1
|
Wang Z, He L, Fan Z, Luo Y. Patenting perspective of modulators of ClpP endopeptidase: 2019-present. Expert Opin Ther Pat 2024:1-12. [PMID: 39267345 DOI: 10.1080/13543776.2024.2404233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/14/2024] [Accepted: 09/10/2024] [Indexed: 09/17/2024]
Abstract
INTRODUCTION ClpP is a highly conserved serine protease that plays a crucial role in maintaining protein homeostasis in both bacterial cells and human mitochondria. Several studies have demonstrated the potential of ClpP as a drug target, with ClpP modulators, including both inhibitors and activators, showing promise in treating a range of conditions such as drug-resistant bacteria, malignant cancers, and fatty liver disease. AREA COVERED This review provides an overview of patents related to ClpP modulators filed over the last five years, detailing their claims and therapeutic applications. The sources of patent information included databases of the European Patent Office, the China Patent Office and the U.S.A. patent Office, while relevant research articles were accessed through PubMed. EXPERT OPINION The number of patents concerning ClpP modulators is on the rise, reflecting advancements in related research. By summarizing and outlining relevant patents, we aim to stimulate further interest among researchers, ultimately leading to the development of effective drugs based on ClpP modulators. The broad spectrum of diseases associated with ClpP dysfunction underscores the potential for ClpP modulators to address a wide range of therapeutic needs.
Collapse
Affiliation(s)
- Zhenyu Wang
- State Key Laboratory of Biotherapy, West China Hospital, West Medical School, Sichuan University, Chengdu, China
| | - Liqing He
- State Key Laboratory of Biotherapy, West China Hospital, West Medical School, Sichuan University, Chengdu, China
| | - Ziheng Fan
- State Key Laboratory of Biotherapy, West China Hospital, West Medical School, Sichuan University, Chengdu, China
| | - Youfu Luo
- State Key Laboratory of Biotherapy, West China Hospital, West Medical School, Sichuan University, Chengdu, China
| |
Collapse
|
2
|
Ishikawa F, Homma M, Tanabe G, Uchihashi T. Protein degradation by a component of the chaperonin-linked protease ClpP. Genes Cells 2024; 29:695-709. [PMID: 38965067 PMCID: PMC11448347 DOI: 10.1111/gtc.13141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/03/2024] [Accepted: 06/19/2024] [Indexed: 07/06/2024]
Abstract
In cells, proteins are synthesized, function, and degraded (dead). Protein synthesis (spring) is important for the life of proteins. However, how proteins die is equally important for organisms. Proteases are secreted from cells and used as nutrients to break down external proteins. Proteases degrade unwanted and harmful cellular proteins. In eukaryotes, a large enzyme complex called the proteasome is primarily responsible for cellular protein degradation. Prokaryotes, such as bacteria, have similar protein degradation systems. In this review, we describe the structure and function of the ClpXP complex in the degradation system, which is an ATP-dependent protease in bacterial cells, with a particular focus on ClpP.
Collapse
Affiliation(s)
| | - Michio Homma
- Department of Biomolecular Engineering, Graduate School of EngineeringNagoya UniversityNagoyaJapan
| | | | - Takayuki Uchihashi
- Division of Material Science, Graduate School of ScienceNagoya UniversityNagoyaJapan
| |
Collapse
|
3
|
Ishikawa F, Homma M, Tanabe G, Uchihashi T. [Protein degradation in bacteria: focus on the ClpP protease]. Nihon Saikingaku Zasshi 2024; 79:1-13. [PMID: 38382970 DOI: 10.3412/jsb.79.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Proteins in the cells are born (synthesized), work, and die (decomposed). In the life of a protein, its birth is obviously important, but how it dies is equally important in living organisms. Proteases secreted into the outside of cells are used to decompose the external proteins and the degradation products are taken as the nutrients. On the other hand, there are also proteases that decompose unnecessary or harmful proteins which are generated in the cells. In eukaryotes, a large enzyme complex called the proteasome is primarily responsible for degradation of such proteins. Bacteria, which are prokaryotes, have a similar system as the proteasome. We would like to explain the bacterial degradation system of proteins or the death of proteins, which is performed by ATP-dependent protease Clp, with a particular focus on the ClpXP complex, and with an aspect as a target for antibiotics against bacteria.
Collapse
Affiliation(s)
| | - Michio Homma
- Division of Physics, Graduate School of Science, Nagoya University
| | | | | |
Collapse
|
4
|
Jin M, Zhu S, Tang Y, Kong X, Wang X, Li Y, Jiang S, Wei L, Hu C, Wang B, Song W. Ayanin, a natural flavonoid inhibitor of Caseinolytic protease, is a promising therapeutic agent to combat methicillin-resistant Staphylococcus aureus infections. Biochem Pharmacol 2023; 217:115814. [PMID: 37769713 DOI: 10.1016/j.bcp.2023.115814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/16/2023] [Accepted: 09/19/2023] [Indexed: 10/03/2023]
Abstract
Antimicrobial resistance (AMR) is a global health threat. The dramatic increase of Methicillin-resistant Staphylococcus aureus (MRSA) infections emphasizes the need to find new anti-infective agents with a novel mode of action. The Caseinolytic protease (ClpP) is a central virulence factor in stress survival, virulence, and antibiotic resistance of MRSA. Here, we found ayanin, a flavonoid isolated from Callicarpa nudiflora, was an inhibitor of MRSA ClpP with an IC50 of 19.63 μM. Using quantitative real-time PCR, ayanin reduced the virulence of Staphylococcus aureus (S. aureus) by down-regulating the level of some important virulence factors, including agrA, RNAⅢ, hla, pvl, psmα and spa. The results of cellular thermal shift assay and thermal shift assay revealed a binding between ayanin and ClpP. Molecular docking showed that ASP-168, ASN-173 and ARG-171 were the potential binding sites for ClpP binding to ayanin. ClpP mutagenesis study further indicated that ARG-171 and ASN-173 were the main active sites of ClpP. The affinity constant (KD) value of ayanin with ClpP was 3.15 × 10-5 M measured by surface plasmon resonance. In addition, ayanin exhibited a significant therapeutic effect on pneumonia infection induced by S. aureus in mice in vivo, especially in combination with vancomycin. This is the first report of ayanin with in vivo and in vitro efficacy against S. aureus infection. In conclusion, ayanin is a promising therapeutic agent to combat MRSA infections by targeting ClpP.
Collapse
Affiliation(s)
- Mengli Jin
- Changchun University of Chinese Medicine, Changchun 130117, China
| | - Shuyue Zhu
- Changchun University of Chinese Medicine, Changchun 130117, China
| | - Yating Tang
- Changchun University of Chinese Medicine, Changchun 130117, China
| | - Xiangri Kong
- Changchun University of Chinese Medicine, Changchun 130117, China
| | - Xingye Wang
- Changchun University of Chinese Medicine, Changchun 130117, China
| | - Yufen Li
- Changchun University of Chinese Medicine, Changchun 130117, China
| | - Shuang Jiang
- Changchun University of Chinese Medicine, Changchun 130117, China
| | - Lin Wei
- Changchun University of Chinese Medicine, Changchun 130117, China
| | - Chunjie Hu
- Changchun University of Chinese Medicine, Changchun 130117, China; Proctology Department, Affiliated Hospital of Changchun University of Chinese Medicine, Changchun 130021, China.
| | - Bingmei Wang
- Changchun University of Chinese Medicine, Changchun 130117, China.
| | - Wu Song
- Changchun University of Chinese Medicine, Changchun 130117, China.
| |
Collapse
|
5
|
Kang Y, Lee K, Hoshikawa K, Kang M, Jang S. Molecular Bases of Heat Stress Responses in Vegetable Crops With Focusing on Heat Shock Factors and Heat Shock Proteins. FRONTIERS IN PLANT SCIENCE 2022; 13:837152. [PMID: 35481144 PMCID: PMC9036485 DOI: 10.3389/fpls.2022.837152] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/09/2022] [Indexed: 05/09/2023]
Abstract
The effects of the climate change including an increase in the average global temperatures, and abnormal weather events such as frequent and severe heatwaves are emerging as a worldwide ecological concern due to their impacts on plant vegetation and crop productivity. In this review, the molecular processes of plants in response to heat stress-from the sensing of heat stress, the subsequent molecular cascades associated with the activation of heat shock factors and their primary targets (heat shock proteins), to the cellular responses-have been summarized with an emphasis on the classification and functions of heat shock proteins. Vegetables contain many essential vitamins, minerals, antioxidants, and fibers that provide many critical health benefits to humans. The adverse effects of heat stress on vegetable growth can be alleviated by developing vegetable crops with enhanced thermotolerance with the aid of various genetic tools. To achieve this goal, a solid understanding of the molecular and/or cellular mechanisms underlying various responses of vegetables to high temperature is imperative. Therefore, efforts to identify heat stress-responsive genes including those that code for heat shock factors and heat shock proteins, their functional roles in vegetable crops, and also their application to developing vegetables tolerant to heat stress are discussed.
Collapse
Affiliation(s)
- Yeeun Kang
- World Vegetable Center Korea Office, Wanju-gun, South Korea
| | - Kwanuk Lee
- National Institute of Horticultural and Herbal Science (NIHHS), Rural Development Administration (RDA), Wanju-gun, South Korea
| | - Ken Hoshikawa
- Biological Resources and Post-harvest Division, Japan International Research Center for Agricultural Sciences (JIRCAS), Tsukuba, Japan
| | | | - Seonghoe Jang
- World Vegetable Center Korea Office, Wanju-gun, South Korea
| |
Collapse
|
6
|
Label-Free Quantitative Proteomics Analysis in Susceptible and Resistant Brassica napus Cultivars Infected with Xanthomonas campestris pv. campestris. Microorganisms 2021; 9:microorganisms9020253. [PMID: 33513868 PMCID: PMC7911590 DOI: 10.3390/microorganisms9020253] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 01/22/2021] [Accepted: 01/24/2021] [Indexed: 01/18/2023] Open
Abstract
Black rot, caused by Xanthomonas campestris pv. campestris (Xcc), is the main disease of cruciferous vegetables. To characterize the resistance mechanism in the Brassica napus–Xcc pathosystem, Xcc-responsive proteins in susceptible (cv. Mosa) and resistant (cv. Capitol) cultivars were investigated using gel-free quantitative proteomics and analysis of gene expression. This allowed us to identify 158 and 163 differentially expressed proteins following Xcc infection in cv. Mosa and cv. Capitol, respectively, and to classify them into five major categories including antioxidative systems, proteolysis, photosynthesis, redox, and innate immunity. All proteins involved in protein degradation such as the protease complex, proteasome subunits, and ATP-dependent Clp protease proteolytic subunits, were upregulated only in cv. Mosa, in which higher hydrogen peroxide accumulation concurred with upregulated superoxide dismutase. In cv. Capitol, photosystem II (PS II)-related proteins were downregulated (excepting PS II 22 kDa), whereas the PS I proteins, ATP synthase, and ferredoxin-NADP+ reductase, were upregulated. For redox-related proteins, upregulation of thioredoxin, 2-cys peroxiredoxin, and glutathione S-transferase occurred in cv. Capitol, consistent with higher NADH-, ascorbate-, and glutathione-based reducing potential, whereas the proteins involved in the C2 oxidative cycle and glycolysis were highly activated in cv. Mosa. Most innate immunity-related proteins, including zinc finger domain (ZFD)-containing protein, glycine-rich RNA-binding protein (GRP) and mitochondrial outer membrane porin, were highly enhanced in cv. Capitol, concomitant with enhanced expression of ZFD and GRP genes. Distinguishable differences in the protein profile between the two cultivars deserves higher importance for breeding programs and understanding of disease resistance in the B. napus–Xcc pathosystem.
Collapse
|
7
|
Modular and coordinated activity of AAA+ active sites in the double-ring ClpA unfoldase of the ClpAP protease. Proc Natl Acad Sci U S A 2020; 117:25455-25463. [PMID: 33020301 PMCID: PMC7568338 DOI: 10.1073/pnas.2014407117] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Understanding of how ClpA and other double-ring AAA+ enzymes perform mechanical work is limited. Using site-specific cross-linking and mutagenesis, we introduced ATPase-inactive AAA+ modules at alternating positions in individual ClpA rings, or in both rings, to investigate potential active-site coordination during ClpAP degradation. ClpA variants containing alternating active/inactive ATPase modules processively unfolded, translocated, and supported ClpP degradation of protein substrates with energetic efficiencies similar to, or higher than, completely active ClpA. These results impact current models describing the mechanisms of AAA+ family enzymes. The cross-linking/mutagenesis method we employed will also be useful for answering other structure-function questions about ClpA and related double-ring enzymes. ClpA is a hexameric double-ring AAA+ unfoldase/translocase that functions with the ClpP peptidase to degrade proteins that are damaged or unneeded. How the 12 ATPase active sites of ClpA, 6 in the D1 ring and 6 in the D2 ring, work together to fuel ATP-dependent degradation is not understood. We use site-specific cross-linking to engineer ClpA hexamers with alternating ATPase-active and ATPase-inactive modules in the D1 ring, the D2 ring, or both rings to determine if these active sites function together. Our results demonstrate that D2 modules coordinate with D1 modules and ClpP during mechanical work. However, there is no requirement for adjacent modules in either ring to be active for efficient enzyme function. Notably, ClpAP variants with just three alternating active D2 modules are robust protein translocases and function with double the energetic efficiency of ClpAP variants with completely active D2 rings. Although D2 is the more powerful motor, three or six active D1 modules are important for high enzyme processivity, which depends on D1 and D2 acting coordinately. These results challenge sequential models of ATP hydrolysis and coupled mechanical work by ClpAP and provide an engineering strategy that will be useful in testing other aspects of ClpAP mechanism.
Collapse
|
8
|
Callahan BP, Ciulla DA, Wagner AG, Xu Z, Zhang X. Specificity Distorted: Chemical Induction of Biological Paracatalysis. Biochemistry 2020; 59:3517-3522. [PMID: 32931253 DOI: 10.1021/acs.biochem.0c00643] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We define paracatalysis as the acceleration of a reaction that appears abnormal or nonphysiological. With the high specificity of enzymes, side reactivity of this kind is typically negligible. However, enzyme paracatalysis can be amplified to levels that are biologically significant through interactions with a special class of small molecule "antagonist", here termed a paracatalytic inducer. Compounds with this unusual mode of action tend to be natural products, identified by chance through phenotypic screens. In this Perspective, we suggest two general types of paracatalytic inducer. The first type promotes substrate ambiguity, where the enzyme's ground state selectivity is compromised, enabling the transformation of non-native substrates. The second type involves transition state ambiguity, where the paracatalytic inducer changes the enzyme's interactions with the activated substrate, giving rise to non-native bond making. Although they are unusual, small molecules that induce paracatalysis have established value as hypothesis-generating probes and a few substances, i.e., aspirin and the aminoglycosides, have proven to be translatable as medicines.
Collapse
Affiliation(s)
- Brian P Callahan
- Department of Chemistry, Binghamton University, the State University of New York, 4400 Vestal Parkway East, Binghamton, New York 13902, United States
| | - Daniel A Ciulla
- Department of Chemistry, Binghamton University, the State University of New York, 4400 Vestal Parkway East, Binghamton, New York 13902, United States
| | - Andrew G Wagner
- Department of Chemistry, Binghamton University, the State University of New York, 4400 Vestal Parkway East, Binghamton, New York 13902, United States
| | - Zihan Xu
- Department of Chemistry, Binghamton University, the State University of New York, 4400 Vestal Parkway East, Binghamton, New York 13902, United States
| | - Xiaoyu Zhang
- Department of Chemistry, Binghamton University, the State University of New York, 4400 Vestal Parkway East, Binghamton, New York 13902, United States
| |
Collapse
|
9
|
Scull NW, Lucius AL. Kinetic Analysis of AAA+ Translocases by Combined Fluorescence and Anisotropy Methods. Biophys J 2020; 119:1335-1350. [PMID: 32997959 DOI: 10.1016/j.bpj.2020.08.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 08/03/2020] [Accepted: 08/17/2020] [Indexed: 11/30/2022] Open
Abstract
The multitude of varied, energy-dependent processes that exist in the cell necessitate a diverse array of macromolecular machines to maintain homeostasis, allow for growth, and facilitate reproduction. ATPases associated with various cellular activity are a set of protein assemblies that function as molecular motors to couple the energy of nucleoside triphosphate binding and hydrolysis to mechanical movement along a polymer lattice. A recent boom in structural insights into these motors has led to structural hypotheses on how these motors fulfill their function. However, in many cases, we lack direct kinetic measurements of the dynamic processes these motors undergo as they transition between observed structural states. Consequently, there is a need for improved techniques for testing the structural hypotheses in solution. Here, we apply transient-state fluorescence anisotropy and total fluorescence stopped-flow methods to the analysis of polypeptide translocation catalyzed by these ATPase motors. We specifically focus on the Hsp100-Clp protein system of ClpA, which is a well-studied, model ATPases associated with various cellular activity system that has both eukaryotic and archaea homologs. Using this system, we show that we can reproduce previously established kinetic parameters from the simultaneous analysis of fluorescence anisotropy and total fluorescence and overcome previous limitations of our previous approach. Specifically, for the first time, to our knowledge, we obtain quantitative interpretations of the translocation of polypeptide substrates longer than 100 aa.
Collapse
Affiliation(s)
- Nathaniel W Scull
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, Alabama
| | - Aaron L Lucius
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, Alabama.
| |
Collapse
|
10
|
Ziemski M, Leodolter J, Taylor G, Kerschenmeyer A, Weber-Ban E. Genome-wide interaction screen for Mycobacterium tuberculosis ClpCP protease reveals toxin-antitoxin systems as a major substrate class. FEBS J 2020; 288:111-126. [PMID: 32301575 DOI: 10.1111/febs.15335] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 03/12/2020] [Accepted: 04/14/2020] [Indexed: 12/30/2022]
Abstract
In Mycobacterium tuberculosis (Mtb), the Clp protease degradation pathway, mediated by the modular ClpCP and ClpXP protease complexes, is essential for growth and presents an attractive drug target. Employing a bacterial adenylate cyclase two-hybrid (BACTH) screening approach that we adapted to screen the proteome of an Mtb ORF library, we identify protein interaction partners of the ClpC1 chaperone on a genome-wide level. Our results demonstrate that bipartite type II toxin-antitoxin (TA) systems represent a major substrate class. Out of the 67 type II TA systems known in Mtb, 25 appear as ClpC1 interaction partners in the BACTH screen, including members of the VapBC, MazEF, and ParDE families, as well as a RelBE member that was identified biochemically. We show that antitoxins of the Vap and Rel families are degraded by ClpCP in vitro. We also demonstrate that ClpCP is responsible for mediating the N-end rule pathway, since the adaptor protein ClpS supports ClpC-dependent degradation of an N-end rule model substrate in vitro.
Collapse
Affiliation(s)
- Michal Ziemski
- Institute of Molecular Biology & Biophysics, ETH Zurich, Switzerland
| | - Julia Leodolter
- Institute of Molecular Biology & Biophysics, ETH Zurich, Switzerland
| | - Gabrielle Taylor
- Institute of Molecular Biology & Biophysics, ETH Zurich, Switzerland
| | | | - Eilika Weber-Ban
- Institute of Molecular Biology & Biophysics, ETH Zurich, Switzerland
| |
Collapse
|
11
|
Fraga H, Rodriguez B, Bardera A, Cid C, Akopian T, Kandror O, Park A, Colmenarejo G, Lelievre J, Goldberg A. Development of high throughput screening methods for inhibitors of ClpC1P1P2 from Mycobacteria tuberculosis. Anal Biochem 2018; 567:30-37. [PMID: 30543804 DOI: 10.1016/j.ab.2018.12.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 12/03/2018] [Indexed: 01/10/2023]
Abstract
Tuberculosis affects about 100 million people worldwide and causes nearly 2 million deaths annually. It has been estimated that one third of all humans is infected with latent Mycobacterium tuberculosis (Mtb). Moreover, Mtb has become increasingly resistant to available antibiotics. Consequently, it is important to identify and characterize new therapeutic targets in Mtb and to synthesize selective inhibitors. ClpP1, ClpP2 and their associated regulatory ATPases, ClpX and ClpC1 are required for the growth of Mtb and for its virulence during murine infection and are highly attractive drug targets, especially since they are not present in the cytosol of mammalian cells, and they differ markedly from the mitochondrial ClpP complex. The importance of these proteins in Mtb is emphasized by the existence of several natural antibiotics targeting this system. In order to find new inhibitors of ClpC1P1P2 system, we developed an assay based on the ATP-dependent degradation of a fluorescent protein substrate. The hits obtained were further characterized with a set of secondary assays to identify precise targets within a complex. A large library of compounds was screened and led to the identification of a ClpC1 ATPase inhibitor demonstrating that this approach can be used in future searches for anti-TB agents.
Collapse
Affiliation(s)
- Hugo Fraga
- Diseases of the Developing World, Global Health R&D, GlaxoSmithKline, Severo Ochoa 2, 28760, Tres Cantos, Spain; Department Cell Biology, Harvard Medical School, USA; Institut de Biologie Structurale, Grenoble, France; Departamento de Bioquímica, Faculdade de Medicina da Universidade do Porto, Portugal.
| | - Beatriz Rodriguez
- Diseases of the Developing World, Global Health R&D, GlaxoSmithKline, Severo Ochoa 2, 28760, Tres Cantos, Spain
| | - Ana Bardera
- Diseases of the Developing World, Global Health R&D, GlaxoSmithKline, Severo Ochoa 2, 28760, Tres Cantos, Spain
| | - Concha Cid
- Diseases of the Developing World, Global Health R&D, GlaxoSmithKline, Severo Ochoa 2, 28760, Tres Cantos, Spain
| | - Tatos Akopian
- School of Public Health, Harvard Medical School, USA
| | - Olga Kandror
- School of Public Health, Harvard Medical School, USA
| | - Annie Park
- School of Public Health, Harvard Medical School, USA
| | - Gonzalo Colmenarejo
- Diseases of the Developing World, Global Health R&D, GlaxoSmithKline, Severo Ochoa 2, 28760, Tres Cantos, Spain; Biostatisics and Bioinformatics Unit, IMDEA Food Institute, Madrid, Spain
| | - Joel Lelievre
- Diseases of the Developing World, Global Health R&D, GlaxoSmithKline, Severo Ochoa 2, 28760, Tres Cantos, Spain
| | | |
Collapse
|
12
|
Bennett BD, Redford KE, Gralnick JA. Survival of Anaerobic Fe 2+ Stress Requires the ClpXP Protease. J Bacteriol 2018; 200:e00671-17. [PMID: 29378887 PMCID: PMC5869471 DOI: 10.1128/jb.00671-17] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 01/23/2018] [Indexed: 11/20/2022] Open
Abstract
Shewanella oneidensis strain MR-1 is a versatile bacterium capable of respiring extracellular, insoluble ferric oxide minerals under anaerobic conditions. The respiration of iron minerals results in the production of soluble ferrous ions, which at high concentrations are toxic to living organisms. It is not fully understood how Fe2+ is toxic to cells anaerobically, nor is it fully understood how S. oneidensis is able to resist high levels of Fe2+ Here we describe the results of a transposon mutant screen and subsequent deletion of the genes clpX and clpP in S. oneidensis, which demonstrate that the protease ClpXP is required for anaerobic Fe2+ resistance. Many cellular processes are known to be regulated by ClpXP, including entry into stationary phase, envelope stress response, and turnover of stalled ribosomes. However, none of these processes appears to be responsible for mediating anaerobic Fe2+ resistance in S. oneidensis Protein trapping studies were performed to identify ClpXP targets in S. oneidensis under Fe2+ stress, implicating a wide variety of protein targets. Escherichia coli strains lacking clpX or clpP also display increased sensitivity to Fe2+ anaerobically, indicating Fe2+ resistance may be a conserved role for the ClpXP protease system. Hypotheses regarding the potential role(s) of ClpXP during periods of high Fe2+ are discussed. We speculate that metal-containing proteins are misfolded under conditions of high Fe2+ and that the ClpXP protease system is necessary for their turnover.IMPORTANCE Prior to the evolution of cyanobacteria and oxygenic photosynthesis, life arose and flourished in iron-rich oceans. Today, aqueous iron-rich environments are less common, constrained to low-pH conditions and anaerobic systems such as stratified lakes and seas, digestive tracts, subsurface environments, and sediments. The latter two ecosystems often favor dissimilatory metal reduction, a process that produces soluble Fe2+ from iron oxide minerals. Dissimilatory metal-reducing bacteria must therefore have mechanisms to tolerate anaerobic Fe2+ stress, and studying resistance in these organisms may help elucidate the basis of toxicity. Shewanella oneidensis is a model dissimilatory metal-reducing bacterium isolated from metal-rich sediments. Here we demonstrate a role for ClpXP, a protease system widely conserved in bacteria, in anaerobic Fe2+ resistance in both S. oneidensis and Escherichia coli.
Collapse
Affiliation(s)
- Brittany D Bennett
- BioTechnology Institute and Department of Plant and Microbial Biology, University of Minnesota-Twin Cities, St. Paul, Minnesota, USA
| | - Kaitlyn E Redford
- BioTechnology Institute and Department of Plant and Microbial Biology, University of Minnesota-Twin Cities, St. Paul, Minnesota, USA
| | - Jeffrey A Gralnick
- BioTechnology Institute and Department of Plant and Microbial Biology, University of Minnesota-Twin Cities, St. Paul, Minnesota, USA
| |
Collapse
|
13
|
Moreno JC, Tiller N, Diez M, Karcher D, Tillich M, Schöttler MA, Bock R. Generation and characterization of a collection of knock-down lines for the chloroplast Clp protease complex in tobacco. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:2199-2218. [PMID: 28369470 PMCID: PMC5447895 DOI: 10.1093/jxb/erx066] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Protein degradation in chloroplasts is carried out by a set of proteases that eliminate misfolded, damaged, or superfluous proteins. The ATP-dependent caseinolytic protease (Clp) is the most complex protease in plastids and has been implicated mainly in stromal protein degradation. In contrast, FtsH, a thylakoid membrane-associated metalloprotease, is believed to participate mainly in the degradation of thylakoidal proteins. To determine the role of specific Clp and FtsH subunits in plant growth and development, RNAi lines targeting at least one subunit of each Clp ring and FtsH were generated in tobacco. In addition, mutation of the translation initiation codon was employed to down-regulate expression of the plastid-encoded ClpP1 subunit. These protease lines cover a broad range of reductions at the transcript and protein levels of the targeted genes. A wide spectrum of phenotypes was obtained, including pigment deficiency, alterations in leaf development, leaf variegations, and impaired photosynthesis. When knock-down lines for the different protease subunits were compared, both common and specific phenotypes were observed, suggesting distinct functions of at least some subunits. Our work provides a well-characterized collection of knock-down lines for plastid proteases in tobacco and reveals the importance of the Clp protease in physiology and plant development.
Collapse
Affiliation(s)
- Juan C Moreno
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Nadine Tiller
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Mercedes Diez
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Daniel Karcher
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Michael Tillich
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Mark A Schöttler
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Ralph Bock
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| |
Collapse
|
14
|
Tsai CH, Ho YH, Sung TC, Wu WF, Chen CS. Escherichia coli Proteome Microarrays Identified the Substrates of ClpYQ Protease. Mol Cell Proteomics 2016; 16:113-120. [PMID: 27864322 DOI: 10.1074/mcp.m116.065482] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Indexed: 01/12/2023] Open
Abstract
Proteolysis is a vital mechanism to regulate the cellular proteome in all kingdoms of life, and ATP-dependent proteases play a crucial role within this process. In Escherichia coli, ClpYQ is one of the primary ATP-dependent proteases. In addition to function with removals of abnormal peptides in the cells, ClpYQ degrades regulatory proteins if necessary and thus let cells adjust to various environmental conditions. In E. coli, SulA, RcsA, RpoH and TraJ as well as RNase R, have been identified as natural protein substrates of ClpYQ. ClpYQ contains ClpY and ClpQ. The ATPase ClpY is responsible for protein recognition, unfolding, and translocation into the catalytic core of ClpQ. In this study, we use an indirect identification strategy to screen possible ClpY targets with E. coli K12 proteome chips. The chip assay results showed that YbaB strongly bound to ClpY. We used yeast two-hybrid assay to confirm the interactions between ClpY and YbaB protein and determined the Kd between ClpY and YbaB by quartz crystal microbalance. Furthermore, we validated that YbaB was successfully degraded by ClpYQ protease activity using ClpYQ in vitro and in vivo degradation assay. These findings demonstrated the YbaB is a novel substrate of ClpYQ protease. This work also successfully demonstrated that with the use of recognition element of a protease can successfully screen its substrates by indirect proteome chip screening assay.
Collapse
Affiliation(s)
- Chih-Hsuan Tsai
- From the ‡Department of Agricultural Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan
| | - Yu-Hsuan Ho
- §Graduate Institute of Systems Biology and Bioinformatics, National Central University, No. 300, Jhongda Rd., Jhongli 32001, Taiwan.,¶Department of Biomedical Sciences and Engineering, National Central University, No. 300, Jhongda Rd., Jhongli 32001, Taiwan
| | - Tzu-Cheng Sung
- §Graduate Institute of Systems Biology and Bioinformatics, National Central University, No. 300, Jhongda Rd., Jhongli 32001, Taiwan.,¶Department of Biomedical Sciences and Engineering, National Central University, No. 300, Jhongda Rd., Jhongli 32001, Taiwan
| | - Whei-Fen Wu
- From the ‡Department of Agricultural Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan;
| | - Chien-Sheng Chen
- §Graduate Institute of Systems Biology and Bioinformatics, National Central University, No. 300, Jhongda Rd., Jhongli 32001, Taiwan; .,¶Department of Biomedical Sciences and Engineering, National Central University, No. 300, Jhongda Rd., Jhongli 32001, Taiwan
| |
Collapse
|
15
|
Balogh D, Dahmen M, Stahl M, Poreba M, Gersch M, Drag M, Sieber SA. Insights into ClpXP proteolysis: heterooligomerization and partial deactivation enhance chaperone affinity and substrate turnover in Listeria monocytogenes. Chem Sci 2016; 8:1592-1600. [PMID: 28451288 PMCID: PMC5361862 DOI: 10.1039/c6sc03438a] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 10/26/2016] [Indexed: 01/04/2023] Open
Abstract
Caseinolytic proteases (ClpP) are important for recognition and controlled degradation of damaged proteins. While the majority of bacterial organisms utilize only a single ClpP, Listeria monocytogenes expresses two isoforms (LmClpP1 and LmClpP2). LmClpPs assemble into either a LmClpP2 homocomplex or a LmClpP1/2 heterooligomeric complex. The heterocomplex in association with the chaperone ClpX, exhibits a boost in proteolytic activity for unknown reasons. Here, we use a combined chemical and biochemical strategy to unravel two activation principles of LmClpPs. First, determination of apparent affinity constants revealed a 7-fold elevated binding affinity between the LmClpP1/2 heterocomplex and ClpX, compared to homooligomeric LmClpP2. This tighter interaction favors the formation of the proteolytically active complex between LmClpX and LmClpP1/2 and thereby accelerating the overall turnover. Second, screening a diverse library of fluorescent labeled peptides and proteins with various ClpP mutants allowed the individual analysis of substrate preferences for both isoforms within the heterocomplex. In addition to Leu and Met, LmClpP2 preferred a long aliphatic chain (2-Aoc) in the P1 position for cleavage. Strikingly, design and synthesis of a corresponding 2-Aoc chloromethyl ketone inhibitor resulted in stimulation of proteolysis by 160% when LmClpP2 was partially alkylated on 20% of the active sites. Determination of apparent affinity constants also revealed an elevated complex stability between partially modified LmClpP2 and the cognate chaperone LmClpX. Thus, the stimulation of proteolysis through enhanced binding to the chaperone seems to be a characteristic feature of LmClpPs.
Collapse
Affiliation(s)
- Dóra Balogh
- Center for Integrated Protein Science at the Department of Chemistry , Technische Universität München , Lichtenbergstraße 4 , Garching bei München , D-85747 , Germany .
| | - Maria Dahmen
- Center for Integrated Protein Science at the Department of Chemistry , Technische Universität München , Lichtenbergstraße 4 , Garching bei München , D-85747 , Germany .
| | - Matthias Stahl
- Center for Integrated Protein Science at the Department of Chemistry , Technische Universität München , Lichtenbergstraße 4 , Garching bei München , D-85747 , Germany .
| | - Marcin Poreba
- Department of Bioorganic Chemistry , Faculty of Chemistry , Wrocław University of Technology , Wybrzeże Wyspiańskiego 27 , 50-370 Wrocław , Poland
| | - Malte Gersch
- Center for Integrated Protein Science at the Department of Chemistry , Technische Universität München , Lichtenbergstraße 4 , Garching bei München , D-85747 , Germany .
| | - Marcin Drag
- Department of Bioorganic Chemistry , Faculty of Chemistry , Wrocław University of Technology , Wybrzeże Wyspiańskiego 27 , 50-370 Wrocław , Poland
| | - Stephan A Sieber
- Center for Integrated Protein Science at the Department of Chemistry , Technische Universität München , Lichtenbergstraße 4 , Garching bei München , D-85747 , Germany .
| |
Collapse
|
16
|
Vass RH, Zeinert RD, Chien P. Protease regulation and capacity during Caulobacter growth. Curr Opin Microbiol 2016; 34:75-81. [PMID: 27543838 DOI: 10.1016/j.mib.2016.07.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 07/22/2016] [Indexed: 11/26/2022]
Abstract
Cell growth requires the removal of proteins that are unwanted or toxic. In bacteria, AAA+ proteases like the Clp family and Lon selectively destroy proteins defined by intrinsic specificity or adaptors. Caulobacter crescentus is a gram-negative bacterium that undergoes an obligate developmental transition every cell division cycle. Here we highlight recent work that reveals how a hierarchy of adaptors targets the degradation of key proteins at specific times during this cell cycle, integrating protein destruction with other cues. We describe recent insight into how Caulobacter manages DNA replication and repair through Lon and Clp proteases. Because proteases must manage a broad substrate repertoire there must be methods to compensate for protease saturation and we discuss these scenarios.
Collapse
Affiliation(s)
- Robert H Vass
- Department of Biochemistry and Molecular Biology, Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst, USA
| | - Rilee D Zeinert
- Department of Biochemistry and Molecular Biology, Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst, USA
| | - Peter Chien
- Department of Biochemistry and Molecular Biology, Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst, USA.
| |
Collapse
|
17
|
Lavey NP, Coker JA, Ruben EA, Duerfeldt AS. Sclerotiamide: The First Non-Peptide-Based Natural Product Activator of Bacterial Caseinolytic Protease P. JOURNAL OF NATURAL PRODUCTS 2016; 79:1193-1197. [PMID: 26967980 PMCID: PMC4841720 DOI: 10.1021/acs.jnatprod.5b01091] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Caseinolytic protease P (ClpP) maintains essential roles in bacterial homeostasis. As such, both the inhibition and activation of this enzyme result in bactericidal activity, making ClpP a promising target for antibacterial drug development. Herein, we report the results of a fluorescence-based screen of ∼450 structurally diverse fungal and bacterial secondary metabolites. Sclerotiamide (1), a paraherquamide-related indolinone, was identified as the first non-peptide-based natural product activator of ClpP. Structure-activity relationships arising from the initial screen, preliminary biochemical evaluation of 1, and rationale for the exploitation of this chemotype to develop novel ClpP activators are presented.
Collapse
Affiliation(s)
- Nathan P. Lavey
- Institute for Natural Products Applications and Research Technologies, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
- Department of Chemistry & Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| | - Jesse A. Coker
- Institute for Natural Products Applications and Research Technologies, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
- Department of Chemistry & Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| | - Eliza A. Ruben
- Department of Chemistry & Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
- Protein Production Core, University of Oklahoma COBRE in Structural Biology, Norman, Oklahoma 73019, United States
| | - Adam S. Duerfeldt
- Institute for Natural Products Applications and Research Technologies, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
- Department of Chemistry & Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| |
Collapse
|
18
|
Li M, Kandror O, Akopian T, Dharkar P, Wlodawer A, Maurizi MR, Goldberg AL. Structure and Functional Properties of the Active Form of the Proteolytic Complex, ClpP1P2, from Mycobacterium tuberculosis. J Biol Chem 2016; 291:7465-76. [PMID: 26858247 PMCID: PMC4817177 DOI: 10.1074/jbc.m115.700344] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 02/05/2016] [Indexed: 12/11/2022] Open
Abstract
The ClpP protease complex and its regulatory ATPases, ClpC1 and ClpX, inMycobacterium tuberculosis(Mtb) are essential and, therefore, promising drug targets. TheMtbClpP protease consists of two heptameric rings, one composed of ClpP1 and the other of ClpP2 subunits. Formation of the enzymatically active ClpP1P2 complex requires binding of N-blocked dipeptide activators. We have found a new potent activator, benzoyl-leucine-leucine (Bz-LL), that binds with higher affinity and promotes 3-4-fold higher peptidase activity than previous activators. Bz-LL-activated ClpP1P2 specifically stimulates the ATPase activity ofMtbClpC1 and ClpX. The ClpC1P1P2 and ClpXP1P2 complexes exhibit 2-3-fold enhanced ATPase activity, peptide cleavage, and ATP-dependent protein degradation. The crystal structure of ClpP1P2 with bound Bz-LL was determined at a resolution of 3.07 Å and with benzyloxycarbonyl-Leu-Leu (Z-LL) bound at 2.9 Å. Bz-LL was present in all 14 active sites, whereas Z-LL density was not resolved. Surprisingly, Bz-LL adopts opposite orientations in ClpP1 and ClpP2. In ClpP1, Bz-LL binds with the C-terminal leucine side chain in the S1 pocket. One C-terminal oxygen is close to the catalytic serine, whereas the other contacts backbone amides in the oxyanion hole. In ClpP2, Bz-LL binds with the benzoyl group in the S1 pocket, and the peptide hydrogen bonded between parallel β-strands. The ClpP2 axial loops are extended, forming an open axial channel as has been observed with bound ADEP antibiotics. Thus occupancy of the active sites of ClpP allosterically alters sites on the surfaces thereby affecting the association of ClpP1 and ClpP2 rings, interactions with regulatory ATPases, and entry of protein substrates.
Collapse
Affiliation(s)
- Mi Li
- From the Macromolecular Crystallography Laboratory, NCI, National Institutes of Health and Basic Research Program, Leidos Biomedical Research, Frederick National Laboratory, Frederick, Maryland 21702
| | - Olga Kandror
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, and
| | - Tatos Akopian
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, and
| | - Poorva Dharkar
- the Laboratory of Cell Biology, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892
| | - Alexander Wlodawer
- From the Macromolecular Crystallography Laboratory, NCI, National Institutes of Health and
| | - Michael R Maurizi
- the Laboratory of Cell Biology, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892
| | - Alfred L Goldberg
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, and
| |
Collapse
|
19
|
Gersch M, Stahl M, Poreba M, Dahmen M, Dziedzic A, Drag M, Sieber SA. Barrel-shaped ClpP Proteases Display Attenuated Cleavage Specificities. ACS Chem Biol 2016; 11:389-99. [PMID: 26606371 DOI: 10.1021/acschembio.5b00757] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
ClpP is a self-compartmentalizing protease with crucial roles in bacterial and mitochondrial protein quality control. Although the ClpP homocomplex is composed of 14 equivalent active sites, it degrades a multitude of substrates to small peptides, demonstrating its capability to carry out diverse cleavage reactions. Here, we show that ClpP proteases from E. coli, S. aureus, and human mitochondria exhibit preferences for certain amino acids in the P1, P2, and P3 positions using a tailored fluorogenic substrate library. However, this high specificity is not retained during proteolysis of endogenous substrates as shown by mass spectrometric analysis of peptides produced in ClpXP-mediated degradation reactions. Our data suggest a mechanism that implicates the barrel-shaped architecture of ClpP not only in shielding the active sites to prevent uncontrolled proteolysis but also in providing high local substrate concentrations to enable efficient proteolytic processing. Furthermore, we introduce customized fluorogenic substrates with unnatural amino acids that greatly surpass the sensitivity of previously used tools. We used these to profile the activity of cancer-patient- and Perrault-syndrome-derived ClpP mutant proteins.
Collapse
Affiliation(s)
- Malte Gersch
- Center for Integrated
Protein Science (CIPSM), Technische Universität München, Department of Chemistry, Lichtenbergstraße 4, 85747 Garching, Germany
| | - Matthias Stahl
- Center for Integrated
Protein Science (CIPSM), Technische Universität München, Department of Chemistry, Lichtenbergstraße 4, 85747 Garching, Germany
| | - Marcin Poreba
- Department
of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Maria Dahmen
- Center for Integrated
Protein Science (CIPSM), Technische Universität München, Department of Chemistry, Lichtenbergstraße 4, 85747 Garching, Germany
| | - Anna Dziedzic
- Department
of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Marcin Drag
- Department
of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Stephan A. Sieber
- Center for Integrated
Protein Science (CIPSM), Technische Universität München, Department of Chemistry, Lichtenbergstraße 4, 85747 Garching, Germany
| |
Collapse
|
20
|
Affiliation(s)
- Ratnesh Chandra Mishra
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | - Anil Grover
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| |
Collapse
|
21
|
Hackl MW, Lakemeyer M, Dahmen M, Glaser M, Pahl A, Lorenz-Baath K, Menzel T, Sievers S, Böttcher T, Antes I, Waldmann H, Sieber SA. Phenyl Esters Are Potent Inhibitors of Caseinolytic Protease P and Reveal a Stereogenic Switch for Deoligomerization. J Am Chem Soc 2015; 137:8475-83. [PMID: 26083639 DOI: 10.1021/jacs.5b03084] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Caseinolytic protease P (ClpP) represents a central bacterial degradation machinery that is involved in cell homeostasis and pathogenicity. The functional role of ClpP has been studied by genetic knockouts and through the use of beta-lactones, which remain the only specific inhibitors of ClpP discovered to date. Beta-lactones have served as chemical tools to manipulate ClpP in several organisms; however, their potency, selectivity and stability is limited. Despite detailed structural insights into the composition and conformational flexibility of the ClpP active site, no rational efforts to design specific non-beta-lactone inhibitors have been reported to date. In this work, an unbiased screen of more than 137 000 compounds was used to identify five phenyl ester compounds as highly potent ClpP inhibitors that were selective for bacterial, but not human ClpP. The potency of phenyl esters largely exceeded that of beta-lactones in ClpP peptidase and protease inhibition assays and displayed unique target selectivity in living S. aureus cells. Analytical studies revealed that while phenyl esters are cleaved like native peptide substrates, they remain covalently trapped as acyl-enzyme intermediates in the active site. The synthesis of 36 derivatives and subsequent structure-activity relationship (SAR) studies provided insights into conserved structural elements that are important for inhibition potency and acylation reactivity. Moreover, the stereochemistry of a methyl-substituent at the alpha position to the ester, resembling amino acid side chains in peptide substrates, impacted ClpP complex stability, causing either dissociation into heptamers or retention of the tetradecameric state. Mechanistic insights into this intriguing stereo switch and the phenyl ester binding mode were obtained by molecular docking experiments.
Collapse
Affiliation(s)
- Mathias W Hackl
- †Center for Integrated Protein Science at the Department of Chemistry, Technische Universität München, Lichtenbergstrasse 4, Garching, D-85747, Germany
| | - Markus Lakemeyer
- †Center for Integrated Protein Science at the Department of Chemistry, Technische Universität München, Lichtenbergstrasse 4, Garching, D-85747, Germany
| | - Maria Dahmen
- †Center for Integrated Protein Science at the Department of Chemistry, Technische Universität München, Lichtenbergstrasse 4, Garching, D-85747, Germany
| | - Manuel Glaser
- ‡Center for Integrated Protein Science at the Department of Life Sciences, Technische Universität München, Emil-Erlenmeyer-Forum 8, D-85354 Freising, Germany
| | - Axel Pahl
- †Center for Integrated Protein Science at the Department of Chemistry, Technische Universität München, Lichtenbergstrasse 4, Garching, D-85747, Germany
| | - Katrin Lorenz-Baath
- †Center for Integrated Protein Science at the Department of Chemistry, Technische Universität München, Lichtenbergstrasse 4, Garching, D-85747, Germany
| | - Thomas Menzel
- †Center for Integrated Protein Science at the Department of Chemistry, Technische Universität München, Lichtenbergstrasse 4, Garching, D-85747, Germany
| | - Sonja Sievers
- §Max-Planck-Institut für Molekulare Physiologie, Abteilung Chemische Biologie, Otto-Hahn-Strasse 11, D-44227 Dortmund, Germany
| | - Thomas Böttcher
- ⊥Department of Chemistry, Universität Konstanz, Universitätsstrasse 10, D-78457 Konstanz, Germany
| | - Iris Antes
- ‡Center for Integrated Protein Science at the Department of Life Sciences, Technische Universität München, Emil-Erlenmeyer-Forum 8, D-85354 Freising, Germany
| | - Herbert Waldmann
- §Max-Planck-Institut für Molekulare Physiologie, Abteilung Chemische Biologie, Otto-Hahn-Strasse 11, D-44227 Dortmund, Germany.,∥Technische Universität Dortmund, Fakultät für Chemie und Chemische Biologie, Otto-Hahn-Strasse 6, D-44221 Dortmund, Germany
| | - Stephan A Sieber
- †Center for Integrated Protein Science at the Department of Chemistry, Technische Universität München, Lichtenbergstrasse 4, Garching, D-85747, Germany
| |
Collapse
|
22
|
Dahmen M, Vielberg MT, Groll M, Sieber SA. Struktur und Mechanismus des Heterokomplexes der caseinolytischen Protease ClpP1/2 aus Listeria monocytogenes. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201409325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
23
|
Akopian T, Kandror O, Tsu C, Lai JH, Wu W, Liu Y, Zhao P, Park A, Wolf L, Dick LR, Rubin EJ, Bachovchin W, Goldberg AL. Cleavage Specificity of Mycobacterium tuberculosis ClpP1P2 Protease and Identification of Novel Peptide Substrates and Boronate Inhibitors with Anti-bacterial Activity. J Biol Chem 2015; 290:11008-20. [PMID: 25759383 DOI: 10.1074/jbc.m114.625640] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Indexed: 11/06/2022] Open
Abstract
The ClpP1P2 protease complex is essential for viability in Mycobacteria tuberculosis and is an attractive drug target. Using a fluorogenic tripeptide library (Ac-X3X2X1-aminomethylcoumarin) and by determining specificity constants (kcat/Km), we show that ClpP1P2 prefers Met ≫ Leu > Phe > Ala in the X1 position, basic residues or Trp in the X2 position, and Pro ≫ Ala > Trp in the X3 position. We identified peptide substrates that are hydrolyzed up to 1000 times faster than the standard ClpP substrate. These positional preferences were consistent with cleavage sites in the protein GFPssrA by ClpXP1P2. Studies of ClpP1P2 with inactive ClpP1 or ClpP2 indicated that ClpP1 was responsible for nearly all the peptidase activity, whereas both ClpP1 and ClpP2 contributed to protein degradation. Substrate-based peptide boronates were synthesized that inhibit ClpP1P2 peptidase activity in the submicromolar range. Some of them inhibited the growth of Mtb cells in the low micromolar range indicating that cleavage specificity of Mtb ClpP1P2 can be used to design novel anti-bacterial agents.
Collapse
Affiliation(s)
- Tatos Akopian
- From the Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115
| | - Olga Kandror
- From the Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115
| | - Christopher Tsu
- Department of Biochemistry, Takeda Pharmaceuticals International Co., Cambridge, Massachusetts 02139
| | - Jack H Lai
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts 02111, and
| | - Wengen Wu
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts 02111, and
| | - Yuxin Liu
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts 02111, and
| | - Peng Zhao
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts 02111, and
| | - Annie Park
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts 02115
| | - Lisa Wolf
- From the Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115
| | - Lawrence R Dick
- Department of Biochemistry, Takeda Pharmaceuticals International Co., Cambridge, Massachusetts 02139
| | - Eric J Rubin
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts 02115
| | - William Bachovchin
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts 02111, and
| | - Alfred L Goldberg
- From the Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115,
| |
Collapse
|
24
|
AAA+ chaperones and acyldepsipeptides activate the ClpP protease via conformational control. Nat Commun 2015; 6:6320. [PMID: 25695750 DOI: 10.1038/ncomms7320] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 01/14/2015] [Indexed: 11/08/2022] Open
Abstract
The Clp protease complex degrades a multitude of substrates, which are engaged by a AAA+ chaperone such as ClpX and subsequently digested by the dynamic, barrel-shaped ClpP protease. Acyldepsipeptides (ADEPs) are natural product-derived antibiotics that activate ClpP for chaperone-independent protein digestion. Here we show that both protein and small-molecule activators of ClpP allosterically control the ClpP barrel conformation. We dissect the catalytic mechanism with chemical probes and show that ADEP in addition to opening the axial pore directly stimulates ClpP activity through cooperative binding. ClpP activation thus reaches beyond active site accessibility and also involves conformational control of the catalytic residues. Moreover, we demonstrate that substoichiometric amounts of ADEP potently prevent binding of ClpX to ClpP and, at the same time, partially inhibit ClpP through conformational perturbance. Collectively, our results establish the hydrophobic binding pocket as a major conformational regulatory site with implications for both ClpXP proteolysis and ADEP-based anti-bacterial activity.
Collapse
|
25
|
Dahmen M, Vielberg MT, Groll M, Sieber SA. Structure and mechanism of the caseinolytic protease ClpP1/2 heterocomplex from Listeria monocytogenes. Angew Chem Int Ed Engl 2015; 54:3598-602. [PMID: 25630955 DOI: 10.1002/anie.201409325] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2014] [Revised: 11/10/2014] [Indexed: 11/09/2022]
Abstract
Listeria monocytogenes is a devastating bacterial pathogen. Its virulence and intracellular stress tolerance are supported by caseinolytic protease P (ClpP), an enzyme that is conserved among bacteria. L. monocytogenes expresses two ClpP isoforms that are only distantly related by sequence and differ in catalysis, oligomerization, active-site composition, and N-terminal interaction sites for associated AAA(+) chaperones. The crystal structure of the ClpP1/2 heterocomplex from L. monocytogenes was solved, and in combination with biochemical studies, it provides insights into the mode of action. The results demonstrate that structural interlocking of LmClpP1 with LmClpP2 leads to the formation of a tetradecamer, aligns all 14 active sites, and enhances proteolytic activity. Furthermore, the catalytic center was identified as being responsible for the transient stability of ClpPs.
Collapse
Affiliation(s)
- Maria Dahmen
- Center for Integrated Protein Science Munich CIPSM, Department of Chemistry, Technische Universität München, Lichtenbergstr. 4, 85747 Garching (Germany)
| | | | | | | |
Collapse
|
26
|
Farrand AJ, Friedman DB, Reniere ML, Ingmer H, Frees D, Skaar EP. Proteomic analyses of iron-responsive, Clp-dependent changes in Staphylococcus aureus. Pathog Dis 2015; 73:ftv004. [PMID: 25743475 DOI: 10.1093/femspd/ftv004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Staphylococcus aureus is a frequent human pathogen that is capable of causing a wide range of life-threatening infections. A promising antibacterial target is the Clp proteolytic system, which performs the vital function of maintaining protein turnover within the cell. This system primarily impacts the bacterial response to various stresses by degrading specific proteins but can also regulate a number of physiological processes through protein degradation. A critical stress to which S. aureus must adapt during infection of a vertebrate host is nutrient iron limitation. We have previously shown that the Clp system impacts expression of genes required for heme-iron acquisition during iron limitation and is required for staphylococcal infection. Based on these data, we sought to further define the Clp-dependent impact on S. aureus during iron limitation by characterizing the proteomic profiles of mutants inactivated for components of the Clp protease, including ClpP, ClpC and ClpX, in high- and low-iron conditions. Our results reveal numerous proteins altered in abundance in the clp mutants and provide new insights into the staphylococcal proteolytic network during nutrient iron limitation.
Collapse
Affiliation(s)
- Allison J Farrand
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - David B Friedman
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37232, USA
| | - Michelle L Reniere
- Department of Molecular & Cell Biology, University of California, Berkeley, CA 94720-3202, USA
| | - Hanne Ingmer
- Faculty of Life Sciences, Department of Veterinary Disease Biology, University of Copenhagen, Stigbøjlen 4, DK-1870 Frederiksberg C, Denmark
| | - Dorte Frees
- Faculty of Life Sciences, Department of Veterinary Disease Biology, University of Copenhagen, Stigbøjlen 4, DK-1870 Frederiksberg C, Denmark
| | - Eric P Skaar
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| |
Collapse
|
27
|
Liu K, Ologbenla A, Houry WA. Dynamics of the ClpP serine protease: a model for self-compartmentalized proteases. Crit Rev Biochem Mol Biol 2014; 49:400-12. [PMID: 24915503 DOI: 10.3109/10409238.2014.925421] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
ClpP is a highly conserved serine protease present in most bacterial species and in the mitochondria of mammalian cells. It forms a cylindrical tetradecameric complex arranged into two stacked heptamers. The two heptameric rings of ClpP enclose a roughly spherical proteolytic chamber of about 51 Å in diameter with 14 Ser-His-Asp proteolytic active sites. ClpP typically forms complexes with unfoldase chaperones of the AAA+ superfamily. Chaperones dock on one or both ends of the ClpP double ring cylindrical structure. Dynamics in the ClpP structure is critical for its function. Polypeptides targeted for degradation by ClpP are initially recognized by the AAA+ chaperones. Polypeptides are unfolded by the chaperones and then translocated through the ClpP axial pores, present on both ends of the ClpP cylinder, into the ClpP catalytic chamber. The axial pores of ClpP are gated by dynamic axial loops that restrict or allow substrate entry. As a processive protease, ClpP degrades substrates to generate peptides of about 7-8 residues. Based on structural, biochemical and theoretical studies, the exit of these polypeptides from the proteolytic chamber is proposed to be mediated by the dynamics of the ClpP oligomer. The ClpP cylinder has been found to exist in at least three conformations, extended, compact and compressed, that seem to represent different states of ClpP during its proteolytic functional cycle. In this review, we discuss the link between ClpP dynamics and its activity. We propose that such dynamics also exist in other cylindrical proteases such as HslV and the proteasome.
Collapse
Affiliation(s)
- Kaiyin Liu
- Department of Biochemistry, University of Toronto , Toronto, Ontario , Canada
| | | | | |
Collapse
|
28
|
Gersch M, Kolb R, Alte F, Groll M, Sieber SA. Disruption of oligomerization and dehydroalanine formation as mechanisms for ClpP protease inhibition. J Am Chem Soc 2013; 136:1360-6. [PMID: 24106749 DOI: 10.1021/ja4082793] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Over 100 protease inhibitors are currently used in the clinics, and most of them use blockage of the active site for their mode of inhibition. Among the protease drug targets are several enzymes for which the correct multimeric assembly is crucial to their activity, such as the proteasome and the HIV protease. Here, we present a novel mechanism of protease inhibition that relies on active-site-directed small molecules that disassemble the protease complex. We show the applicability of this mechanism within the ClpP protease family, whose members are tetradecameric serine proteases and serve as regulators of several cellular processes, including homeostasis and virulence. Compound binding to ClpP in a substoichiometric fashion triggers the formation of completely inactive heptamers. Moreover, we report the selective β-sultam-induced dehydroalanine formation of the active site serine. This reaction proceeds through sulfonylation and subsequent elimination, thereby obliterating the catalytic charge relay system. The identity of the dehydroalanine was confirmed by mass spectrometry and crystallography. Activity-based protein profiling experiments suggest the formation of a dehydroalanine moiety in living S. aureus cells upon β-sultam treatment. Collectively, these findings extend our view on multicomponent protease inhibition that until now has mainly relied on blockage of the active site or occupation of a regulatory allosteric site.
Collapse
Affiliation(s)
- Malte Gersch
- Center for Integrated Protein Science at the Department of Chemistry, Institute of Advanced Studies IAS and ‡Center for Integrated Protein Science at the Department of Chemistry, Technische Universität München , Lichtenbergstrasse 4, Garching D-85747, Germany
| | | | | | | | | |
Collapse
|
29
|
Kravats AN, Tonddast-Navaei S, Bucher RJ, Stan G. Asymmetric processing of a substrate protein in sequential allosteric cycles of AAA+ nanomachines. J Chem Phys 2013; 139:121921. [DOI: 10.1063/1.4817410] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
30
|
Regulation of host hemoglobin binding by the Staphylococcus aureus Clp proteolytic system. J Bacteriol 2013; 195:5041-50. [PMID: 23995637 DOI: 10.1128/jb.00505-13] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Protein turnover is a key process for bacterial survival mediated by intracellular proteases. Proteolytic degradation reduces the levels of unfolded and misfolded peptides that accumulate in the cell during stress conditions. Three intracellular proteases, ClpP, HslV, and FtsH, have been identified in the Gram-positive bacterium Staphylococcus aureus, a pathogen responsible for significant morbidity and mortality worldwide. Consistent with their crucial role in protein turnover, ClpP, HslV, and FtsH affect a number of cellular processes, including metabolism, stress responses, and virulence. The ClpP protease is believed to be the principal degradation machinery in S. aureus. This study sought to identify the effect of the Clp protease on the iron-regulated surface determinant (Isd) system, which extracts heme-iron from host hemoglobin during infection and is critical to S. aureus pathogenesis. Inactivation of components of the Clp protease alters abundance of several Isd proteins, including the hemoglobin receptor IsdB. Furthermore, the observed changes in IsdB abundance are the result of transcriptional regulation, since transcription of isdB is decreased by clpP or clpX inactivation. In contrast, inactivation of clpC enhances isdB transcription and protein abundance. Loss of clpP or clpX impairs host hemoglobin binding and utilization and results in severe virulence defects in a systemic mouse model of infection. These findings suggest that the Clp proteolytic system is important for regulating nutrient iron acquisition in S. aureus. The Clp protease and Isd complex are widely conserved in bacteria; therefore, these data reveal a novel Clp-dependent regulation pathway that may be present in other bacterial pathogens.
Collapse
|
31
|
Li T, Lucius AL. Examination of the polypeptide substrate specificity for Escherichia coli ClpA. Biochemistry 2013; 52:4941-54. [PMID: 23773038 DOI: 10.1021/bi400178q] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Enzyme-catalyzed protein unfolding is essential for a large array of biological functions, including microtubule severing, membrane fusion, morphogenesis and trafficking of endosomes, protein disaggregation, and ATP-dependent proteolysis. These enzymes are all members of the ATPases associated with various cellular activity (AAA+) superfamily of proteins. Escherichia coli ClpA is a hexameric ring ATPase responsible for enzyme-catalyzed protein unfolding and translocation of a polypeptide chain into the central cavity of the tetradecameric E. coli ClpP serine protease for proteolytic degradation. Further, ClpA also uses its protein unfolding activity to catalyze protein remodeling reactions in the absence of ClpP. ClpA recognizes and binds a variety of protein tags displayed on proteins targeted for degradation. In addition, ClpA binds unstructured or poorly structured proteins containing no specific tag sequence. Despite this, a quantitative description of the relative binding affinities for these different substrates is not available. Here we show that ClpA binds to the 11-amino acid SsrA tag with an affinity of 200 ± 30 nM. However, when the SsrA sequence is incorporated at the carboxy terminus of a 30-50-amino acid substrate exhibiting little secondary structure, the affinity constant decreases to 3-5 nM. These results indicate that additional contacts beyond the SsrA sequence are required for maximal binding affinity. Moreover, ClpA binds to various lengths of the intrinsically unstructured protein, α-casein, with an affinity of ∼30 nM. Thus, ClpA does exhibit modest specificity for SsrA when incorporated into an unstructured protein. Moreover, incorporating these results with the known structural information suggests that SsrA makes direct contact with the domain 2 loop in the axial channel and additional substrate length is required for additional contacts within domain 1.
Collapse
Affiliation(s)
- Tao Li
- Department of Chemistry, The University of Alabama at Birmingham , 1530 3rd Avenue South, Birmingham, Alabama 35294-1240, United States
| | | |
Collapse
|
32
|
Gersch M, Gut F, Korotkov VS, Lehmann J, Böttcher T, Rusch M, Hedberg C, Waldmann H, Klebe G, Sieber SA. The mechanism of caseinolytic protease (ClpP) inhibition. Angew Chem Int Ed Engl 2013; 52:3009-14. [PMID: 23361916 DOI: 10.1002/anie.201204690] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Revised: 10/29/2012] [Indexed: 11/10/2022]
Affiliation(s)
- Malte Gersch
- Center for Integrated Protein Science Munich, Technische Universität München, Department of Chemistry, Institute of Advanced Studies, Lichtenbergstrasse 4, 85747 Garching, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Gersch M, Gut F, Korotkov VS, Lehmann J, Böttcher T, Rusch M, Hedberg C, Waldmann H, Klebe G, Sieber SA. Der Inhibitionsmechanismus der caseinolytischen Protease (ClpP). Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201204690] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
34
|
Xie F, Zhang Y, Li G, Zhou L, Liu S, Wang C. The ClpP protease is required for the stress tolerance and biofilm formation in Actinobacillus pleuropneumoniae. PLoS One 2013; 8:e53600. [PMID: 23326465 PMCID: PMC3543445 DOI: 10.1371/journal.pone.0053600] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2012] [Accepted: 11/30/2012] [Indexed: 01/12/2023] Open
Abstract
In the respiratory tract and lung tissue, a balanced physiological response is essential for Actinobacillus pleuropneumoniae to survive various types of challenges. ClpP, the catalytic core of the Clp proteolytic complex, is involved in various stresses response and regulation of biofilm formation in many pathogenic bacteria. To investigate the role of ClpP in the virulence of A. pleuropneumoniae, the clpP gene was deleted by homologous recombination, resulting in the mutant strain S8ΔclpP. The reduced growth of S8ΔclpP mutant at high temperatures and under several other stress conditions suggests that the ClpP protein is required for the stress tolerance of A. pleuropneumoniae. Interestingly, we observed that the S8ΔclpP mutant exhibited an increased ability to take up iron in vitro compared to the wild-type strain. We also found that the cells without ClpP displayed rough and irregular surfaces and increased cell volume relative to the wild-type strain using scanning electron microscopy (SEM). Confocal laser scanning microscopy (CLSM) revealed that the S8ΔclpP mutant showed decreased biofilm formation compared to the wild-type strain. We examined the transcriptional profiles of the wild type S8 and the S8ΔclpP mutant strains of A. pleuropneumoniae using RNA sequencing. Our analysis revealed that the expression of 16 genes was changed by the deletion of the clpP gene. The data presented in this study illustrate the important role of ClpP protease in the stress response, iron acquisition, cell morphology and biofilm formation related to A. pleuropneumoniae and further suggest a putative role of ClpP protease in virulence regulation.
Collapse
Affiliation(s)
- Fang Xie
- State Key Laboratory of Veterinary Biotechnology, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Yanhe Zhang
- State Key Laboratory of Veterinary Biotechnology, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Gang Li
- State Key Laboratory of Veterinary Biotechnology, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Long Zhou
- State Key Laboratory of Veterinary Biotechnology, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Siguo Liu
- State Key Laboratory of Veterinary Biotechnology, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Chunlai Wang
- State Key Laboratory of Veterinary Biotechnology, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
- * E-mail:
| |
Collapse
|
35
|
Derrien B, Majeran W, Effantin G, Ebenezer J, Friso G, van Wijk KJ, Steven AC, Maurizi MR, Vallon O. The purification of the Chlamydomonas reinhardtii chloroplast ClpP complex: additional subunits and structural features. PLANT MOLECULAR BIOLOGY 2012; 80:189-202. [PMID: 22772861 PMCID: PMC3500782 DOI: 10.1007/s11103-012-9939-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Accepted: 06/28/2012] [Indexed: 05/23/2023]
Abstract
The ClpP peptidase is a major constituent of the proteolytic machinery of bacteria and organelles. The chloroplast ClpP complex is unusual, in that it associates a large number of subunits, one of which (ClpP1) is encoded in the chloroplast, the others in the nucleus. The complexity of these large hetero-oligomeric complexes has been a major difficulty in their overproduction and biochemical characterization. In this paper, we describe the purification of native chloroplast ClpP complex from the green alga Chlamydomonas reinhardtii, using a strain that carries the Strep-tag II at the C-terminus of the ClpP1 subunit. Similar to land plants, the algal complex comprises active and inactive subunits (3 ClpP and 5 ClpR, respectively). Evidence is presented that a sub-complex can be produced by dissociation, comprising ClpP1 and ClpR1, 2, 3 and 4, similar to the ClpR-ring described in land plants. Our Chlamydomonas ClpP preparation also contains two ClpT subunits, ClpT3 and ClpT4, which like the land plant ClpT1 and ClpT2 show 2 Clp-N domains. ClpTs are believed to function in substrate binding and/or assembly of the two heptameric rings. Phylogenetic analysis indicates that ClpT subunits have appeared independently in Chlorophycean algae, in land plants and in dispersed cyanobacterial genomes. Negative staining electron microscopy shows that the Chlamydomonas complex retains the barrel-like shape of homo-oligomeric ClpPs, with 4 additional peripheral masses that we speculate represent either the additional IS1 domain of ClpP1 (a feature unique to algae) or ClpTs or extensions of ClpR subunits.
Collapse
Affiliation(s)
- Benoît Derrien
- UMR7141 CNRS/UPMC, Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Wojciech Majeran
- Department of Plant Biology, Cornell University, Ithaca, New York 14853
- Université Paris Diderot, Sorbonne Paris Cité, Institut des Sciences du Végétal, UPR 2355 CNRS, 1 Avenue de la Terrasse, 91198 Gif/Yvette cedex, France
| | - Grégory Effantin
- Laboratory of Structural Biology Research, NIAMS, NIH, Bethesda, USA
| | | | - Giulia Friso
- Department of Plant Biology, Cornell University, Ithaca, New York 14853
| | - Klaas J. van Wijk
- Department of Plant Biology, Cornell University, Ithaca, New York 14853
| | | | | | - Olivier Vallon
- UMR7141 CNRS/UPMC, Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France
| |
Collapse
|
36
|
The influence of ATP-dependent proteases on a variety of nucleoid-associated processes. J Struct Biol 2012; 179:181-92. [PMID: 22683345 DOI: 10.1016/j.jsb.2012.05.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Revised: 05/24/2012] [Accepted: 05/26/2012] [Indexed: 01/07/2023]
Abstract
ATP-dependent proteases are crucial components of all living cells and are involved in a variety of responses to physiological and environmental changes. Nucleoids are dynamic nucleoprotein complexes present in bacteria and eukaryotic organelles (mitochondria and plastids) and are the place where the majority of cellular responses to stress begin. These structures are actively remodeled in reaction to changing environmental and physiological conditions. The levels of nucleoid protein components (e.g. DNA-stabilizing proteins, transcription factors, replication proteins) therefore have to be continually regulated. ATP-dependent proteases have all the characteristics needed to fulfill this requirement. Some of them bind nucleic acids, but above all, they control and maintain the level of many DNA-binding proteins. In this review we will discuss the roles of the Lon, ClpAP, ClpXP, HslUV and FtsH proteases in the maintenance, stability, transcription and repair of DNA in eubacterial and mitochondrial nucleoids.
Collapse
|
37
|
Rosano GL, Bruch EM, Colombo CV, Ceccarelli EA. Toward a unified model of the action of CLP/HSP100 chaperones in chloroplasts. PLANT SIGNALING & BEHAVIOR 2012; 7:672-4. [PMID: 22580704 PMCID: PMC3442864 DOI: 10.4161/psb.19992] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
In chloroplasts, Hsp70 and Hsp100 chaperones have been long suspected to be the motors that provide the necessary energy for the import of precursor proteins destined to the organelle. The chaperones associate with the import translocon and meet the transit peptides as they emerge through the channel. After decades of active research, recent findings demonstrated that Hsp100 chaperones recognize transit peptides both in vitro and in vivo. Moreover, Hsp70 also plays a part in precursor import. The updated model of protein translocation into chloroplasts now presents new questions about the role of the chaperones in the process.
Collapse
|
38
|
Alexopoulos JA, Guarné A, Ortega J. ClpP: a structurally dynamic protease regulated by AAA+ proteins. J Struct Biol 2012; 179:202-10. [PMID: 22595189 DOI: 10.1016/j.jsb.2012.05.003] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Revised: 05/03/2012] [Accepted: 05/05/2012] [Indexed: 10/28/2022]
Abstract
Proteolysis is an important process for many aspects of bacterial physiology. Clp proteases carry out a large proportion of protein degradation in bacteria. These enzymes assemble in complexes that combine the protease ClpP and the unfoldase, ClpA or ClpX. ClpP oligomerizes as two stacked heptameric rings enclosing a central chamber containing the proteolytic sites. ClpX and ClpA assemble into hexameric rings that bind both axial surfaces of the ClpP tetradecamer forming a barrel-like complex. ClpP requires association with ClpA or ClpX to unfold and thread protein substrates through the axial pore into the inner chamber where degradation occurs. A gating mechanism regulated by the ATPase exists at the entry of the ClpP axial pore and involves the N-terminal regions of the ClpP protomers. These gating motifs are located at the axial regions of the tetradecamer but in most crystal structures they are not visible. We also lack structural information about the ClpAP or ClpXP complexes. Therefore, the structural details of how the axial gate in ClpP is regulated by the ATPases are unknown. Here, we review our current understanding of the conformational changes that ClpA or ClpX induce in ClpP to open the axial gate and increase substrate accessibility into the degradation chamber. Most of this knowledge comes from the recent crystal structures of ClpP in complex with acyldepsipeptides (ADEP) antibiotics. These small molecules are providing new insights into the gating mechanism of this protease because they imitate the interaction of ClpA/ClpX with ClpP and activate its protease activity.
Collapse
Affiliation(s)
- John A Alexopoulos
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4K1
| | | | | |
Collapse
|
39
|
Tsiatsiani L, Gevaert K, Van Breusegem F. Natural substrates of plant proteases: how can protease degradomics extend our knowledge? PHYSIOLOGIA PLANTARUM 2012; 145:28-40. [PMID: 22008056 DOI: 10.1111/j.1399-3054.2011.01534.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Despite the key role of proteolysis in various intensively studied biological processes, such as plant immunity, seed development and abiotic stress responses, our knowledge on the identity of natural protease substrates in plants remains scarce. In the genome of the model plant Arabidopsis thaliana, for instance, approximately 700 genes code for proteases. However, only a few natural substrates have been identified, mainly because of the previous lack of sensitive proteomics technologies enabling the identification of low abundant proteins, together with a delay in the implementation of these technologies in the field of plant research. Here, we review the current knowledge on the identity of natural plant protease substrates and describe recently established degradomics technologies that should allow proteome-wide studies of plant proteases in the near future.
Collapse
Affiliation(s)
- Liana Tsiatsiani
- Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052 Ghent, Belgium
| | | | | |
Collapse
|
40
|
Raju RM, Unnikrishnan M, Rubin DHF, Krishnamoorthy V, Kandror O, Akopian TN, Goldberg AL, Rubin EJ. Mycobacterium tuberculosis ClpP1 and ClpP2 function together in protein degradation and are required for viability in vitro and during infection. PLoS Pathog 2012; 8:e1002511. [PMID: 22359499 PMCID: PMC3280978 DOI: 10.1371/journal.ppat.1002511] [Citation(s) in RCA: 129] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Accepted: 12/14/2011] [Indexed: 11/24/2022] Open
Abstract
In most bacteria, Clp protease is a conserved, non-essential serine protease that regulates the response to various stresses. Mycobacteria, including Mycobacterium tuberculosis (Mtb) and Mycobacterium smegmatis, unlike most well studied prokaryotes, encode two ClpP homologs, ClpP1 and ClpP2, in a single operon. Here we demonstrate that the two proteins form a mixed complex (ClpP1P2) in mycobacteria. Using two different approaches, promoter replacement, and a novel system of inducible protein degradation, leading to inducible expression of clpP1 and clpP2, we demonstrate that both genes are essential for growth and that a marked depletion of either one results in rapid bacterial death. ClpP1P2 protease appears important in degrading missense and prematurely terminated peptides, as partial depletion of ClpP2 reduced growth specifically in the presence of antibiotics that increase errors in translation. We further show that the ClpP1P2 protease is required for the degradation of proteins tagged with the SsrA motif, a tag co-translationally added to incomplete protein products. Using active site mutants of ClpP1 and ClpP2, we show that the activity of each subunit is required for proteolysis, for normal growth of Mtb in vitro and during infection of mice. These observations suggest that the Clp protease plays an unusual and essential role in Mtb and may serve as an ideal target for antimycobacterial therapy. Due to the significant and rapid rise in multidrug resistant Mycobacterium tuberculosis (Mtb), there is an urgent need to validate novel drug targets for the treatment of tuberculosis. Here, we show that Clp protease is an ideal potential target. Mtb encodes two ClpP genes, ClpP1 and ClpP2, which associate together to form a single proteolytic complex, referred to as ClpP1P2. Both proteins are required for growth in vitro and in a mouse model of infection. Depletion of either protein results in rapid death of the bacteria. Interestingly, this is rare among bacteria, most of which have only one ClpP gene that is dispensable for normal growth. We also show that Clp protease plays an important quality control role by clearing abnormally produced proteins. As known antimycobacterial therapeutics increase errors in protein synthesis, inhibitors of ClpP1P2 protease in Mtb may prove synergistic with already existing agents.
Collapse
Affiliation(s)
- Ravikiran M. Raju
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Meera Unnikrishnan
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Daniel H. F. Rubin
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Vidhya Krishnamoorthy
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Olga Kandror
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Tatos N. Akopian
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Alfred L. Goldberg
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Eric J. Rubin
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
41
|
Gersch M, List A, Groll M, Sieber SA. Insights into structural network responsible for oligomerization and activity of bacterial virulence regulator caseinolytic protease P (ClpP) protein. J Biol Chem 2012; 287:9484-94. [PMID: 22291011 DOI: 10.1074/jbc.m111.336222] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The barrel-shaped caseinolytic protease P (ClpP) is a main virulence regulator in the bacterial pathogen Staphylococcus aureus (SaClpP). It consists of two heptameric rings forming a homotetradecamer with an inner chamber that houses the 14 active sites. We recently showed that SaClpP is able to adopt a compressed, inactive conformation. We present here the 2.3 Å resolution structure of SaClpP in its closed, active conformation as well as the structure of the S98A mutant. Comprehensive mutational analysis aiming at destabilizing one or the other or both conformations was able to pinpoint key residues involved in this catalytic switch and in the heptamer-heptamer interaction. By probing the active site serine with a covalently modifying β-lactone probe, we could show that the tetradecameric organization is essential for a proper formation of the active site. Structural data suggest that a highly conserved hydrogen-bonding network links oligomerization to activity. A comparison of ClpP structures from different organisms provides suggestive evidence for the presence of a universal mechanism regulating ClpP activity in which binding of one subunit to the corresponding subunit on the other ring interface is necessary for the functional assembly of the catalytic triad and thus for protease function. This mechanism ensures controlled access to the active sites of a highly unspecific protease.
Collapse
Affiliation(s)
- Malte Gersch
- Center for Integrated Protein Science Munich, Technische Universität München, Department of Chemistry, Garching, Germany
| | | | | | | |
Collapse
|
42
|
Akopian T, Kandror O, Raju RM, Unnikrishnan M, Rubin EJ, Goldberg AL. The active ClpP protease from M. tuberculosis is a complex composed of a heptameric ClpP1 and a ClpP2 ring. EMBO J 2012; 31:1529-41. [PMID: 22286948 DOI: 10.1038/emboj.2012.5] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Accepted: 12/22/2011] [Indexed: 01/16/2023] Open
Abstract
Mycobacterium tuberculosis (Mtb) contains two clpP genes, both of which are essential for viability. We expressed and purified Mtb ClpP1 and ClpP2 separately. Although each formed a tetradecameric structure and was processed, they lacked proteolytic activity. We could, however, reconstitute an active, mixed ClpP1P2 complex after identifying N-blocked dipeptides that stimulate dramatically (>1000-fold) ClpP1P2 activity against certain peptides and proteins. These activators function cooperatively to induce the dissociation of ClpP1 and ClpP2 tetradecamers into heptameric rings, which then re-associate to form the active ClpP1P2 2-ring mixed complex. No analogous small molecule-induced enzyme activation mechanism involving dissociation and re-association of multimeric rings has been described. ClpP1P2 possesses chymotrypsin and caspase-like activities, and ClpP1 and ClpP2 differ in cleavage preferences. The regulatory ATPase ClpC1 was purified and shown to increase hydrolysis of proteins by ClpP1P2, but not peptides. ClpC1 did not activate ClpP1 or ClpP2 homotetradecamers and stimulated ClpP1P2 only when both ATP and a dipeptide activator were present. ClpP1P2 activity, its unusual activation mechanism and ClpC1 ATPase represent attractive drug targets to combat tuberculosis.
Collapse
Affiliation(s)
- Tatos Akopian
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | | | | | | | | | | |
Collapse
|
43
|
Sung MS, Hsu YT, Ho KL, Lee TM. Implications of the up-regulation of genes encoding protein degradation enzymes and heat shock protein 90 for intertidal green macroalga Ulva fasciata against hypersalinity-induced protein oxidation. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2011; 13:684-694. [PMID: 20957402 DOI: 10.1007/s10126-010-9330-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2010] [Accepted: 09/23/2010] [Indexed: 05/30/2023]
Abstract
The molecular acclimation of intertidal green macroalga Ulva fasciata Delile to high salinity stress were examined by the construction of a forward cDNA library via the suppressive subtractive hybridization between 30‰ and 90‰ (24 h) and by the time course dynamics of several abundantly expressed genes. Among the genes with known sequences, the expressed sequence tags are abundant in the function of protein synthesis (ribosomal protein) and destination. The cDNAs of ATP-dependent Clp protease (UfClpC), 20S proteasome β-subunit type 1 domain (UfPbf1), ubiquitin-conjugating enzyme E2 I (UfUbc9), and heat shock protein 90A (UfHsp90A) were cloned. UfClpC transcript increased 3 h after 90‰ treatment, followed by a decrease, while UfPbf1 and UfUbc9 transcripts increased after 12 h and decreased at 48 h. The transcripts of UfHsp90A increased 1 h after 90‰ treatment, followed by a drop and to the control level at 48 h. Protease activity increased 3 h after 90‰ treatment and decreased to the control level at 48 h. H₂O₂ contents increased 1 h after 90‰ treatment and then remained unchanged, but protein carbonyl group contents increased after 48 h. The treatments of reactive oxygen species scavengers partially alleviated 90‰ damage (partial growth rescue) and suppressed the increases in H₂O₂ content, protein carbonyl group content, protease activity, and UfClpC, UfPbf1, UfUbc9, and UfHsp90A transcripts by 90‰. The induction of specific chaperones and proteases at the molecular level for protein quality control can be considered as one of the molecular mechanisms of hypersalinity acclimation in U. fasciata.
Collapse
Affiliation(s)
- Ming-Shiuan Sung
- Institute of Marine Biology, National Sun Yat-sen University, Kaohsiung 804, Taiwan, Republic of China
| | | | | | | |
Collapse
|
44
|
Gholizadeh A. Over-expression, purification and functional characterization of Celosia ClpS as a fused protein in Escherichia coli. APPL BIOCHEM MICRO+ 2011. [DOI: 10.1134/s000368381104003x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
45
|
ClpXP, an ATP-powered unfolding and protein-degradation machine. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1823:15-28. [PMID: 21736903 DOI: 10.1016/j.bbamcr.2011.06.007] [Citation(s) in RCA: 335] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2011] [Revised: 06/10/2011] [Accepted: 06/15/2011] [Indexed: 11/23/2022]
Abstract
ClpXP is a AAA+ protease that uses the energy of ATP binding and hydrolysis to perform mechanical work during targeted protein degradation within cells. ClpXP consists of hexamers of a AAA+ ATPase (ClpX) and a tetradecameric peptidase (ClpP). Asymmetric ClpX hexamers bind unstructured peptide tags in protein substrates, unfold stable tertiary structure in the substrate, and then translocate the unfolded polypeptide chain into an internal proteolytic compartment in ClpP. Here, we review our present understanding of ClpXP structure and function, as revealed by two decades of biochemical and biophysical studies.
Collapse
|
46
|
Unfolding and translocation pathway of substrate protein controlled by structure in repetitive allosteric cycles of the ClpY ATPase. Proc Natl Acad Sci U S A 2011; 108:2234-9. [PMID: 21266546 DOI: 10.1073/pnas.1014278108] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Clp ATPases are ring-shaped AAA+ motors in the degradation pathway that perform critical actions of unfolding and translocating substrate proteins (SPs) through narrow pores to deliver them to peptidase components. These actions are effected by conserved diaphragm-forming loops found in the central channel of the Clp ATPase hexamer. Conformational changes, that take place in the course of repetitive ATP-driven cycles, result in mechanical forces applied by the central channel loops onto the SP. We use coarse-grained simulations to elucidate allostery-driven mechanisms of unfolding and translocation of a tagged four-helix bundle protein by the ClpY ATPase. Unfolding is initiated at the tagged C-terminal region via an obligatory intermediate. The resulting nonnative conformation is competent for translocation, which proceeds on a different time scale than unfolding and involves sharp stepped transitions. Completion of the translocation process requires assistance from the ClpQ peptidase. These mechanisms contrast nonallosteric mechanical unfolding of the SP. In atomic force microscopy experiments, multiple unfolding pathways are available and large mechanical forces are required to unravel the SP relative to those exerted by the central channel loops of ClpY. SP threading through a nonallosteric ClpY nanopore involves simultaneous unfolding and translocation effected by strong pulling forces.
Collapse
|
47
|
Olinares PDB, Kim J, van Wijk KJ. The Clp protease system; a central component of the chloroplast protease network. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1807:999-1011. [PMID: 21167127 DOI: 10.1016/j.bbabio.2010.12.003] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2010] [Revised: 11/30/2010] [Accepted: 12/03/2010] [Indexed: 10/18/2022]
Abstract
Intra-plastid proteases play crucial and diverse roles in the development and maintenance of non-photosynthetic plastids and chloroplasts. Formation and maintenance of a functional thylakoid electron transport chain requires various protease activities, operating in parallel, as well as in series. This review first provides a short, referenced overview of all experimentally identified plastid proteases in Arabidopsis thaliana. We then focus on the Clp protease system which constitutes the most abundant and complex soluble protease system in the plastid, consisting of 15 nuclear-encoded members and one plastid-encoded member in Arabidopsis. Comparisons to the simpler Clp system in photosynthetic and non-photosynthetic bacteria will be made and the role of Clp proteases in the green algae Chlamydomonas reinhardtii will be briefly reviewed. Extensive molecular genetics has shown that the Clp system plays an essential role in Arabidopsis chloroplast development in the embryo as well as in leaves. Molecular characterization of the various Clp mutants has elucidated many of the consequences of loss of Clp activities. We summarize and discuss the structural and functional aspects of the Clp machinery, including progress on substrate identification and recognition. Finally, the Clp system will be evaluated in the context of the chloroplast protease network. This article is part of a Special Issue entitled: Regulation of Electron Transport in Chloroplasts.
Collapse
|
48
|
Singh A, Grover A. Plant Hsp100/ClpB-like proteins: poorly-analyzed cousins of yeast ClpB machine. PLANT MOLECULAR BIOLOGY 2010; 74:395-404. [PMID: 20811767 DOI: 10.1007/s11103-010-9682-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Accepted: 08/20/2010] [Indexed: 05/21/2023]
Abstract
ClpB/Hsp100 proteins act as chaperones, mediating disaggregation of denatured proteins. Recent work shows that apart from cytoplasm, these proteins are localized to nuclei, chloroplasts, mitochondria and plasma membrane. While ClpB/Hsp100 genes are essentially stress-induced (mainly heat stress) in vegetative organs of the plant body, expression of ClpB/Hsp100 proteins is noted to be constitutive in plant reproductive structures like pollen grains, developing embryos, seeds etc. With global warming looming large on the horizon, ways to genetically engineer plants against high temperature stress are urgently needed. Yeast mutants unable to synthesize active ClpB/Hsp100 protein show a clear thermosensitive phenotype. ClpB/Hsp100 proteins are implicated in high temperature stress tolerance in plants. We herein highlight the selected important facets of this protein family in plants.
Collapse
Affiliation(s)
- Amanjot Singh
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021, India
| | | |
Collapse
|
49
|
Singh A, Singh U, Mittal D, Grover A. Genome-wide analysis of rice ClpB/HSP100, ClpC and ClpD genes. BMC Genomics 2010; 11:95. [PMID: 20141629 PMCID: PMC2829514 DOI: 10.1186/1471-2164-11-95] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2009] [Accepted: 02/08/2010] [Indexed: 01/07/2023] Open
Abstract
Background ClpB-cyt/HSP100 protein acts as chaperone, mediating disaggregation of denatured proteins. Previous studies have shown that ClpB-cyt/HSP100 gene belongs to the group class I Clp ATPase proteins and ClpB-cyt/HSP100 transcript is regulated by heat stress and developmental cues. Results Nine ORFs were noted to constitute rice class I Clp ATPases in the following manner: 3 ClpB proteins (ClpB-cyt, Os05g44340; ClpB-m, Os02g08490; ClpB-c, Os03g31300), 4 ClpC proteins (ClpC1, Os04g32560; ClpC2, Os12g12580; ClpC3, Os11g16590; ClpC4, Os11g16770) and 2 ClpD proteins (ClpD1, Os02g32520; ClpD2, Os04g33210). Using the respective signal sequences cloned upstream to GFP/CFP reporter proteins and transient expression studies with onion epidermal cells, evidence is provided that rice ClpB-m and Clp-c proteins are indeed localized to their respective cell locations mitochondria and chloroplasts, respectively. Associated with their diverse cell locations, domain structures of OsClpB-c, OsClpB-m and OsClpB-cyt proteins are noted to possess a high-level conservation. OsClpB-cyt transcript is shown to be enriched at milk and dough stages of seed development. While expression of OsClpB-m was significantly less as compared to its cytoplasmic and chloroplastic counterparts in different tissues, this transcript showed highest heat-induced expression amongst the 3 ClpB proteins. OsClpC1 and OsClpC2 are predicted to be chloroplast-localized as is the case with all known plant ClpC proteins. However, the fact that OsClpC3 protein appears mitochondrial/chloroplastic with equal probability and OsClpC4 a plasma membrane protein reflects functional diversity of this class. Different class I Clp ATPase transcripts were noted to be cross-induced by a host of different abiotic stress conditions. Complementation assays of Δhsp104 mutant yeast cells showed that OsClpB-cyt, OsClpB-m, OsClpC1 and OsClpD1 have significantly positive effects. Remarkably, OsClpD1 gene imparted appreciably high level tolerance to the mutant yeast cells. Conclusions Rice class I Clp ATPase gene family is constituted of 9 members. Of these 9, only 3 belonging to ClpB group are heat stress regulated. Distribution of ClpB proteins to different cell organelles indicates that their functioning might be critical in different cell locations. From the complementation assays, OsClpD1 appears to be more effective than OsClpB-cyt protein in rescuing the thermosensitive defect of the yeast ScΔhsp104 mutant cells.
Collapse
Affiliation(s)
- Amanjot Singh
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi-110021, India
| | | | | | | |
Collapse
|
50
|
Kress W, Mutschler H, Weber-Ban E. Both ATPase domains of ClpA are critical for processing of stable protein structures. J Biol Chem 2009; 284:31441-52. [PMID: 19726681 DOI: 10.1074/jbc.m109.022319] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
ClpA is a ring-shaped hexameric chaperone that binds to both ends of the protease ClpP and catalyzes the ATP-dependent unfolding and translocation of substrate proteins through its central pore into the ClpP cylinder. Here we study the relevance of ATP hydrolysis in the two ATPase domains of ClpA. We designed ClpA Walker B variants lacking ATPase activity in the first (D1) or the second ATPase domain (D2) without impairing ATP binding. We found that the two ATPase domains of ClpA operate independently even in the presence of the protease ClpP or the adaptor protein ClpS. Notably, ATP hydrolysis in the first ATPase module is sufficient to process a small, single domain protein of low stability. Substrate proteins of moderate local stability were efficiently processed when D1 was inactivated. However, ATP hydrolysis in both domains was required for efficiently processing substrates of high local stability. Furthermore, we provide evidence for the ClpS-dependent directional translocation of N-end rule substrates from the N to C terminus and propose a mechanistic model for substrate handover from the adaptor protein to the chaperone.
Collapse
Affiliation(s)
- Wolfgang Kress
- Institute of Molecular Biology and Biophysics, ETH Zurich, 8093 Zurich, Switzerland
| | | | | |
Collapse
|