p<0.01) Plasma concentrations of psi xenin 6 were significantly elevated (p<0.01), pancreatic secretion of volume was augmented by a factor of 50, and output of protein by a factor of 30 compared to unmodified xenin 6. MALDI-MS and sequencing after infusion of xenin revealed a C-terminal octapeptide fragment as primary metabolite. Introduction of a reduced pseudobond in the dibasic motif of xenin dramatically enhances biological potency. This indicates that such a reduced pseudopeptide may be useful in the treatment of bowel paralysis.
Collapse
Affiliation(s)
- G E Feurle
- DRK-Krankenhaus Neuwied Marktstr. 104 56564 Neuwied, Germany.
| | | | | |
Collapse
|
44
|
Fekete E, Vígh J, Bagi EE, Lénárd L. Gastrin-releasing peptide microinjected into the amygdala inhibits feeding. Brain Res 2002; 955:55-63. [PMID: 12419521 DOI: 10.1016/s0006-8993(02)03362-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Bombesin (BN)-like peptides including gastrin-releasing peptide (GRP) are known to inhibit feeding. In the amygdaloid body BN receptors have been found in moderate to high densities. The central part of the amygdala (ACE) is essentially involved in the regulation of feeding and body weight. In the present experiments GRP was injected into the ACE and liquid food intake, general behavioural activity, as well as core temperature, were examined in male CFY rats. Food intake was measured every 5 min for 30 min and at the 40th and the 60th min following GRP or vehicle microinjections. Bilateral application of 50, 100 or 150 ng GRP resulted in transient inhibition of food intake while bilateral injection of 25 or 300 ng GRP did not modify feeding. Effect of GRP was eliminated by prior application of BN receptor antagonist [Leu(13)-psi(CH(2)NH)-Leu(14)]BN. After GRP or vehicle treatments animals were video-monitored and food intake, the first meal latency (FML), intermeal intervals (IMI), the time spent feeding (FT), grooming, resting and exploration were analysed at 5-min intervals for 30 min. However, FML did not change after GRP, the first IMI increased and intake, FT and intake/FT significantly decreased during the first 5 min. Duration of resting gradually increased after GRP and animals spent less time with exploration after GRP treatment than after vehicle injection. These differences were significant during the 25-30-min period. In body temperature, no significant changes were observed. Our results show that GRP in the ACE inhibits feeding and that GRP may decrease the efficiency of eating and may act as a satiety signal.
Collapse
Affiliation(s)
- Eva Fekete
- Institute of Physiology and Neurophysiology Research Group of the Hungarian Academy of Sciences, Pécs University Medical School, Szigeti str 12, H-7643, Pécs, Hungary
| | | | | | | |
Collapse
|
45
|
Abstract
The development of a new integrated approach to the generation of a novel type of insect neuropeptide (Np) antagonists and putative insect control agents based on backbone cyclic compounds is described. The approach, termed the backbone cyclic neuropeptide-based antagonist (BBC-NBA), was applied to the insect pyrokinin (PK)/pheromone biosynthesis activating neuropeptide (PBAN) family as a model, and led to the discovery of a potent linear lead antagonist and several highly potent, metabolically stable BBC antagonists, devoid of agonistic activity, which inhibited PBAN-mediated activities in moths in vivo. This review briefly summarizes our knowledge of insect Nps, describes the PK/PBAN Np family, presents the basic concepts behind the BBC-NBA approach, and introduces the advantages of this method for generation of Np agonists, antagonists and insecticide prototype molecules.
Collapse
Affiliation(s)
- M Altstein
- Institute of Plant Protection, the Volcani Center, Bet Dagan, Israel.
| |
Collapse
|
46
|
Feurle GE, Metzger JW, Grudinki A, Hamscher G. Interaction of xenin with the neurotensin receptor of guinea pig enteral smooth muscles. Peptides 2002; 23:1519-25. [PMID: 12182956 DOI: 10.1016/s0196-9781(02)00064-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Xenin, a 25 amino acid peptide, interacts with the neurotensin receptor subtype 1 of intestinal muscles of the guinea pig. Replacement of the C-terminal Lys-Arg peptide bond in xenin 6 by a reduced pseudo-peptide bond augmented binding affinity to isolated jejunal and colonic muscle membranes by factors of 7.7 and 21.0 respectively; the potency to contract the jejunum and to relax the colon was increased by factors of 3.2 and 1.3. The C-terminus Trp-Ile-Leu (WIL) of xenin, in contrast to the C-terminus Tyr-Ile-Leu (YIL) of neurotensin, bound competitively to the muscle membranes. WIL blocked the contractile action of xenin in the jejunum and was synergistic with the relaxing action in the colon. The Lys-Arg motif and Trp in the C-terminus of xenin are essential structures in the action of xenin on the enteral smooth muscle receptors.
Collapse
Affiliation(s)
- Gerhard E Feurle
- DRK-Krankenhous Neuwied, Medizinische Klinik, Rheinische Friedrich-Wilhelms Universität, Bonn, Germany.
| | | | | | | |
Collapse
|
47
|
Weber D, Berger C, Heinrich T, Eickelmann P, Antel J, Kessler H. Systematic optimization of a lead-structure identities for a selective short peptide agonist for the human orphan receptor BRS-3. J Pept Sci 2002; 8:461-75. [PMID: 12212809 DOI: 10.1002/psc.407] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The orphan receptor, human bombesin receptor subtype 3 (BRS-3) was assigned to the G-protein coupled bombesin receptor family because of its high sequence homology with the neuromedin B receptor (NMB-R) and gastrin-releasing peptide receptor (GRP-R). Since its pharmacology is stiIl unknown, new highly potent and selective tool-substances are needed, that may be able to elucidate its possible role in obesity and cancer. We have performed structure activity relationship studies on the high affinity peptide agonists [D-Phe6,beta-Ala11,Phe13,Nle14]Bn(6-14) and [D-Phe6,Phe13]Bn(6-13)propylamide, using their ability to mobilize intracellular calcium in BRS-3 transfected CHOGa-16 cells combined with receptor binding studies. It was demonstrated that for [D-Phe,beta-Ala11,Phe13,Nle14]Bn(6-14) the side chains of the residues Trp8 and Phe13, and to a smaller extent beta-Ala11, are the important amino acid side chains for receptor activation and binding, however for [D-Phe6,Phe13]Bn(6-13) propylamide His12 seems to be more important than Phe13. C-and N-terminal deletions and amino acid substitutions allowed further understanding. It was demonstrated that substitution of His 12 by Tyr leads to a high selectivity towards GRP-R. Using the acquired information, a small tetrapeptide library was designed with compounds presenting Trp and Phe at varying stereochemistry and distances, which led to the discovery of the lead-structure H-D-Phe-Gln-D-Trp-Phe-NH2. Systematic SAR revealed the important structural features of this peptide, C-terminal optimization resulted in the highly active and selective BRS-3 agonist H-D-Phe-Gln-D-Trp-1-(2-phenylethyl)amide. In summary, the size of the peptide was reduced from 8 or 9 amino acids to a tripeptide for BRS-3.
Collapse
Affiliation(s)
- Dirk Weber
- Institut für Organische Chemie und Biochemie, Technische Universität München, Garching, Germany
| | | | | | | | | | | |
Collapse
|
48
|
Feurle GE, Metzger JW, Grudinski A, Hamscher G. Interaction of xenin with the neurotensin receptor of guinea pig enteral smooth muscles. Peptides 2002; 23:523-9. [PMID: 11836002 DOI: 10.1016/s0196-9781(01)00637-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Xenin, a 25 aminoacid peptide, interacts with the neurotensin receptor subtype 1 of intestinal muscles of the guinea pig. Replacement of the C-terminal Lys -Arg peptide bond in xenin 6 by a reduced pseudo-peptide bond augmented binding affinity to isolated jejunal and colonic muscle membranes by factors of 7.7 and 21.0 respectively; the potency to contract the jejunum and to relax the colon was increased by factors of 3.2 and 1.3. The C-terminus Trp-Ile-Leu (WIL) of xenin, in contrast to the C-terminus Tyr-Ile-Leu (YIL) of neurotensin, bound competitively to the muscle membranes. WIL blocked the contractile action of xenin in the jejunum and was synergistic with the relaxing action in the colon. The Lys -Arg motif and Trp in the C-terminus of xenin are essential structures in the action of xenin on the enteral smooth muscle receptors.
Collapse
Affiliation(s)
- Gerhard E Feurle
- DRK-Krankenhaus Neuwied, Medizinische Klinik, Rheinische Friedrich-Wilhelms Universität, Bonn, Germany.
| | | | | | | |
Collapse
|
49
|
Darker JG, Brough SJ, Heath J, Smart D. Discovery of potent and selective peptide agonists at the GRP-preferring bombesin receptor (BB2). J Pept Sci 2001; 7:598-605. [PMID: 11763364 DOI: 10.1002/psc.359] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Analogues of the nonselective bombesin receptor synthetic agonist H-D-Phe-Gln-Trp-Ala-Val-betaAla-His-Phe-Nle-NH2 were prepared and their biological activity assessed at the NMB-preferring/bombesin receptor (NMB-R: BB1), the GRP-preferring/bombesin receptor (GRP-R: BB2) and the orphan receptor bombesin receptor subtype-3 (BRS-3; BB3). Progressive N-terminal deletions identified the minimum C-terminal sequences required for maintaining a significant agonist effect, whilst an alanine scan, targeted changes in stereochemistry and other pertinent substitutions identified key side-chain and stereochemical requirements for activation. Key structural elements required for functional potency at BB1 BB2 and BB3, and for selectivity between these receptor subtypes were established. Synthetic peptides were discovered. which were highly potent agonists at BB2 and extremely selective over both BB1 and BB3.
Collapse
Affiliation(s)
- J G Darker
- Discovery Research, GlaxoSmithKline, New Frontiers Science Park, Third Avenue, Harlow, Essex CM 19 5AW, UK.
| | | | | | | |
Collapse
|
50
|
Tokita K, Katsuno T, Hocart SJ, Coy DH, Llinares M, Martinez J, Jensen RT. Molecular basis for selectivity of high affinity peptide antagonists for the gastrin-releasing peptide receptor. J Biol Chem 2001; 276:36652-36663. [PMID: 11463790 DOI: 10.1074/jbc.m104566200] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Few gastrointestinal hormones/neurotransmitters have high affinity peptide receptor antagonists, and little is known about the molecular basis of their selectivity or affinity. The receptor mediating the action of the mammalian bombesin (Bn) peptide, gastrin-releasing peptide receptor (GRPR), is an exception, because numerous classes of peptide antagonists are described. To investigate the molecular basis for their high affinity for the GRPR, two classes of peptide antagonists, a statine analogue, JMV594 ([d-Phe(6),Stat(13)]Bn(6-14)), and a pseudopeptide analogue, JMV641 (d-Phe-Gln-Trp-Ala-Val-Gly-His-Leupsi(CHOH-CH(2))-(CH(2))(2)-CH(3)), were studied. Each had high affinity for the GRPR and >3,000-fold selectivity for GRPR over the closely related neuromedin B receptor (NMBR). To investigate the basis for this, we used a chimeric receptor approach to make both GRPR loss of affinity and NMBR gain of affinity chimeras and a site-directed mutagenesis approach. Chimeric or mutated receptors were transiently expressed in Balb/c 3T3. Only substitution of the fourth extracellular (EC) domain of the GRPR by the comparable NMBR domain markedly decreased the affinity for both antagonists. Substituting the fourth EC domain of NMBR into the GRPR resulted in a 300-fold gain in affinity for JMV594 and an 11-fold gain for JMV641. Each of the 11 amino acid differences between the GRPR and NMBR in this domain were exchanged. The substitutions of Thr(297) in GRPR by Pro from the comparable position in NMBR, Phe(302) by Met, and Ser(305) by Thr decreased the affinity of each antagonist. Simultaneous replacement of Thr(297), Phe(302), and Ser(305) in GRPR by the three comparable NMBR amino acids caused a 500-fold decrease in affinity for both antagonists. Replacing the comparable three amino acids in NMBR by those from GRPR caused a gain in affinity for each antagonist. Receptor modeling showed that each of these three amino acids faced inward and was within 5 A of the putative binding pocket. These results demonstrate that differences in the fourth EC domain of the mammalian Bn receptors are responsible for the selectivity of these two peptide antagonists. They demonstrate that Thr(297), Phe(302), and Ser(305) of the fourth EC domain of GRPR are the critical residues for determining GRPR selectivity and suggest that both receptor-ligand cation-pi interactions and hydrogen bonding are important for their high affinity interaction.
Collapse
Affiliation(s)
- K Tokita
- Digestive Diseases Branch, NIDDK, National Institutes of Health, Bethesda, Maryland 20892-1804, USA
| | | | | | | | | | | | | |
Collapse
|