1
|
Biosynthesis of mycobacterial methylmannose polysaccharides requires a unique 1- O-methyltransferase specific for 3- O-methylated mannosides. Proc Natl Acad Sci U S A 2019; 116:835-844. [PMID: 30606802 DOI: 10.1073/pnas.1813450116] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Mycobacteria are a wide group of organisms that includes strict pathogens, such as Mycobacterium tuberculosis, as well as environmental species known as nontuberculous mycobacteria (NTM), some of which-namely Mycobacterium avium-are important opportunistic pathogens. In addition to a distinctive cell envelope mediating critical interactions with the host immune system and largely responsible for their formidable resistance to antimicrobials, mycobacteria synthesize rare intracellular polymethylated polysaccharides implicated in the modulation of fatty acid metabolism, thus critical players in cell envelope assembly. These are the 6-O-methylglucose lipopolysaccharides (MGLP) ubiquitously detected across the Mycobacterium genus, and the 3-O-methylmannose polysaccharides (MMP) identified only in NTM. The polymethylated nature of these polysaccharides renders the intervening methyltransferases essential for their optimal function. Although the knowledge of MGLP biogenesis is greater than that of MMP biosynthesis, the methyltransferases of both pathways remain uncharacterized. Here, we report the identification and characterization of a unique S-adenosyl-l-methionine-dependent sugar 1-O-methyltransferase (MeT1) from Mycobacterium hassiacum that specifically blocks the 1-OH position of 3,3'-di-O-methyl-4α-mannobiose, a probable early precursor of MMP, which we chemically synthesized. The high-resolution 3D structure of MeT1 in complex with its exhausted cofactor, S-adenosyl-l-homocysteine, together with mutagenesis studies and molecular docking simulations, unveiled the enzyme's reaction mechanism. The functional and structural properties of this unique sugar methyltransferase further our knowledge of MMP biosynthesis and provide important tools to dissect the role of MMP in NTM physiology and resilience.
Collapse
|
2
|
De P, McNeil M, Xia M, Boot CM, Hesser DC, Denef K, Rithner C, Sours T, Dobos KM, Hoft D, Chatterjee D. Structural determinants in a glucose-containing lipopolysaccharide from Mycobacterium tuberculosis critical for inducing a subset of protective T cells. J Biol Chem 2018; 293:9706-9717. [PMID: 29716995 PMCID: PMC6016469 DOI: 10.1074/jbc.ra118.002582] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 04/30/2018] [Indexed: 12/22/2022] Open
Abstract
Mycobacteria synthesize intracellular, 6-O-methylglucose–containing lipopolysaccharides (mGLPs) proposed to modulate bacterial fatty acid metabolism. Recently, it has been shown that Mycobacterium tuberculosis mGLP specifically induces a specific subset of protective γ9δ2 T cells. Mild base treatment, which removes all the base-labile groups, reduces the specific activity of mGLP required for induction of these T cells, suggesting that acylation of the saccharide moieties is required for γ9δ2 T-cell activation. On the basis of this premise, we used analytical LC/MS and NMR methods to identify and locate the acyl functions on the mGLP saccharides. We found that mGLP is heterogeneous with respect to acyl functions and contains acetyl, isobutyryl, succinyl, and octanoyl groups and that all acylations in mGLP, except for succinyl and octanoyl residues, reside on the glucosyl residues immediately following the terminal 3-O-methylglucose. Our analyses also indicated that the octanoyl residue resides at position 2 of an internal glucose toward the reducing end. LC/MS analysis of the residual product obtained by digesting the mGLP with pancreatic α-amylase revealed that the product is an oligosaccharide terminated by α-(1→4)–linked 6-O-methyl-d-glucosyl residues. This oligosaccharide retained none of the acyl groups, except for the octanoyl group, and was unable to induce protective γ9δ2 T cells. This observation confirmed that mGLP induces γ9δ2 T cells and indicated that the acylated glucosyl residues at the nonreducing terminus of mGLP are required for this activity.
Collapse
Affiliation(s)
- Prithwiraj De
- From the Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology and
| | - Michael McNeil
- From the Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology and
| | - Mei Xia
- Department of Internal Medicine, Saint Louis University, St. Louis, Missouri 63104
| | - Claudia M Boot
- Central Instrument Facility, Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523 and
| | - Danny C Hesser
- From the Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology and
| | - Karolien Denef
- Central Instrument Facility, Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523 and
| | - Christopher Rithner
- Central Instrument Facility, Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523 and
| | - Tyler Sours
- Central Instrument Facility, Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523 and
| | - Karen M Dobos
- From the Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology and
| | - Daniel Hoft
- Department of Internal Medicine, Saint Louis University, St. Louis, Missouri 63104
| | - Delphi Chatterjee
- From the Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology and
| |
Collapse
|
3
|
Nunes-Costa D, Maranha A, Costa M, Alarico S, Empadinhas N. Glucosylglycerate metabolism, bioversatility and mycobacterial survival. Glycobiology 2016; 27:213-227. [DOI: 10.1093/glycob/cww132] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 12/14/2016] [Indexed: 12/17/2022] Open
|
4
|
Maranha A, Moynihan PJ, Miranda V, Correia Lourenço E, Nunes-Costa D, Fraga JS, José Barbosa Pereira P, Macedo-Ribeiro S, Ventura MR, Clarke AJ, Empadinhas N. Octanoylation of early intermediates of mycobacterial methylglucose lipopolysaccharides. Sci Rep 2015; 5:13610. [PMID: 26324178 PMCID: PMC4555173 DOI: 10.1038/srep13610] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 07/30/2015] [Indexed: 11/10/2022] Open
Abstract
Mycobacteria synthesize unique intracellular methylglucose lipopolysaccharides (MGLP) proposed to modulate fatty acid metabolism. In addition to the partial esterification of glucose or methylglucose units with short-chain fatty acids, octanoate was invariably detected on the MGLP reducing end. We have identified a novel sugar octanoyltransferase (OctT) that efficiently transfers octanoate to glucosylglycerate (GG) and diglucosylglycerate (DGG), the earliest intermediates in MGLP biosynthesis. Enzymatic studies, synthetic chemistry, NMR spectroscopy and mass spectrometry approaches suggest that, in contrast to the prevailing consensus, octanoate is not esterified to the primary hydroxyl group of glycerate but instead to the C6 OH of the second glucose in DGG. These observations raise important new questions about the MGLP reducing end architecture and about subsequent biosynthetic steps. Functional characterization of this unique octanoyltransferase, whose gene has been proposed to be essential for M. tuberculosis growth, adds new insights into a vital mycobacterial pathway, which may inspire new drug discovery strategies.
Collapse
Affiliation(s)
- Ana Maranha
- CNC – Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
| | - Patrick J. Moynihan
- Department of Molecular and Cellular Biology, University of Guelph, Ontario, Canada
| | - Vanessa Miranda
- ITQB – Instituto de Tecnologia Química Biológica, Universidade Nova de Lisboa, Portugal
| | - Eva Correia Lourenço
- ITQB – Instituto de Tecnologia Química Biológica, Universidade Nova de Lisboa, Portugal
| | - Daniela Nunes-Costa
- CNC – Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
| | - Joana S. Fraga
- IBMC – Instituto de Biologia Molecular e Celular, Universidade do Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal
| | - Pedro José Barbosa Pereira
- IBMC – Instituto de Biologia Molecular e Celular, Universidade do Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal
| | - Sandra Macedo-Ribeiro
- IBMC – Instituto de Biologia Molecular e Celular, Universidade do Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal
| | - M. Rita Ventura
- ITQB – Instituto de Tecnologia Química Biológica, Universidade Nova de Lisboa, Portugal
| | - Anthony J. Clarke
- Department of Molecular and Cellular Biology, University of Guelph, Ontario, Canada
| | - Nuno Empadinhas
- CNC – Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
- III/UC– Instituto de Investigação Interdisciplinar, University of Coimbra, Portugal
| |
Collapse
|
5
|
Alarico S, Costa M, Sousa MS, Maranha A, Lourenço EC, Faria TQ, Ventura MR, Empadinhas N. Mycobacterium hassiacum recovers from nitrogen starvation with up-regulation of a novel glucosylglycerate hydrolase and depletion of the accumulated glucosylglycerate. Sci Rep 2014; 4:6766. [PMID: 25341489 PMCID: PMC5381378 DOI: 10.1038/srep06766] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 09/17/2014] [Indexed: 01/24/2023] Open
Abstract
Some microorganisms accumulate glucosylglycerate (GG) during growth under nitrogen deprivation. However, the molecular mechanisms underlying the role of GG and the regulation of its levels in the nitrogen stress response are elusive. Since GG is required for biosynthesis of mycobacterial methylglucose lipopolysaccharides (MGLP) we examined the molecular mechanisms linking replenishment of assimilable nitrogen to nitrogen-starved M. hassiacum with depletion of GG accumulated during nitrogen deficiency. To probe the involvement of a newly identified glycoside hydrolase in GG depletion, we produced the mycobacterial enzyme recombinantly and confirmed the specific hydrolysis of GG (GG hydrolase, GgH) in vitro. We have also observed a pronounced up-regulation of GgH mRNA in response to the nitrogen shock, which positively correlates with GG depletion in vivo and growth stimulation, implicating GgH in the recovery process. Since GgH orthologs seem to be absent from most slowly-growing mycobacteria including M. tuberculosis, the disclosure of the GgH function allows reconfiguration of the MGLP pathway in rapidly-growing species and accommodation of this possible regulatory step. This new link between GG metabolism, MGLP biosynthesis and recovery from nitrogen stress furthers our knowledge on the mycobacterial strategies to endure a frequent stress faced in some environments and during long-term infection.
Collapse
Affiliation(s)
- Susana Alarico
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Portugal
| | - Mafalda Costa
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Portugal
| | - Marta S Sousa
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Portugal
| | - Ana Maranha
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Portugal
| | - Eva C Lourenço
- ITQB - Instituto de Tecnologia Química e Biológica, Oeiras, Portugal
| | - Tiago Q Faria
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Portugal
| | - M Rita Ventura
- ITQB - Instituto de Tecnologia Química e Biológica, Oeiras, Portugal
| | - Nuno Empadinhas
- 1] CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Portugal [2] III/UC - Institute for Interdisciplinary Research, University of Coimbra, Portugal
| |
Collapse
|
6
|
Zheng Q, Jiang D, Zhang W, Zhang Q, Zhao Q, Jin J, Li X, Yang H, Bartlam M, Shaw N, Zhou W, Rao Z. Mechanism of dephosphorylation of glucosyl-3-phosphoglycerate by a histidine phosphatase. J Biol Chem 2014; 289:21242-51. [PMID: 24914210 DOI: 10.1074/jbc.m114.569913] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) synthesizes polymethylated polysaccharides that form complexes with long chain fatty acids. These complexes, referred to as methylglucose lipopolysaccharides (MGLPs), regulate fatty acid biosynthesis in vivo, including biosynthesis of mycolic acids that are essential for building the cell wall. Glucosyl-3-phosphoglycerate phosphatase (GpgP, EC 5.4.2.1), encoded by Rv2419c gene, catalyzes the second step of the pathway for the biosynthesis of MGLPs. The molecular basis for this dephosphorylation is currently not understood. Here, we describe the crystal structures of apo-, vanadate-bound, and phosphate-bound MtbGpgP, depicting unliganded, reaction intermediate mimic, and product-bound views of MtbGpgP, respectively. The enzyme consists of a single domain made up of a central β-sheet flanked by α-helices on either side. The active site is located in a positively charged cleft situated above the central β-sheet. Unambiguous electron density for vanadate covalently bound to His(11), mimicking the phosphohistidine intermediate, was observed. The role of residues interacting with the ligands in catalysis was probed by site-directed mutagenesis. Arg(10), His(11), Asn(17), Gln(23), Arg(60), Glu(84), His(159), and Leu(209) are important for enzymatic activity. Comparison of the structures of MtbGpgP revealed conformational changes in a key loop region connecting β1 with α1. This loop regulates access to the active site. MtbGpgP functions as dimer. L209E mutation resulted in monomeric GpgP, rendering the enzyme incapable of dephosphorylation. The structures of GpgP reported here are the first crystal structures for histidine-phosphatase-type GpgPs. These structures shed light on a key step in biosynthesis of MGLPs that could be targeted for development of anti-tuberculosis therapeutics.
Collapse
Affiliation(s)
- Qianqian Zheng
- From the College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Dunquan Jiang
- From the College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Wei Zhang
- From the College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Qingqing Zhang
- From the College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Qi Zhao
- the Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520-8114
| | - Jin Jin
- From the College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Xin Li
- From the College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Haitao Yang
- the College of Life Sciences, Tianjin University, Tianjin 300073, China
| | - Mark Bartlam
- From the College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Neil Shaw
- From the College of Life Sciences, Nankai University, Tianjin 300071, China, the National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Science, Beijing 100101, China
| | - Weihong Zhou
- From the College of Life Sciences, Nankai University, Tianjin 300071, China,
| | - Zihe Rao
- From the College of Life Sciences, Nankai University, Tianjin 300071, China, the National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Science, Beijing 100101, China, the Laboratory of Structural Biology, School of Medicine, Tsinghua University, Beijing 100084, China, and
| |
Collapse
|
7
|
Behrends V, Williams KJ, Jenkins VA, Robertson BD, Bundy JG. Free Glucosylglycerate Is a Novel Marker of Nitrogen Stress in Mycobacterium smegmatis. J Proteome Res 2012; 11:3888-96. [DOI: 10.1021/pr300371b] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Volker Behrends
- Biomolecular Medicine, Department of Surgery and Cancer and ‡MRC Centre for
Molecular Bacteriology and Infection, Department of Medicine, Imperial College, London SW7 2AZ, U.K
| | - Kerstin J. Williams
- Biomolecular Medicine, Department of Surgery and Cancer and ‡MRC Centre for
Molecular Bacteriology and Infection, Department of Medicine, Imperial College, London SW7 2AZ, U.K
| | - Victoria A. Jenkins
- Biomolecular Medicine, Department of Surgery and Cancer and ‡MRC Centre for
Molecular Bacteriology and Infection, Department of Medicine, Imperial College, London SW7 2AZ, U.K
| | - Brian D. Robertson
- Biomolecular Medicine, Department of Surgery and Cancer and ‡MRC Centre for
Molecular Bacteriology and Infection, Department of Medicine, Imperial College, London SW7 2AZ, U.K
| | - Jacob G. Bundy
- Biomolecular Medicine, Department of Surgery and Cancer and ‡MRC Centre for
Molecular Bacteriology and Infection, Department of Medicine, Imperial College, London SW7 2AZ, U.K
| |
Collapse
|
8
|
Mendes V, Maranha A, Alarico S, Empadinhas N. Biosynthesis of mycobacterial methylglucose lipopolysaccharides. Nat Prod Rep 2012; 29:834-44. [PMID: 22678749 DOI: 10.1039/c2np20014g] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mycobacterial pathogenesis is closely associated with a unique cell envelope rich in complex carbohydrates and unique lipids, among which are the mycolic acids. Mycobacteria also synthesize unique intracellular polymethylated polysaccharides (PMPSs), namely methylglucose lipopolysaccharides (MGLPs), which are acylated with short-chain fatty acids, and methylmannose polysaccharides (MMPs). Since PMPSs modulate the synthesis of long-chain fatty acids in vitro, the possibility of a similar role in vivo and the regulation of mycolic acids assembly have been anticipated. Unlike MGLPs, MMPs have been identified in M. smegmatis and other fast-growing mycobacteria but not in M. tuberculosis, implying an essential role for MGLPs in this pathogen and turning the biosynthetic enzymes into attractive drug targets. The genome of M. tuberculosis was decoded 14 years ago but only recently has the identity of the genes involved in MGLPs biosynthesis been investigated. Two gene clusters (Rv1208-Rv1213 and Rv3030-Rv3037c) containing a few genes considered to be essential for M. tuberculosis growth, have initially been proposed to coordinate MGLPs biosynthesis. Among these genes, only the product of Rv1208 for the first step in the MGLPs pathway has, so far, been crystallized and its three-dimensional structure been determined. However, recent results indicate that at least three additional clusters may be involved in this pathway. The functional assignment of authentic roles to some of these M. tuberculosis H37Rv genes sheds new light on the intricacy of MGLPs biogenesis and renewed interest on their biological role.
Collapse
Affiliation(s)
- Vitor Mendes
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
| | | | | | | |
Collapse
|
9
|
Urresti S, Albesa-Jové D, Schaeffer F, Pham HT, Kaur D, Gest P, van der Woerd MJ, Carreras-González A, López-Fernández S, Alzari PM, Brennan PJ, Jackson M, Guerin ME. Mechanistic insights into the retaining glucosyl-3-phosphoglycerate synthase from mycobacteria. J Biol Chem 2012; 287:24649-61. [PMID: 22637481 DOI: 10.1074/jbc.m112.368191] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Considerable progress has been made in recent years in our understanding of the structural basis of glycosyl transfer. Yet the nature and relevance of the conformational changes associated with substrate recognition and catalysis remain poorly understood. We have focused on the glucosyl-3-phosphoglycerate synthase (GpgS), a "retaining" enzyme, that initiates the biosynthetic pathway of methylglucose lipopolysaccharides in mycobacteria. Evidence is provided that GpgS displays an unusually broad metal ion specificity for a GT-A enzyme, with Mg(2+), Mn(2+), Ca(2+), Co(2+), and Fe(2+) assisting catalysis. In the crystal structure of the apo-form of GpgS, we have observed that a flexible loop adopts a double conformation L(A) and L(I) in the active site of both monomers of the protein dimer. Notably, the L(A) loop geometry corresponds to an active conformation and is conserved in two other relevant states of the enzyme, namely the GpgS·metal·nucleotide sugar donor and the GpgS·metal·nucleotide·acceptor-bound complexes, indicating that GpgS is intrinsically in a catalytically active conformation. The crystal structure of GpgS in the presence of Mn(2+)·UDP·phosphoglyceric acid revealed an alternate conformation for the nucleotide sugar β-phosphate, which likely occurs upon sugar transfer. Structural, biochemical, and biophysical data point to a crucial role of the β-phosphate in donor and acceptor substrate binding and catalysis. Altogether, our experimental data suggest a model wherein the catalytic site is essentially preformed, with a few conformational changes of lateral chain residues as the protein proceeds along the catalytic cycle. This model of action may be applicable to a broad range of GT-A glycosyltransferases.
Collapse
Affiliation(s)
- Saioa Urresti
- Unidad de Biofísica, Centro Mixto Consejo Superior de Investigaciones Científicas-Universidad del País Vasco/Euskal Herriko Unibertsitatea, Barrio Sarriena s/n, Leioa, Bizkaia, 48940, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Mendes V, Maranha A, Alarico S, da Costa MS, Empadinhas N. Mycobacterium tuberculosis Rv2419c, the missing glucosyl-3-phosphoglycerate phosphatase for the second step in methylglucose lipopolysaccharide biosynthesis. Sci Rep 2011; 1:177. [PMID: 22355692 PMCID: PMC3240985 DOI: 10.1038/srep00177] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Accepted: 11/15/2011] [Indexed: 11/13/2022] Open
Abstract
Mycobacteria synthesize intracellular methylglucose lipopolysaccharides (MGLP) proposed to regulate fatty acid synthesis. Although their structures have been elucidated, the identity of most biosynthetic genes remains unknown. The first step in MGLP biosynthesis is catalyzed by a glucosyl-3-phosphoglycerate synthase (GpgS, Rv1208 in Mycobacterium tuberculosis H37Rv). However, a typical glucosyl-3-phosphoglycerate phosphatase (GpgP, EC3.1.3.70) for dephosphorylation of glucosyl-3-phosphoglycerate to glucosylglycerate, was absent from mycobacterial genomes. We purified the native GpgP from Mycobacterium vanbaalenii and identified the corresponding gene deduced from amino acid sequences by mass spectrometry. The M. tuberculosis ortholog (Rv2419c), annotated as a putative phosphoglycerate mutase (PGM, EC5.4.2.1), was expressed and functionally characterized as a new GpgP. Regardless of the high specificity for glucosyl-3-phosphoglycerate, the mycobacterial GpgP is not a sequence homolog of known isofunctional GpgPs. The assignment of a new function in M. tuberculosis genome expands our understanding of this organism's genetic repertoire and of the early events in MGLP biosynthesis.
Collapse
Affiliation(s)
- Vítor Mendes
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
| | | | | | | | | |
Collapse
|
11
|
Luley-Goedl C, Nidetzky B. Glycosides as compatible solutes: biosynthesis and applications. Nat Prod Rep 2011; 28:875-96. [DOI: 10.1039/c0np00067a] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
12
|
Empadinhas N, da Costa MS. Diversity, biological roles and biosynthetic pathways for sugar-glycerate containing compatible solutes in bacteria and archaea. Environ Microbiol 2010; 13:2056-77. [PMID: 21176052 DOI: 10.1111/j.1462-2920.2010.02390.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
A decade ago the compatible solutes mannosylglycerate (MG) and glucosylglycerate (GG) were considered to be rare in nature. Apart from two species of thermophilic bacteria, Thermus thermophilus and Rhodothermus marinus, and a restricted group of hyperthermophilic archaea, the Thermococcales, MG had only been identified in a few red algae. Glucosylglycerate was considered to be even rarer and had only been detected as an insignificant solute in two halophilic microorganisms, a cyanobacterium, as a component of a polysaccharide and of a glycolipid in two actinobacteria. Unlike the hyper/thermophilic MG-accumulating microorganisms, branching close to the root of the Tree of Life, those harbouring GG shared a mesophilic lifestyle. Exceptionally, the thermophilic bacterium Persephonella marina was reported to accumulate GG. However, and especially owing to the identification of the key-genes for MG and GG synthesis and to the escalating numbers of genomes available, a plethora of new organisms with the resources to synthesize these solutes has been recognized. The accumulation of GG as an 'emergency' compatible solute under combined salt stress and nitrogen-deficient conditions now seems to be a disseminated survival strategy from enterobacteria to marine cyanobacteria. In contrast, the thermophilic and extremely radiation-resistant bacterium Rubrobacter xylanophilus is the only actinobacterium known to accumulate MG, and under all growth conditions tested. This review addresses the environmental factors underlying the accumulation of MG, GG and derivatives in bacteria and archaea and their roles during stress adaptation or as precursors for more elaborated macromolecules. The diversity of pathways for MG and GG synthesis as well as those for some of their derivatives is also discussed. The importance of glycerate-derived organic solutes in the microbial world is only now being recognized. Their stress-dependent accumulation and the molecular aspects of their interactions with biomolecules have already fuelled several emerging applications in biotechnology and biomedicine.
Collapse
Affiliation(s)
- Nuno Empadinhas
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal.
| | | |
Collapse
|
13
|
Empadinhas N, Pereira PJB, Albuquerque L, Costa J, Sá-Moura B, Marques AT, Macedo-Ribeiro S, da Costa MS. Functional and structural characterization of a novel mannosyl-3-phosphoglycerate synthase from Rubrobacter xylanophilus reveals its dual substrate specificity. Mol Microbiol 2010; 79:76-93. [PMID: 21166895 DOI: 10.1111/j.1365-2958.2010.07432.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Rubrobacter xylanophilus is the only actinobacterium known to accumulate the organic solute mannosylglycerate (MG); moreover, the accumulation of MG is constitutive. The key enzyme for MG synthesis, catalysing the conversion of GDP-mannose (GDP-Man) and D-3-phosphoglycerate (3-PGA) into the phosphorylated intermediate mannosyl-3-phosphoglycerate and GDP, was purified from R. xylanophilus cell extracts and the corresponding gene was expressed in E. coli. Despite the related solute glucosylglycerate (GG) having never been detected in R. xylanophilus, the cell extracts and the pure recombinant mannosyl-3-phosphoglycerate synthase (MpgS) could also synthesize glucosyl-3-phosphoglycerate (GPG), the precursor of GG, in agreement with the higher homology of the novel MpgS towards GPG-synthesizing mycobacterial glucosyl-3-phosphoglycerate synthases (GpgS) than towards MpgSs from hyper/thermophiles, known to accumulate MG under salt or thermal stress. To understand the specificity and substrate ambiguity of this novel enzyme, we determined the crystal structure of the unliganded MpgS and of its complexes with the nucleotide and sugar donors, at 2.2, 2.8 and 2.5 Å resolution respectively. The first three-dimensional structures of a protein from this extremely gamma-radiation-resistant thermophile here reported show that MpgS (GT81 family) contains a GT-A like fold and clearly explain its nucleotide and sugar-donor specificity. In the GDP-Man complex, a flexible loop ((254) RQNRHQ(259) ), located close to the active site moves towards the incoming sugar moiety, providing the ligands for both magnesium ion co-ordination and sugar binding. A triple mutant of R. xylanophilus MpgS, mimicking the (206) PLAGE(210) loop stabilizing hydrogen bond network observed for mycobacterial GpgSs, reduces significantly the affinity to GDP-Man, implicating this loop in the sugar-donor discrimination.
Collapse
Affiliation(s)
- Nuno Empadinhas
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Two alternative pathways for the synthesis of the rare compatible solute mannosylglucosylglycerate in Petrotoga mobilis. J Bacteriol 2010; 192:1624-33. [PMID: 20061481 DOI: 10.1128/jb.01424-09] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The compatible solute mannosylglucosylglycerate (MGG), recently identified in Petrotoga miotherma, also accumulates in Petrotoga mobilis in response to hyperosmotic conditions and supraoptimal growth temperatures. Two functionally connected genes encoding a glucosyl-3-phosphoglycerate synthase (GpgS) and an unknown glycosyltransferase (gene Pmob_1143), which we functionally characterized as a mannosylglucosyl-3-phosphoglycerate synthase and designated MggA, were identified in the genome of Ptg. mobilis. This enzyme used the product of GpgS, glucosyl-3-phosphoglycerate (GPG), as well as GDP-mannose to produce mannosylglucosyl-3-phosphoglycerate (MGPG), the phosphorylated precursor of MGG. The MGPG dephosphorylation was determined in cell extracts, and the native enzyme was partially purified and characterized. Surprisingly, a gene encoding a putative glucosylglycerate synthase (Ggs) was also identified in the genome of Ptg. mobilis, and an active Ggs capable of producing glucosylglycerate (GG) from ADP-glucose and d-glycerate was detected in cell extracts and the recombinant enzyme was characterized, as well. Since GG has never been identified in this organism nor was it a substrate for the MggA, we anticipated the existence of a nonphosphorylating pathway for MGG synthesis. We putatively identified the corresponding gene, whose product had some sequence homology with MggA, but it was not possible to recombinantly express a functional enzyme from Ptg. mobilis, which we named mannosylglucosylglycerate synthase (MggS). In turn, a homologous gene from Thermotoga maritima was successfully expressed, and the synthesis of MGG was confirmed from GDP-mannose and GG. Based on the measurements of the relevant enzyme activities in cell extracts and on the functional characterization of the key enzymes, we propose two alternative pathways for the synthesis of the rare compatible solute MGG in Ptg. mobilis.
Collapse
|
15
|
Pereira PJB, Empadinhas N, Albuquerque L, Sá-Moura B, da Costa MS, Macedo-Ribeiro S. Mycobacterium tuberculosis glucosyl-3-phosphoglycerate synthase: structure of a key enzyme in methylglucose lipopolysaccharide biosynthesis. PLoS One 2008; 3:e3748. [PMID: 19015727 PMCID: PMC2581804 DOI: 10.1371/journal.pone.0003748] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2008] [Accepted: 10/31/2008] [Indexed: 11/18/2022] Open
Abstract
Tuberculosis constitutes today a serious threat to human health worldwide, aggravated by the increasing number of identified multi-resistant strains of Mycobacterium tuberculosis, its causative agent, as well as by the lack of development of novel mycobactericidal compounds for the last few decades. The increased resilience of this pathogen is due, to a great extent, to its complex, polysaccharide-rich, and unusually impermeable cell wall. The synthesis of this essential structure is still poorly understood despite the fact that enzymes involved in glycosidic bond synthesis represent more than 1% of all M. tuberculosis ORFs identified to date. One of them is GpgS, a retaining glycosyltransferase (GT) with low sequence homology to any other GTs of known structure, which has been identified in two species of mycobacteria and shown to be essential for the survival of M. tuberculosis. To further understand the biochemical properties of M. tuberculosis GpgS, we determined the three-dimensional structure of the apo enzyme, as well as of its ternary complex with UDP and 3-phosphoglycerate, by X-ray crystallography, to a resolution of 2.5 and 2.7 A, respectively. GpgS, the first enzyme from the newly established GT-81 family to be structurally characterized, displays a dimeric architecture with an overall fold similar to that of other GT-A-type glycosyltransferases. These three-dimensional structures provide a molecular explanation for the enzyme's preference for UDP-containing donor substrates, as well as for its glucose versus mannose discrimination, and uncover the structural determinants for acceptor substrate selectivity. Glycosyltransferases constitute a growing family of enzymes for which structural and mechanistic data urges. The three-dimensional structures of M. tuberculosis GpgS now determined provide such data for a novel enzyme family, clearly establishing the molecular determinants for substrate recognition and catalysis, while providing an experimental scaffold for the structure-based rational design of specific inhibitors, which lay the foundation for the development of novel anti-tuberculosis therapies.
Collapse
|
16
|
Empadinhas N, da Costa MS. To be or not to be a compatible solute: Bioversatility of mannosylglycerate and glucosylglycerate. Syst Appl Microbiol 2008; 31:159-68. [DOI: 10.1016/j.syapm.2008.05.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2008] [Accepted: 05/21/2008] [Indexed: 11/29/2022]
|
17
|
Empadinhas N, Albuquerque L, Mendes V, Macedo-Ribeiro S, Da Costa MS. Identification of the mycobacterial glucosyl-3-phosphoglycerate synthase. FEMS Microbiol Lett 2008; 280:195-202. [DOI: 10.1111/j.1574-6968.2007.01064.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
18
|
Cheon HS, Wang Y, Ma J, Kishi Y. Complexation of fatty acids and fatty acid-CoAs with synthetic O-methylated polysaccharides. Chembiochem 2008; 8:353-9. [PMID: 17216665 DOI: 10.1002/cbic.200600499] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
An experimentally simple, but highly reproducible and reliable method has been developed to follow the complexation event of fatty acid (FA) and FA-CoA with polysaccharides. This method was based on the recent discovery of the unique blue-shifted UV absorption associated with the aggregation of tetraenoic fatty acids (TE-FAs) in aqueous solution. Complexation was monitored by recording the intensity of UV absorption at 250 nm ([free TE-FA]) and 303 nm ([complexed TE-FA]), and the K aggregate of C(20) t,t,t,t-TE-FA exhibited the ideal property for this purpose. Synthetic 3-O-methyl-D-mannose- and 6-O-methyl-D-glucose-containing lipopolysaccharides were found to exhibit a broad range of the binding affinities with C(20) t,t,t,t-TE-FAs as well as saturated FAs/FA-CoAs.
Collapse
Affiliation(s)
- Hwan-Sung Cheon
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138, USA
| | | | | | | |
Collapse
|
19
|
Stadthagen G, Sambou T, Guerin M, Barilone N, Boudou F, Korduláková J, Charles P, Alzari PM, Lemassu A, Daffé M, Puzo G, Gicquel B, Rivière M, Jackson M. Genetic basis for the biosynthesis of methylglucose lipopolysaccharides in Mycobacterium tuberculosis. J Biol Chem 2007; 282:27270-27276. [PMID: 17640872 DOI: 10.1074/jbc.m702676200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mycobacteria produce two unusual polymethylated polysaccharides, the 6-O-methylglucosyl-containing lipopolysaccharides (MGLP) and the 3-O-methylmannose polysaccharides, which have been shown to regulate fatty acid biosynthesis in vitro. A cluster of genes dedicated to the synthesis of MGLP was identified in Mycobacterium tuberculosis and Mycobacterium smegmatis. Overexpression of the putative glycosyltransferase gene Rv3032 in M. smegmatis greatly stimulated MGLP production, whereas the targeted disruption of Rv3032 in M. tuberculosis and that of the putative methyltransferase gene MSMEG2349 in M. smegmatis resulted in a dramatic reduction in the amounts of MGLP synthesized and in the accumulation of precursors of these molecules. Disruption of Rv3032 also led to a significant decrease in the glycogen content of the tubercle bacillus, indicating that the product of this gene is likely to be involved in the elongation of more than one alpha-(1-->4)-glucan in this bacterium. Results thus suggest that Rv3032 encodes the alpha-(1-->4)-glucosyltransferase responsible for the elongation of MGLP, whereas MSMEG2349 encodes the O-methyltransferase required for the 6-O-methylation of these compounds.
Collapse
Affiliation(s)
| | - Tounkang Sambou
- Département Mécanismes Moléculaires des Infections Mycobactériennes, Institut de Pharmacologie et de Biologie Structurale, CNRS, 31077 Toulouse, France
| | - Marcelo Guerin
- Unité de Biochimie Structurale, Institut Pasteur, 75015 Paris, France and the
| | - Nathalie Barilone
- UnitédeGénétique Mycobactérienne Institut Pasteur, 75015 Paris, France
| | - Frédéric Boudou
- UnitédeGénétique Mycobactérienne Institut Pasteur, 75015 Paris, France
| | - Jana Korduláková
- UnitédeGénétique Mycobactérienne Institut Pasteur, 75015 Paris, France
| | - Patricia Charles
- UnitédeGénétique Mycobactérienne Institut Pasteur, 75015 Paris, France
| | - Pedro M Alzari
- Unité de Biochimie Structurale, Institut Pasteur, 75015 Paris, France and the
| | - Anne Lemassu
- Département Mécanismes Moléculaires des Infections Mycobactériennes, Institut de Pharmacologie et de Biologie Structurale, CNRS, 31077 Toulouse, France
| | - Mamadou Daffé
- Département Mécanismes Moléculaires des Infections Mycobactériennes, Institut de Pharmacologie et de Biologie Structurale, CNRS, 31077 Toulouse, France
| | - Germain Puzo
- Département Mécanismes Moléculaires des Infections Mycobactériennes, Institut de Pharmacologie et de Biologie Structurale, CNRS, 31077 Toulouse, France
| | - Brigitte Gicquel
- UnitédeGénétique Mycobactérienne Institut Pasteur, 75015 Paris, France
| | - Michel Rivière
- Département Mécanismes Moléculaires des Infections Mycobactériennes, Institut de Pharmacologie et de Biologie Structurale, CNRS, 31077 Toulouse, France
| | - Mary Jackson
- UnitédeGénétique Mycobactérienne Institut Pasteur, 75015 Paris, France.
| |
Collapse
|
20
|
Wang Y, Ma J, Cheon HS, Kishi Y. Aggregation Behavior of Tetraenoic Fatty Acids in Aqueous Solution. Angew Chem Int Ed Engl 2007. [DOI: 10.1002/ange.200603979] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
21
|
Wang Y, Ma J, Cheon HS, Kishi Y. Aggregation Behavior of Tetraenoic Fatty Acids in Aqueous Solution. Angew Chem Int Ed Engl 2007; 46:1333-6. [PMID: 17211902 DOI: 10.1002/anie.200603979] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yonghui Wang
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138, USA
| | | | | | | |
Collapse
|
22
|
Dell A, Morris HR, Greer F, Redfern JM, Rogers ME, Weisshaar G, Hiyama J, Renwick AG. Fast-atom-bombardment mass spectrometry of sulphated oligosaccharides from ovine lutropin. Carbohydr Res 1991; 209:33-50. [PMID: 2036654 DOI: 10.1016/0008-6215(91)80143-b] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The positive- and negative-ion f.a.b.-mass spectra and the fragmentation of sulphated oligosaccharides derived from ovine lutropin are described. Negative-ion f.a.b.-m.s. of methylated derivatives offers a sensitive and rapid method for screening glycans for sulphation, for defining the location of sulphated residues, and for sequencing sulphated branches. Positive-ion f.a.b.-m.s. gives complementary data on non-sulphated branches in both complex and hybrid-type sulphated structures.
Collapse
Affiliation(s)
- A Dell
- Department of Biochemistry, Imperial College, London, Great Britain
| | | | | | | | | | | | | | | |
Collapse
|