1
|
May KL, Grabowicz M. Outer membrane lipoproteins: late to the party, but the center of attention. J Bacteriol 2025; 207:e0044224. [PMID: 39670753 PMCID: PMC11784454 DOI: 10.1128/jb.00442-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024] Open
Abstract
An outer membrane (OM) is the hallmark feature that is often used to distinguish "Gram-negative" bacteria. Our understanding of how the OM is built rests largely on studies of Escherichia coli. In that organism-and seemingly in all species of the Proteobacterial phyla-the essential pathways that assemble the OM each rely on one or more lipoproteins that have been trafficked to the OM. Hence, the lipoprotein trafficking pathway appeared to be foundational for the ability of these bacteria to build their OM. However, such a notion now appears to be misguided. New phylogenetic analyses now show us that lipoprotein trafficking was likely the very last of the essential OM assembly systems to have evolved. The emergence of lipoprotein trafficking must have been a powerful innovation for the ancestors of Proteobacteria, given how it assumed such a central place in OM biogenesis. In this minireview, we broadly discuss the biosynthesis and trafficking of lipoproteins and ponder why the newest OM assembly system (lipoprotein trafficking) has become so key to building the Proteobacterial OM. We examine the diversity among lipoprotein trafficking systems, noting uniting commonalities and highlighting key differences. Current novel antibiotic development is targeted against a small subset of Proteobacterial species that cause severe human diseases; several inhibitors of lipoprotein biosynthesis and OM trafficking have been recently reported that may become new antibiotics. Understanding the diversity in lipoprotein trafficking may yield selective new antibiotics that preferentially kill important human pathogens while sparing species of normal healthy flora.
Collapse
Affiliation(s)
- Kerrie L. May
- Department of Microbiology & Immunology, Emory University School of Medicine, Atlanta, Georgia, USA
- Antibiotic Resistance Center, Emory University, Atlanta, Georgia, USA
| | - Marcin Grabowicz
- Department of Microbiology & Immunology, Emory University School of Medicine, Atlanta, Georgia, USA
- Antibiotic Resistance Center, Emory University, Atlanta, Georgia, USA
- Division of Infectious Disease, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
2
|
Lin Y, Zheng L, Bogdanov M. Advanced Method for the In Vivo Measurements of Lysophospholipid Translocation Across the Inner (Cytoplasmic) Membrane of Escherichia coli. Methods Mol Biol 2025; 2888:147-165. [PMID: 39699730 PMCID: PMC11728742 DOI: 10.1007/978-1-0716-4318-1_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
Phospholipid translocation occurs ubiquitously in biological membranes and primarily is protein catalyzed. Lipid flippases mediate the net translocation of specific phospholipids from one leaflet of a membrane to the other. In the inner (cytoplasmic) membrane (IM) of Gram-negative bacteria, lysophospholipid translocase (LplT) and cytosolic bifunctional acyl-acyl carrier protein (ACP) synthetase/2-acylglycerolphosphoethanolamine acyltransferase (Aas) form a glycerophospholipid regeneration system, which is capable of facilitating rapid retrograde translocation of lyso forms of phosphatidylethanolamine (PE), phosphatidylglycerol (PG), and cardiolipin (CL) but not exogenous (host-derived) phosphatidylcholine (PC) across the IM of Gram-negative diderm (two-membraned) bacteria in consequential order lyso-PE = lyso-PG > > lysophosphatidic acid (lyso-PA) >> lyso-PC. Although several flippases that bind and move non-glycerophosphatidyl lipids across the IM are characterized in Gram-negative bacteria, LplT appears to be the first example of a bacterial protein capable of facilitating the rapid translocation of monoacylated glycerophospholipids. On the cytoplasmic surface, Aas restores the lysophospholipids to their diacyl forms with comparable efficiency but excludes any exogenous monoacylated lipid species. This coupled remodeling enzyme tandem provides an effective means to examine substrate specificity of lipid regeneration and lysophospholipid transport per se across the membrane. The current chapter describes two distinct but complementary methods for the measurement of lysophospholipid transport across membranes using Escherichia coli spheroplasts.
Collapse
Affiliation(s)
- Yibin Lin
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center, McGovern Medical School, Houston, TX, USA
| | - Lei Zheng
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center, McGovern Medical School, Houston, TX, USA
| | - Mikhail Bogdanov
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center, McGovern Medical School, Houston, TX, USA.
| |
Collapse
|
3
|
Niu W, Vu T, Du G, Bogdanov M, Zheng L. Lysophospholipid remodeling mediated by the LplT and Aas protein complex in the bacterial envelope. J Biol Chem 2024; 300:107704. [PMID: 39173951 PMCID: PMC11416262 DOI: 10.1016/j.jbc.2024.107704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 08/24/2024] Open
Abstract
Lysophospholipid transporter LplT and acyltransferase Aas consist of a lysophospholipid-remodeling system ubiquitously found in gram-negative microorganisms. LplT flips lysophospholipid across the inner membrane which is subsequently acylated by Aas on the cytoplasmic membrane surface. Our previous study showed that the proper functioning of this system is important to protecting Escherichia coli from phospholipase-mediated host attack by maintaining the integrity of the bacterial cell envelope. However, the working mechanism of this system is still unclear. Herein, we report that LplT and Aas form a membrane protein complex in E. coli which allows these two enzymes to cooperate efficiently to move lysophospholipids across the bacterial membrane and catalyze their acylation. The direct interaction of LplT and Aas was demonstrated both in vivo and in vitro with a binding affinity of 2.3 μM. We found that a cytoplasmic loop of LplT adjacent to the exit of the substrate translocation pathway plays an important role in maintaining its interaction with Aas. Aas contains an acyl-acyl carrier protein synthase domain and an acyl-transferase domain. Its interaction with LplT is mediated exclusively by its transferase domain. Mutations within the three loops near the putative catalytic site of the transferase domain, respectively, disrupt its interaction with LplT and lysophospholipid acylation activity. These results support a hypothesis of the functional coupling mechanism, in which LplT directly interacts with the transferase domain of Aas for specific substrate membrane migration, providing synchronization of substrate translocation and biosynthetic events.
Collapse
Affiliation(s)
- Wei Niu
- Department of Biochemistry and Molecular Biology, Center for Membrane Biology, University of Texas Health Science Center at Houston McGovern Medical School, Houston, Texas, USA
| | - Trung Vu
- Department of Biochemistry and Molecular Biology, Center for Membrane Biology, University of Texas Health Science Center at Houston McGovern Medical School, Houston, Texas, USA
| | - Guangwei Du
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston McGovern Medical School, Houston, Texas, USA
| | - Mikhail Bogdanov
- Department of Biochemistry and Molecular Biology, Center for Membrane Biology, University of Texas Health Science Center at Houston McGovern Medical School, Houston, Texas, USA
| | - Lei Zheng
- Department of Biochemistry and Molecular Biology, Center for Membrane Biology, University of Texas Health Science Center at Houston McGovern Medical School, Houston, Texas, USA.
| |
Collapse
|
4
|
Smithers L, Degtjarik O, Weichert D, Huang CY, Boland C, Bowen K, Oluwole A, Lutomski C, Robinson CV, Scanlan EM, Wang M, Olieric V, Shalev-Benami M, Caffrey M. Structure snapshots reveal the mechanism of a bacterial membrane lipoprotein N-acyltransferase. SCIENCE ADVANCES 2023; 9:eadf5799. [PMID: 37390210 PMCID: PMC10313180 DOI: 10.1126/sciadv.adf5799] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 05/26/2023] [Indexed: 07/02/2023]
Abstract
Bacterial lipoproteins (BLPs) decorate the surface of membranes in the cell envelope. They function in membrane assembly and stability, as enzymes, and in transport. The final enzyme in the BLP synthesis pathway is the apolipoprotein N-acyltransferase, Lnt, which is proposed to act by a ping-pong mechanism. Here, we use x-ray crystallography and cryo-electron microscopy to chart the structural changes undergone during the progress of the enzyme through the reaction. We identify a single active site that has evolved to bind, individually and sequentially, substrates that satisfy structural and chemical criteria to position reactive parts next to the catalytic triad for reaction. This study validates the ping-pong mechanism, explains the molecular bases for Lnt's substrate promiscuity, and should facilitate the design of antibiotics with minimal off-target effects.
Collapse
Affiliation(s)
- Luke Smithers
- School of Medicine and School of Biochemistry and Immunology, Trinity College Dublin, Dublin D02 R590, Ireland
| | - Oksana Degtjarik
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Dietmar Weichert
- School of Medicine and School of Biochemistry and Immunology, Trinity College Dublin, Dublin D02 R590, Ireland
| | - Chia-Ying Huang
- Swiss Light Source, Paul Scherrer Institute, CH-5232 Villigen, Switzerland
| | - Coilín Boland
- School of Medicine and School of Biochemistry and Immunology, Trinity College Dublin, Dublin D02 R590, Ireland
| | - Katherine Bowen
- School of Chemistry, Trinity College Dublin, Dublin D02 R590, Ireland
| | - Abraham Oluwole
- Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Corinne Lutomski
- Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Carol V. Robinson
- Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Eoin M. Scanlan
- School of Chemistry, Trinity College Dublin, Dublin D02 R590, Ireland
| | - Meitian Wang
- Swiss Light Source, Paul Scherrer Institute, CH-5232 Villigen, Switzerland
| | - Vincent Olieric
- Swiss Light Source, Paul Scherrer Institute, CH-5232 Villigen, Switzerland
| | - Moran Shalev-Benami
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Martin Caffrey
- School of Medicine and School of Biochemistry and Immunology, Trinity College Dublin, Dublin D02 R590, Ireland
| |
Collapse
|
5
|
Roney IJ, Rudner DZ. The DedA superfamily member PetA is required for the transbilayer distribution of phosphatidylethanolamine in bacterial membranes. Proc Natl Acad Sci U S A 2023; 120:e2301979120. [PMID: 37155911 PMCID: PMC10193950 DOI: 10.1073/pnas.2301979120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/12/2023] [Indexed: 05/10/2023] Open
Abstract
The sorting of phospholipids between the inner and outer leaflets of the membrane bilayer is a fundamental problem in all organisms. Despite years of investigation, most of the enzymes that catalyze phospholipid reorientation in bacteria remain unknown. Studies from almost half a century ago in Bacillus subtilis and Bacillus megaterium revealed that newly synthesized phosphatidylethanolamine (PE) is rapidly translocated to the outer leaflet of the bilayer [Rothman & Kennedy, Proc. Natl. Acad. Sci. U.S.A. 74, 1821-1825 (1977)] but the identity of the putative PE flippase has eluded discovery. Recently, members of the DedA superfamily have been implicated in flipping the bacterial lipid carrier undecaprenyl phosphate and in scrambling eukaryotic phospholipids in vitro. Here, using the antimicrobial peptide duramycin that targets outward-facing PE, we show that Bacillus subtilis cells lacking the DedA paralog PetA (formerly YbfM) have increased resistance to duramycin. Sensitivity to duramycin is restored by expression of B. subtilis PetA or homologs from other bacteria. Analysis of duramycin-mediated killing upon induction of PE synthesis indicates that PetA is required for efficient PE transport. Finally, using fluorescently labeled duramycin we demonstrate that cells lacking PetA have reduced PE in their outer leaflet compared to wildtype. We conclude that PetA is the long-sought PE transporter. These data combined with bioinformatic analysis of other DedA paralogs argue that the primary role of DedA superfamily members is transporting distinct lipids across the membrane bilayer.
Collapse
Affiliation(s)
- Ian J. Roney
- Department of Microbiology, Harvard Medical School, Boston, MA02115
| | - David Z. Rudner
- Department of Microbiology, Harvard Medical School, Boston, MA02115
| |
Collapse
|
6
|
Bilsing FL, Anlauf MT, Hachani E, Khosa S, Schmitt L. ABC Transporters in Bacterial Nanomachineries. Int J Mol Sci 2023; 24:ijms24076227. [PMID: 37047196 PMCID: PMC10094684 DOI: 10.3390/ijms24076227] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/18/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
Members of the superfamily of ABC transporters are found in all domains of life. Most of these primary active transporters act as isolated entities and export or import their substrates in an ATP-dependent manner across biological membranes. However, some ABC transporters are also part of larger protein complexes, so-called nanomachineries that catalyze the vectorial transport of their substrates. Here, we will focus on four bacterial examples of such nanomachineries: the Mac system providing drug resistance, the Lpt system catalyzing vectorial LPS transport, the Mla system responsible for phospholipid transport, and the Lol system, which is required for lipoprotein transport to the outer membrane of Gram-negative bacteria. For all four systems, we tried to summarize the existing data and provide a structure-function analysis highlighting the mechanistical aspect of the coupling of ATP hydrolysis to substrate translocation.
Collapse
|
7
|
Cao X, van Putten JPM, Wösten MMSM. Biological functions of bacterial lysophospholipids. Adv Microb Physiol 2023; 82:129-154. [PMID: 36948653 DOI: 10.1016/bs.ampbs.2022.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Lysophospholipids (LPLs) are lipid-derived metabolic intermediates in the cell membrane. The biological functions of LPLs are distinct from their corresponding phospholipids. In eukaryotic cells LPLs are important bioactive signaling molecules that regulate many important biological processes, but in bacteria the function of LPLs is still not fully defined. Bacterial LPLs are usually present in cells in very small amounts, but can strongly increase under certain environmental conditions. In addition to their basic function as precursors in membrane lipid metabolism, the formation of distinct LPLs contributes to the proliferation of bacteria under harsh circumstances or may act as signaling molecules in bacterial pathogenesis. This review provides an overview of the current knowledge of the biological functions of bacterial LPLs including lysoPE, lysoPA, lysoPC, lysoPG, lysoPS and lysoPI in bacterial adaptation, survival, and host-microbe interactions.
Collapse
Affiliation(s)
- Xuefeng Cao
- Department Biomolecular Health Sciences, Utrecht University, Utrecht, The Netherlands
| | - Jos P M van Putten
- Department Biomolecular Health Sciences, Utrecht University, Utrecht, The Netherlands
| | - Marc M S M Wösten
- Department Biomolecular Health Sciences, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
8
|
Bai W, Anthony WE, Hartline CJ, Wang S, Wang B, Ning J, Hsu FF, Dantas G, Zhang F. Engineering diverse fatty acid compositions of phospholipids in Escherichia coli. Metab Eng 2022; 74:11-23. [PMID: 36058465 DOI: 10.1016/j.ymben.2022.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/15/2022] [Accepted: 08/26/2022] [Indexed: 11/28/2022]
Abstract
Bacterial fatty acids (FAs) are an essential component of the cellular membrane and are an important source of renewable chemicals as they can be converted to fatty alcohols, esters, ketones, and alkanes, and used as biofuels, detergents, lubricants, and commodity chemicals. Most prior FA bioconversions have been performed on the carboxylic acid group. Modification of the FA hydrocarbon chain could substantially expand the structural and functional diversity of FA-derived products. Additionally, the effects of such modified FAs on the growth and metabolic state of their producing cells are not well understood. Here we engineer novel Escherichia coli phospholipid biosynthetic pathways, creating strains with distinct FA profiles enriched in ω7-unsaturated FAs (ω7-UFAs, 75%), Δ5-unsaturated FAs (Δ5-UFAs, 60%), cyclopropane FAs (CFAs, 55%), internally-branched FAs (IBFAs, 40%), and Δ5,ω7-double unsaturated FAs (DUFAs, 46%). Although bearing drastically different FA profiles in phospholipids, UFA, CFA, and IBFA enriched strains display wild-type-like phenotypic profiling and growth. Transcriptomic analysis reveals DUFA production drives increased differential expression and the induction of the fur iron starvation transcriptional cascade, but higher TCA cycle activation compared to the UFA producing strain. This likely reflects a slight cost imparted for DUFA production, which resulted in lower maximum growth in some, but not all, environmental conditions. The IBFA-enriched strain was further engineered to produce free IBFAs, releasing 96 mg/L free IBFAs from 154 mg/L of the total cellular IBFA pool. This work has resulted in significantly altered FA profiles of membrane lipids in E. coli, greatly increasing our understanding of the effects of FA structure diversity on the transcriptome, growth, and ability to react to stress.
Collapse
Affiliation(s)
- Wenqin Bai
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, Saint Louis, MO, 63130, USA
| | - Winston E Anthony
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine in St. Louis, Saint Louis, MO, 63110, USA
| | - Christopher J Hartline
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, Saint Louis, MO, 63130, USA
| | - Shaojie Wang
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, Saint Louis, MO, 63130, USA
| | - Bin Wang
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine in St. Louis, Saint Louis, MO, 63110, USA; Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, Saint Louis, MO, 63110, USA
| | - Jie Ning
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine in St. Louis, Saint Louis, MO, 63110, USA; Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, Saint Louis, MO, 63110, USA
| | - Fong-Fu Hsu
- Mass Spectrometry Resource, Division of Endocrinology, Metabolism, and Lipid Research, Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Gautam Dantas
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine in St. Louis, Saint Louis, MO, 63110, USA; Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, Saint Louis, MO, 63110, USA; Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, Saint Louis, MO, 63110, USA; Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO, 63130, USA.
| | - Fuzhong Zhang
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, Saint Louis, MO, 63130, USA; Institute of Materials Science & Engineering, Washington University in St. Louis, Saint Louis, MO, 63130, USA.
| |
Collapse
|
9
|
Zhou J, Cai Y, Liu Y, An H, Deng K, Ashraf MA, Zou L, Wang J. Breaking down the cell wall: Still an attractive antibacterial strategy. Front Microbiol 2022; 13:952633. [PMID: 36212892 PMCID: PMC9544107 DOI: 10.3389/fmicb.2022.952633] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/18/2022] [Indexed: 11/17/2022] Open
Abstract
Since the advent of penicillin, humans have known about and explored the phenomenon of bacterial inhibition via antibiotics. However, with changes in the global environment and the abuse of antibiotics, resistance mechanisms have been selected in bacteria, presenting huge threats and challenges to the global medical and health system. Thus, the study and development of new antimicrobials is of unprecedented urgency and difficulty. Bacteria surround themselves with a cell wall to maintain cell rigidity and protect against environmental insults. Humans have taken advantage of antibiotics to target the bacterial cell wall, yielding some of the most widely used antibiotics to date. The cell wall is essential for bacterial growth and virulence but is absent from humans, remaining a high-priority target for antibiotic screening throughout the antibiotic era. Here, we review the extensively studied targets, i.e., MurA, MurB, MurC, MurD, MurE, MurF, Alr, Ddl, MurI, MurG, lipid A, and BamA in the cell wall, starting from the very beginning to the latest developments to elucidate antimicrobial screening. Furthermore, recent advances, including MraY and MsbA in peptidoglycan and lipopolysaccharide, and tagO, LtaS, LspA, Lgt, Lnt, Tol-Pal, MntC, and OspA in teichoic acid and lipoprotein, have also been profoundly discussed. The review further highlights that the application of new methods such as macromolecular labeling, compound libraries construction, and structure-based drug design will inspire researchers to screen ideal antibiotics.
Collapse
Affiliation(s)
- Jingxuan Zhou
- The People’s Hospital of China Three Gorges University, Yichang, Hubei, China
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Sciences, China Three Gorges University, Yichang, Hubei, China
- The Institute of Infection and Inflammation, College of Basic Medical Sciences, China Three Gorges University, Yichang, Hubei, China
| | - Yi Cai
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Sciences, China Three Gorges University, Yichang, Hubei, China
- The Institute of Infection and Inflammation, College of Basic Medical Sciences, China Three Gorges University, Yichang, Hubei, China
| | - Ying Liu
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Sciences, China Three Gorges University, Yichang, Hubei, China
- The Institute of Infection and Inflammation, College of Basic Medical Sciences, China Three Gorges University, Yichang, Hubei, China
| | - Haoyue An
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Sciences, China Three Gorges University, Yichang, Hubei, China
- The Institute of Infection and Inflammation, College of Basic Medical Sciences, China Three Gorges University, Yichang, Hubei, China
| | - Kaihong Deng
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Sciences, China Three Gorges University, Yichang, Hubei, China
- The Institute of Infection and Inflammation, College of Basic Medical Sciences, China Three Gorges University, Yichang, Hubei, China
| | - Muhammad Awais Ashraf
- Department of Microbiology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Lili Zou
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Sciences, China Three Gorges University, Yichang, Hubei, China
- The Institute of Infection and Inflammation, College of Basic Medical Sciences, China Three Gorges University, Yichang, Hubei, China
| | - Jun Wang
- The People’s Hospital of China Three Gorges University, Yichang, Hubei, China
- *Correspondence: Jun Wang,
| |
Collapse
|
10
|
A Defect in Lipoprotein Modification by Lgt Leads to Abnormal Morphology and Cell Death in Escherichia coli That Is Independent of Major Lipoprotein Lpp. J Bacteriol 2022; 204:e0016422. [PMID: 35938851 PMCID: PMC9487459 DOI: 10.1128/jb.00164-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Lgt is an essential enzyme in proteobacteria and therefore a potential target for novel antibiotics. The effect of Lgt depletion on growth, morphology, and viability was studied in Escherichia coli to assess whether absence of Lgt leads to cell death. Two Lgt depletion strains were used in which lgt was under the control of an arabinose-inducible promoter that allowed regulation of Lgt protein levels. Reduced levels of Lgt led to severe growth and morphological defects that could be restored by expressing lgt in trans, demonstrating that only Lgt is responsible for the distorted phenotypes. In the absence of major lipoprotein Lpp, growth defects were partially restored when low levels of Lgt were still present; however, lgt could not be deleted in the absence of Lpp. Our results demonstrate that Lpp is not the main cause of cell death under conditions of Lgt depletion and that other lipoproteins are important in cell envelope biogenesis and cell viability. Specific inhibitors of Lgt are thus promising for the development of novel antibiotics. IMPORTANCE Incomplete maturation and envelope mislocalization of lipoproteins, through inhibition or mutations in lipoprotein modification enzymes or transport to the outer membrane, are lethal in proteobacteria. Resistance to small-molecule inhibition or the appearance of suppressor mutations is often directly correlated with the presence of abundant outer membrane lipoprotein Lpp. Our results show that Lgt, the first enzyme of the lipoprotein modification pathway, is still required for growth and viability in the absence of Lpp and thus is necessary for the function of other essential lipoproteins in the cell envelope. This adds credence to the hypothesis that Lgt is essential in proteobacteria and an attractive target for the development of novel antibiotics.
Collapse
|
11
|
Czolkoss S, Borgert P, Poppenga T, Hölzl G, Aktas M, Narberhaus F. Synthesis of the unusual lipid bis(monoacylglycero)phosphate in environmental bacteria. Environ Microbiol 2021; 23:6993-7008. [PMID: 34528360 DOI: 10.1111/1462-2920.15777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 09/10/2021] [Accepted: 09/13/2021] [Indexed: 01/05/2023]
Abstract
The bacterial membrane is constantly remodelled in response to environmental conditions and the external supply of precursor molecules. Some bacteria are able to acquire exogenous lyso-phospholipids and convert them to the corresponding phospholipids. Here, we report that some soil-dwelling bacteria have alternative options to metabolize lyso-phosphatidylglycerol (L-PG). We find that the plant-pathogen Agrobacterium tumefaciens takes up this mono-acylated phospholipid and converts it to two distinct isoforms of the non-canonical lipid bis(monoacylglycero)phosphate (BMP). Chromatographic separation and quadrupole-time-of-flight MS/MS analysis revealed the presence of two possible BMP stereo configurations acylated at either of the free hydroxyl groups of the glycerol head group. BMP accumulated in the inner membrane and did not visibly alter cell morphology and growth behaviour. The plant-associated bacterium Sinorhizobium meliloti was also able to convert externally provided L-PG to BMP. Other bacteria like Pseudomonas fluorescens and Escherichia coli metabolized L-PG after cell disruption, suggesting that BMP production in the natural habitat relies both on dedicated uptake systems and on head-group acylation enzymes. Overall, our study adds two previously overlooked phospholipids to the repertoire of bacterial membrane lipids and provides evidence for the remarkable condition-responsive adaptation of bacterial membranes.
Collapse
Affiliation(s)
- Simon Czolkoss
- Microbial Biology, Ruhr University Bochum, Universitätsstraße 150, 44801 Bochum, Germany
| | - Pia Borgert
- Microbial Biology, Ruhr University Bochum, Universitätsstraße 150, 44801 Bochum, Germany
| | - Tessa Poppenga
- Microbial Biology, Ruhr University Bochum, Universitätsstraße 150, 44801 Bochum, Germany
| | - Georg Hölzl
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, Karlrobert-Kreiten-Straße 13, 53115 Bonn, Germany
| | - Meriyem Aktas
- Microbial Biology, Ruhr University Bochum, Universitätsstraße 150, 44801 Bochum, Germany
| | - Franz Narberhaus
- Microbial Biology, Ruhr University Bochum, Universitätsstraße 150, 44801 Bochum, Germany
| |
Collapse
|
12
|
Mychack A, Janakiraman A. Defects in The First Step of Lipoprotein Maturation Underlie The Synthetic Lethality of Escherichia coli Lacking The Inner Membrane Proteins YciB And DcrB. J Bacteriol 2021; 203:JB.00640-20. [PMID: 33431434 PMCID: PMC8095458 DOI: 10.1128/jb.00640-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 12/14/2020] [Indexed: 11/20/2022] Open
Abstract
Nearly a quarter of the Escherichia coli genome encodes for inner membrane proteins of which approximately a third have unassigned or poorly understood function. We had previously demonstrated that the synergy between the functional roles of the inner membrane-spanning YciB and the inner membrane lipoprotein DcrB, is essential in maintaining cell envelope integrity. In yciB dcrB cells, the abundant outer membrane lipoprotein, Lpp, mislocalizes to the inner membrane where it forms toxic linkages to peptidoglycan. Here, we report that the aberrant localization of Lpp in this double mutant is due to inefficient lipid modification at the first step in lipoprotein maturation. Both Cpx and Rcs signaling systems are upregulated in response to the envelope stress. The phosphatidylglycerol-pre-prolipoprotein diacylglyceryl transferase, Lgt, catalyzes the initial step in lipoprotein maturation. Our results suggest that the attenuation in Lgt-mediated transacylation in the double mutant is not a consequence of lowered phosphatidylglycerol levels. Instead, we posit that altered membrane fluidity, perhaps due to changes in lipid homeostasis, may lead to the impairment in Lgt function. Consistent with this idea, a dcrB null is not viable when grown at low temperatures, conditions which impact membrane fluidity. Like the yciB dcrB double mutant, dcrB null-mediated toxicity can be overcome in distinct ways - by increased expression of Lgt, deletion of lpp, or removal of Lpp-peptidoglycan linkages. The last of these events leads to elevated membrane vesiculation and lipid loss, which may, in turn, impact membrane homeostasis in the double mutant.Importance A distinguishing feature of Gram-negative bacteria is their double-membraned cell envelope which presents a formidable barrier against environmental stress. In E. coli, more than a quarter of the cellular proteins reside at the inner membrane but about a third of these proteins are functionally unassigned or their function is incompletely understood. Here, we show that the synthetic lethality underlying the inactivation of two inner membrane proteins, a small integral membrane protein YciB, and a lipoprotein, DcrB, results from the attenuation of the first step of lipoprotein maturation at the inner membrane. We propose that these two inner membrane proteins YciB and DcrB play a role in membrane homeostasis in E. coli and related bacteria.
Collapse
Affiliation(s)
- Aaron Mychack
- Department of Biology, 160 Convent Ave. MR 526, The City College of CUNY, New York, NY, 100031, USA
- Program in Biology, The Graduate Center, CUNY, Fifth Avenue, New York, NY, 10016, USA
| | - Anuradha Janakiraman
- Department of Biology, 160 Convent Ave. MR 526, The City College of CUNY, New York, NY, 100031, USA
- Program in Biology, The Graduate Center, CUNY, Fifth Avenue, New York, NY, 10016, USA
| |
Collapse
|
13
|
Legood S, Boneca IG, Buddelmeijer N. Mode of action of lipoprotein modification enzymes-Novel antibacterial targets. Mol Microbiol 2021; 115:356-365. [PMID: 32979868 PMCID: PMC8048626 DOI: 10.1111/mmi.14610] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/10/2020] [Indexed: 01/04/2023]
Abstract
Lipoproteins are characterized by a fatty acid moiety at their amino-terminus through which they are anchored into membranes. They fulfill a variety of essential functions in bacterial cells, such as cell wall maintenance, virulence, efflux of toxic elements including antibiotics, and uptake of nutrients. The posttranslational modification process of lipoproteins involves the sequential action of integral membrane enzymes and phospholipids as acyl donors. In recent years, the structures of the lipoprotein modification enzymes have been solved by X-ray crystallography leading to a greater insight into their function and the molecular mechanism of the reactions. The catalytic domains of the enzymes are exposed to the periplasm or external milieu and are readily accessible to small molecules. Since the lipoprotein modification pathway is essential in proteobacteria, it is a potential target for the development of novel antibiotics. In this review, we discuss recent literature on the structural characterization of the enzymes, and the in vitro activity assays compatible with high-throughput screening for inhibitors, with perspectives on the development of new antimicrobial agents.
Collapse
Affiliation(s)
- Simon Legood
- Institut PasteurUnité Biologie et Génétique de la Paroi BactérienneParisFrance
- CNRS, UMR 2001 « Microbiologie intégrative et Moléculaire »ParisFrance
- INSERM Groupe AvenirParisFrance
- Université de ParisSorbonne Paris CitéParisFrance
| | - Ivo G. Boneca
- Institut PasteurUnité Biologie et Génétique de la Paroi BactérienneParisFrance
- CNRS, UMR 2001 « Microbiologie intégrative et Moléculaire »ParisFrance
- INSERM Groupe AvenirParisFrance
| | - Nienke Buddelmeijer
- Institut PasteurUnité Biologie et Génétique de la Paroi BactérienneParisFrance
- CNRS, UMR 2001 « Microbiologie intégrative et Moléculaire »ParisFrance
- INSERM Groupe AvenirParisFrance
| |
Collapse
|
14
|
Lipoprotein N-Acylation in Staphylococcus aureus Is Catalyzed by a Two-Component Acyl Transferase System. mBio 2020; 11:mBio.01619-20. [PMID: 32723923 PMCID: PMC7387801 DOI: 10.1128/mbio.01619-20] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Although it has long been known that S. aureus forms triacylated Lpps, a lack of homologs to known N-acylation genes found in Gram-negative bacteria has until now precluded identification of the genes responsible for this Lpp modification. Here, we demonstrate N-terminal Lpp acylation and chemotype conversion to the tri-acylated state is directed by a unique acyl transferase system encoded by two noncontiguous staphylococci genes (lnsAB). Since triacylated Lpps stimulate TLR2 more weakly than their diacylated counterparts, Lpp N-acylation is an important TLR2 immunoevasion factor for determining tolerance or nontolerance in niches such as in the skin microbiota. The discovery of the LnsAB system expands the known diversity of Lpp biosynthesis pathways and acyl transfer biochemistry in bacteria, advances our understanding of Lpp structural heterogeneity, and helps differentiate commensal and noncommensal microbiota. Bacterial lipoproteins (Lpps) are a class of membrane-associated proteins universally distributed among all bacteria. A characteristic N-terminal cysteine residue that is variably acylated anchors C-terminal globular domains to the extracellular surface, where they serve numerous roles, including in the capture and transport of essential nutrients. Lpps are also ligands for the Toll-like receptor 2 (TLR2) family, a key component of the innate immune system tasked with bacterial recognition. While Lpp function is conserved in all prokaryotes, structural heterogeneity in the N-terminal acylation state is widespread among Firmicutes and can differ between otherwise closely related species. In this study, we identify a novel two-gene system that directs the synthesis of N-acylated Lpps in the commensal and opportunistic pathogen subset of staphylococci. The two genes, which we have named the lipoprotein N-acylation transferase system (Lns), bear no resemblance to previously characterized N-terminal Lpp tailoring enzymes. LnsA (SAOUHSC_00822) is an NlpC/P60 superfamily enzyme, whereas LnsB (SAOHSC_02761) has remote homology to the CAAX protease and bacteriocin-processing enzyme (CPBP) family. Both LnsA and LnsB are together necessary and alone sufficient for N-acylation in Staphylococcus aureus and convert the Lpp chemotype from diacyl to triacyl when heterologously expressed in Listeria monocytogenes. Acquisition of lnsAB decreases TLR2-mediated detection of S. aureus by nearly 10-fold and shifts the activated TLR2 complex from TLR2/6 to TLR2/1. LnsAB thus has a dual role in attenuating TLR2 signaling in addition to a broader role in bacterial cell envelope physiology.
Collapse
|
15
|
Armbruster KM, Komazin G, Meredith TC. Bacterial lyso-form lipoproteins are synthesized via an intramolecular acyl chain migration. J Biol Chem 2020; 295:10195-10211. [PMID: 32471867 DOI: 10.1074/jbc.ra120.014000] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/22/2020] [Indexed: 01/08/2023] Open
Abstract
All bacterial lipoproteins share a variably acylated N-terminal cysteine residue. Gram-negative bacterial lipoproteins are triacylated with a thioether-linked diacylglycerol moiety and an N-acyl chain. The latter is transferred from a membrane phospholipid donor to the α-amino terminus by the enzyme lipoprotein N-acyltransferase (Lnt), using an active-site cysteine thioester covalent intermediate. Many Gram-positive Firmicutes also have N-acylated lipoproteins, but the enzymes catalyzing N-acylation remain uncharacterized. The integral membrane protein Lit (lipoprotein intramolecular transacylase) from the opportunistic nosocomial pathogen Enterococcus faecalis synthesizes a specific lysoform lipoprotein (N-acyl S-monoacylglycerol) chemotype by an unknown mechanism that helps this bacterium evade immune recognition by the Toll-like receptor 2 family complex. Here, we used a deuterium-labeled lipoprotein substrate with reconstituted Lit to investigate intramolecular acyl chain transfer. We observed that Lit transfers the sn-2 ester-linked lipid from the diacylglycerol moiety to the α-amino terminus without forming a covalent thioester intermediate. Utilizing Mut-Seq to analyze an alanine scan library of Lit alleles, we identified two stretches of functionally important amino acid residues containing two conserved histidines. Topology maps based on reporter fusion assays and cysteine accessibility placed both histidines in the extracellular half of the cytoplasmic membrane. We propose a general acid base-promoted catalytic mechanism, invoking direct nucleophilic attack by the substrate α-amino group on the sn-2 ester to form a cyclic tetrahedral intermediate that then collapses to produce lyso-lipoprotein. Lit is a unique example of an intramolecular transacylase differentiated from that catalyzed by Lnt, and provides insight into the heterogeneity of bacterial lipoprotein biosynthetic systems.
Collapse
Affiliation(s)
- Krista M Armbruster
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Gloria Komazin
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Timothy C Meredith
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, USA .,The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park Pennsylvania, USA
| |
Collapse
|
16
|
Xia J, Feng B, Wen G, Xue W, Ma G, Zhang H, Wu S. Bacterial Lipoprotein Biosynthetic Pathway as a Potential Target for Structure-based Design of Antibacterial Agents. Curr Med Chem 2020; 27:1132-1150. [PMID: 30360704 DOI: 10.2174/0929867325666181008143411] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 07/31/2018] [Accepted: 08/15/2018] [Indexed: 12/20/2022]
Abstract
BACKGROUND Antibiotic resistance is currently a serious problem for global public health. To this end, discovery of new antibacterial drugs that interact with novel targets is important. The biosynthesis of lipoproteins is vital to bacterial survival and its inhibitors have shown efficacy against a range of bacteria, thus bacterial lipoprotein biosynthetic pathway is a potential target. METHODS At first, the literature that covered the basic concept of bacterial lipoprotein biosynthetic pathway as well as biochemical characterization of three key enzymes was reviewed. Then, the recently resolved crystal structures of the three enzymes were retrieved from Protein Data Bank (PDB) and the essential residues in the active sites were analyzed. Lastly, all the available specific inhibitors targeting this pathway and their Structure-activity Relationship (SAR) were discussed. RESULTS We briefly introduce the bacterial lipoprotein biosynthetic pathway and describe the structures and functions of three key enzymes in detail. In addition, we present much knowledge on ligand recognition that may facilitate structure-based drug design. Moreover, we focus on the SAR of LspA inhibitors and discuss their potency and drug-likeness. CONCLUSION This review presents a clear background of lipoprotein biosynthetic pathway and provides practical clues for structure-based drug design. In particular, the most up-to-date knowledge on the SAR of lead compounds targeting this pathway would be a good reference for discovery of a novel class of antibacterial agents.
Collapse
Affiliation(s)
- Jie Xia
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of New Drug Research and Development, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Bo Feng
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of New Drug Research and Development, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Gang Wen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of New Drug Research and Development, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Wenjie Xue
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of New Drug Research and Development, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Guixing Ma
- Department of Biology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment and SUSTech-HKU joint laboratories for matrix biology, Southern University of Science and Technology, Shenzhen 518055, China
| | - Hongmin Zhang
- Department of Biology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment and SUSTech-HKU joint laboratories for matrix biology, Southern University of Science and Technology, Shenzhen 518055, China
| | - Song Wu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of New Drug Research and Development, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
17
|
A sensitive fluorescence-based assay to monitor enzymatic activity of the essential integral membrane protein Apolipoprotein N-acyltransferase (Lnt). Sci Rep 2019; 9:15978. [PMID: 31685855 PMCID: PMC6828757 DOI: 10.1038/s41598-019-52106-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 10/08/2019] [Indexed: 12/20/2022] Open
Abstract
Lipoprotein modification is an essential process in Gram-negative bacteria. The action of three integral membrane proteins that catalyze the transfer of fatty acids derived from membrane phospholipids or cleave the signal peptide of the lipoprotein substrate result in the formation of mature triacylated proteins. Inactivation of the enzymes leads to mis-localization of immature lipoproteins and consequently cell death. Biochemical studies and the development of in vitro assays are challenging due to the fact that the enzymes and substrates are all membrane-embedded proteins difficult to overproduce and purify. Here we describe a sensitive fluorescence-based assay to monitor bacterial apolipoprotein N-acyltransferase activity.
Collapse
|
18
|
Abstract
The outer membrane (OM) of Gram-negative bacteria exhibits unique lipid asymmetry, with lipopolysaccharides (LPS) residing in the outer leaflet and phospholipids (PLs) in the inner leaflet. This asymmetric bilayer protects the bacterium against intrusion of many toxic substances, including antibiotics and detergents, yet allows acquisition of nutrients necessary for growth. To build the OM and ensure its proper function, the cell produces OM constituents in the cytoplasm or inner membrane and transports these components across the aqueous periplasmic space separating the two membranes. Of note, the processes by which the most basic membrane building blocks, i.e. PLs, are shuttled across the cell envelope remain elusive. This review highlights our current understanding (or lack thereof) of bacterial PL trafficking, with a focus on recent developments in the field. We adopt a mechanistic approach and draw parallels and comparisons with well-characterized systems, particularly OM lipoprotein and LPS transport, to illustrate key challenges in intermembrane lipid trafficking. Pathways that transport PLs across the bacterial cell envelope are fundamental to OM biogenesis and homeostasis and are potential molecular targets that could be exploited for antibiotic development.
Collapse
Affiliation(s)
- Rahul Shrivastava
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - Shu-Sin Chng
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| |
Collapse
|
19
|
Lin Y, Deepak RNVK, Zheng JZ, Fan H, Zheng L. A dual substrate-accessing mechanism of a major facilitator superfamily protein facilitates lysophospholipid flipping across the cell membrane. J Biol Chem 2018; 293:19919-19931. [PMID: 30373772 DOI: 10.1074/jbc.ra118.005548] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 10/23/2018] [Indexed: 11/06/2022] Open
Abstract
Lysophospholipid transporter (LplT) is a member of the major facilitator superfamily present in many Gram-negative bacteria. LplT catalyzes flipping of lysophospholipids (LPLs) across the bacterial inner membrane, playing an important role in bacterial membrane homeostasis. We previously reported that LplT promotes both uptake of exogenous LPLs and intramembranous LPL flipping across the bilayer. To gain mechanistic insight into this dual LPL-flipping activity, here we implemented a combination of computational approaches and LPL transport analyses to study LPL binding of and translocation by LplT. Our results suggest that LplT translocates LPLs through an elongated cavity exhibiting an extremely asymmetric polarity. We found that two D(E)N motifs form a head group-binding site, in which the carboxylate group of Asp-30 is important for LPL head group recognition. Substitutions of residues in the head group-binding site disrupted both LPL uptake and flipping activities. However, alteration of hydrophobic residues on the interface between the N- and C-terminal domains impaired LPL flipping specifically, resulting in LPLs accumulation in the membrane, but LPL uptake remained active. These results suggest a dual substrate-accessing mechanism, in which LplT recruits LPLs to its substrate-binding site via two routes, either from its extracellular entry or through a membrane-embedded groove between transmembrane helices, and then moves them toward the inner membrane leaflet. This LPL-flipping mechanism is likely conserved in many bacterial species, and our findings illustrate how LplT adjusts the major facilitator superfamily translocation pathway to perform its versatile lipid homeostatic functions.
Collapse
Affiliation(s)
- Yibin Lin
- From the Department of Biochemistry and Molecular Biology, Center for Membrane Biology, the University of Texas Health Science Center at Houston McGovern Medical School, Houston Texas 77030
| | - R N V Krishna Deepak
- the Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 138671 Singapore, and
| | - Jonathan Zixiang Zheng
- From the Department of Biochemistry and Molecular Biology, Center for Membrane Biology, the University of Texas Health Science Center at Houston McGovern Medical School, Houston Texas 77030
| | - Hao Fan
- the Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 138671 Singapore, and .,the Department of Biological Sciences (DBS), National University of Singapore, 117558 Singapore, and Center for Computational Biology, DUKE-NUS Medical School, 169857 Singapore
| | - Lei Zheng
- From the Department of Biochemistry and Molecular Biology, Center for Membrane Biology, the University of Texas Health Science Center at Houston McGovern Medical School, Houston Texas 77030,
| |
Collapse
|
20
|
Yao J, Rock CO. Therapeutic Targets in Chlamydial Fatty Acid and Phospholipid Synthesis. Front Microbiol 2018; 9:2291. [PMID: 30319589 PMCID: PMC6167442 DOI: 10.3389/fmicb.2018.02291] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 09/07/2018] [Indexed: 01/13/2023] Open
Abstract
Chlamydia trachomatis is an obligate intracellular pathogen with a reduced genome reflecting its host cell dependent life style. However, C. trachomatis has retained all of the genes required for fatty acid and phospholipid synthesis that are present in free-living bacteria. C. trachomatis assembles its cellular membrane using its own biosynthetic machinery utilizing glucose, isoleucine, and serine. This pathway produces disaturated phospholipid molecular species containing a branched-chain 15-carbon fatty acid in the 2-position, which are distinct from the structures of host phospholipids. The enoyl reductase step (FabI) is a target for antimicrobial drug discovery, and the developmental candidate, AFN-1252, blocks the activity of CtFabI. The x-ray crystal structure of the CtFabI•NADH•AFN-1252 ternary complex reveals the interactions between the drug, protein, and cofactor. AFN-1252 treatment of C. trachomatis-infected HeLa cells at any point in the infection cycle reduces infectious titers, and treatment at the time of infection prevents the first cell division. Fatty acid synthesis is essential for C. trachomatis proliferation within its eukaryotic host, and CtFabI is a validated therapeutic target against C. trachomatis.
Collapse
Affiliation(s)
- Jiangwei Yao
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Charles O Rock
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, United States
| |
Collapse
|
21
|
Zheng L, Lin Y, Lu S, Zhang J, Bogdanov M. Biogenesis, transport and remodeling of lysophospholipids in Gram-negative bacteria. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1862:1404-1413. [PMID: 27956138 PMCID: PMC6162059 DOI: 10.1016/j.bbalip.2016.11.015] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 11/28/2016] [Accepted: 11/30/2016] [Indexed: 11/18/2022]
Abstract
Lysophospholipids (LPLs) are metabolic intermediates in bacterial phospholipid turnover. Distinct from their diacyl counterparts, these inverted cone-shaped molecules share physical characteristics of detergents, enabling modification of local membrane properties such as curvature. The functions of LPLs as cellular growth factors or potent lipid mediators have been extensively demonstrated in eukaryotic cells but are still undefined in bacteria. In the envelope of Gram-negative bacteria, LPLs are derived from multiple endogenous and exogenous sources. Although several flippases that move non-glycerophospholipids across the bacterial inner membrane were characterized, lysophospholipid transporter LplT appears to be the first example of a bacterial protein capable of facilitating rapid retrograde translocation of lyso forms of glycerophospholipids across the cytoplasmic membrane in Gram-negative bacteria. LplT transports lyso forms of the three bacterial membrane phospholipids with comparable efficiency, but excludes other lysolipid species. Once a LPL is flipped by LplT to the cytoplasmic side of the inner membrane, its diacyl form is effectively regenerated by the action of a peripheral enzyme, acyl-ACP synthetase/LPL acyltransferase (Aas). LplT-Aas also mediates a novel cardiolipin remodeling by converting its two lyso derivatives, diacyl or deacylated cardiolipin, to a triacyl form. This coupled remodeling system provides a unique bacterial membrane phospholipid repair mechanism. Strict selectivity of LplT for lyso lipids allows this system to fulfill efficient lipid repair in an environment containing mostly diacyl phospholipids. A rocker-switch model engaged by a pair of symmetric ion-locks may facilitate alternating substrate access to drive LPL flipping into bacterial cells. This article is part of a Special Issue entitled: Bacterial Lipids edited by Russell E. Bishop.
Collapse
Affiliation(s)
- Lei Zheng
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston McGovern Medical School, 6431 Fannin Street, Houston, TX 77030, USA.
| | - Yibin Lin
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston McGovern Medical School, 6431 Fannin Street, Houston, TX 77030, USA
| | - Shuo Lu
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston McGovern Medical School, 6431 Fannin Street, Houston, TX 77030, USA
| | - Jiazhe Zhang
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston McGovern Medical School, 6431 Fannin Street, Houston, TX 77030, USA
| | - Mikhail Bogdanov
- Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston McGovern Medical School, 6431 Fannin Street, Houston, TX 77030, USA
| |
Collapse
|
22
|
Structural insights into lipoprotein N-acylation by Escherichia coli apolipoprotein N-acyltransferase. Proc Natl Acad Sci U S A 2017; 114:E6044-E6053. [PMID: 28698362 DOI: 10.1073/pnas.1707813114] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Gram-negative bacteria express a diverse array of lipoproteins that are essential for various aspects of cell growth and virulence, including nutrient uptake, signal transduction, adhesion, conjugation, sporulation, and outer membrane protein folding. Lipoprotein maturation requires the sequential activity of three enzymes that are embedded in the cytoplasmic membrane. First, phosphatidylglycerol:prolipoprotein diacylglyceryl transferase (Lgt) recognizes a conserved lipobox motif within the prolipoprotein signal sequence and catalyzes the addition of diacylglycerol to an invariant cysteine. The signal sequence is then cleaved by signal peptidase II (LspA) to give an N-terminal S-diacylglyceryl cysteine. Finally, apolipoprotein N-acyltransferase (Lnt) catalyzes the transfer of the sn-1-acyl chain of phosphatidylethanolamine to this N-terminal cysteine, generating a mature, triacylated lipoprotein. Although structural studies of Lgt and LspA have yielded significant mechanistic insights into this essential biosynthetic pathway, the structure of Lnt has remained elusive. Here, we present crystal structures of wild-type and an active-site mutant of Escherichia coli Lnt. The structures reveal a monomeric eight-transmembrane helix fold that supports a periplasmic carbon-nitrogen hydrolase domain containing a Cys-Glu-Lys catalytic triad. Two lipids are bound at the active site in the structures, and we propose a putative phosphate recognition site where a chloride ion is coordinated near the active site. Based on these structures and complementary cell-based, biochemical, and molecular dynamics approaches, we propose a mechanism for substrate engagement and catalysis by E. coli Lnt.
Collapse
|
23
|
Maffei B, Francetic O, Subtil A. Tracking Proteins Secreted by Bacteria: What's in the Toolbox? Front Cell Infect Microbiol 2017; 7:221. [PMID: 28620586 PMCID: PMC5449463 DOI: 10.3389/fcimb.2017.00221] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 05/15/2017] [Indexed: 01/14/2023] Open
Abstract
Bacteria have acquired multiple systems to expose proteins on their surface, release them in the extracellular environment or even inject them into a neighboring cell. Protein secretion has a high adaptive value and secreted proteins are implicated in many functions, which are often essential for bacterial fitness. Several secreted proteins or secretion machineries have been extensively studied as potential drug targets. It is therefore important to identify the secretion substrates, to understand how they are specifically recognized by the secretion machineries, and how transport through these machineries occurs. The purpose of this review is to provide an overview of the biochemical, genetic and imaging tools that have been developed to evaluate protein secretion in a qualitative or quantitative manner. After a brief overview of the different tools available, we will illustrate their advantages and limitations through a discussion of some of the current open questions related to protein secretion. We will start with the question of the identification of secreted proteins, which for many bacteria remains a critical initial step toward a better understanding of their interactions with the environment. We will then illustrate our toolbox by reporting how these tools have been applied to better understand how substrates are recognized by their cognate machinery, and how secretion proceeds. Finally, we will highlight recent approaches that aim at investigating secretion in real time, and in complex environments such as a tissue or an organism.
Collapse
Affiliation(s)
- Benoit Maffei
- Unité de Biologie Cellulaire de l'Infection Microbienne, Institut PasteurParis, France.,Centre National de la Recherche Scientifique UMR3691Paris, France
| | - Olivera Francetic
- Unité de Biochimie des Interactions Macromoléculaires, Institut PasteurParis, France.,Centre National de la Recherche Scientifique ERL6002Paris, France
| | - Agathe Subtil
- Unité de Biologie Cellulaire de l'Infection Microbienne, Institut PasteurParis, France.,Centre National de la Recherche Scientifique UMR3691Paris, France
| |
Collapse
|
24
|
Identification of the Lyso-Form N-Acyl Intramolecular Transferase in Low-GC Firmicutes. J Bacteriol 2017; 199:JB.00099-17. [PMID: 28320885 DOI: 10.1128/jb.00099-17] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 03/14/2017] [Indexed: 12/25/2022] Open
Abstract
Bacterial lipoproteins are embedded in the cell membrane of both Gram-positive and Gram-negative bacteria, where they serve numerous functions central to cell envelope physiology. Lipoproteins are tethered to the membrane by an N-acyl-S-(mono/di)-acyl-glyceryl-cysteine anchor that is variously acylated depending on the genus. In several low-GC, Gram-positive firmicutes, a monoacyl-glyceryl-cysteine with an N-terminal fatty acid (known as the lyso form) has been reported, though how it is formed is unknown. Here, through an intergenic complementation rescue assay in Escherichia coli, we report the identification of a common orthologous transmembrane protein in both Enterococcus faecalis and Bacillus cereus that is capable of forming lyso-form lipoproteins. When deleted from the native host, lipoproteins remain diacylated with a free N terminus, as maturation to the N-acylated lyso form is abolished. Evidence is presented suggesting that the previously unknown gene product functions through a novel intramolecular transacylation mechanism, transferring a fatty acid from the diacylglycerol moiety to the α-amino group of the lipidated cysteine. As such, the discovered gene has been named lipoprotein intramolecular transacylase (lit), to differentiate it from the gene for the intermolecular N-acyltransferase (lnt) involved in triacyl lipoprotein biosynthesis in Gram-negative organisms.IMPORTANCE This study identifies a new enzyme, conserved among low-GC, Gram-positive bacteria, that is involved in bacterial lipoprotein biosynthesis and synthesizes lyso-form lipoproteins. Its discovery is an essential first step in determining the physiological role of N-terminal lipoprotein acylation in Gram-positive bacteria and how these modifications impact bacterial cell envelope function.
Collapse
|
25
|
Comprehensive Spatial Analysis of the Borrelia burgdorferi Lipoproteome Reveals a Compartmentalization Bias toward the Bacterial Surface. J Bacteriol 2017; 199:JB.00658-16. [PMID: 28069820 DOI: 10.1128/jb.00658-16] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 01/03/2017] [Indexed: 12/13/2022] Open
Abstract
The Lyme disease spirochete Borrelia burgdorferi is unique among bacteria in its large number of lipoproteins that are encoded by a small, exceptionally fragmented, and predominantly linear genome. Peripherally anchored in either the inner or outer membrane and facing either the periplasm or the external environment, these lipoproteins assume varied roles. A prominent subset of lipoproteins functioning as the apparent linchpins of the enzootic tick-vertebrate infection cycle have been explored as vaccine targets. Yet, most of the B. burgdorferi lipoproteome has remained uncharacterized. Here, we comprehensively and conclusively localize the B. burgdorferi lipoproteome by applying established protein localization assays to a newly generated epitope-tagged lipoprotein expression library and by validating the obtained individual protein localization results using a sensitive global mass spectrometry approach. The derived consensus localization data indicate that 86 of the 125 analyzed lipoproteins encoded by B. burgdorferi are secreted to the bacterial surface. Thirty-one of the remaining 39 periplasmic lipoproteins are retained in the inner membrane, with only 8 lipoproteins being anchored in the periplasmic leaflet of the outer membrane. The localization of 10 lipoproteins was further defined or revised, and 52 surface and 23 periplasmic lipoproteins were newly localized. Cross-referencing prior studies revealed that the borrelial surface lipoproteome contributing to the host-pathogen interface is encoded predominantly by plasmids. Conversely, periplasmic lipoproteins are encoded mainly by chromosomal loci. These studies close a gap in our understanding of the functional lipoproteome of an important human pathogen and set the stage for more in-depth studies of thus-far-neglected spirochetal lipoproteins.IMPORTANCE The small and exceptionally fragmented genome of the Lyme disease spirochete Borrelia burgdorferi encodes over 120 lipoproteins. Studies in the field have predominantly focused on a relatively small number of surface lipoproteins that play important roles in the transmission and pathogenesis of this global human pathogen. Yet, a comprehensive spatial assessment of the entire borrelial lipoproteome has been missing. The current study newly identifies 52 surface and 23 periplasmic lipoproteins. Overall, two-thirds of the B. burgdorferi lipoproteins localize to the surface, while outer membrane lipoproteins facing the periplasm are rare. This analysis underscores the dominant contribution of lipoproteins to the spirochete's rather complex and adaptable host-pathogen interface, and it encourages further functional exploration of its lipoproteome.
Collapse
|
26
|
Lin Y, Bogdanov M, Tong S, Guan Z, Zheng L. Substrate Selectivity of Lysophospholipid Transporter LplT Involved in Membrane Phospholipid Remodeling in Escherichia coli. J Biol Chem 2015; 291:2136-49. [PMID: 26613781 DOI: 10.1074/jbc.m115.700419] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Indexed: 11/06/2022] Open
Abstract
Lysophospholipid transporter (LplT) was previously found to be primarily involved in 2-acyl lysophosphatidylethanolamine (lyso-PE) recycling in Gram-negative bacteria. This work identifies the potent role of LplT in maintaining membrane stability and integrity in the Escherichia coli envelope. Here we demonstrate the involvement of LplT in the recycling of three major bacterial phospholipids using a combination of an in vitro lysophospholipid binding assay using purified protein and transport assays with E. coli spheroplasts. Our results show that lyso-PE and lysophosphatidylglycerol, but not lysophosphatidylcholine, are taken up by LplT for reacylation by acyltransferase/acyl-acyl carrier protein synthetase on the inner leaflet of the membrane. We also found a novel cardiolipin hydrolysis reaction by phospholipase A2 to form diacylated cardiolipin progressing to the completely deacylated headgroup. These two distinct cardiolipin derivatives were both translocated with comparable efficiency to generate triacylated cardiolipin by acyltransferase/acyl-acyl carrier protein synthetase, demonstrating the first evidence of cardiolipin remodeling in bacteria. These findings support that a fatty acid chain is not required for LplT transport. We found that LplT cannot transport lysophosphatidic acid, and its substrate binding was not inhibited by either orthophosphate or glycerol 3-phosphate, indicating that either a glycerol or ethanolamine headgroup is the chemical determinant for substrate recognition. Diacyl forms of PE, phosphatidylglycerol, or the tetra-acylated form of cardiolipin could not serve as a competitive inhibitor in vitro. Based on an evolutionary structural model, we propose a "sideways sliding" mechanism to explain how a conserved membrane-embedded α-helical interface excludes diacylphospholipids from the LplT binding site to facilitate efficient flipping of lysophospholipid across the cell membrane.
Collapse
Affiliation(s)
- Yibin Lin
- From the Center for Membrane Biology, Department of Biochemistry and Molecular Biology, The University of Texas Houston Medical School, Houston, Texas 77030 and
| | - Mikhail Bogdanov
- From the Center for Membrane Biology, Department of Biochemistry and Molecular Biology, The University of Texas Houston Medical School, Houston, Texas 77030 and
| | - Shuilong Tong
- From the Center for Membrane Biology, Department of Biochemistry and Molecular Biology, The University of Texas Houston Medical School, Houston, Texas 77030 and
| | - Ziqiang Guan
- Department of Biochemistry, Duke University Medical School, Durham, North Carolina 27703
| | - Lei Zheng
- From the Center for Membrane Biology, Department of Biochemistry and Molecular Biology, The University of Texas Houston Medical School, Houston, Texas 77030 and
| |
Collapse
|
27
|
Goolab S, Roth RL, van Heerden H, Crampton MC. Analyzing the molecular mechanism of lipoprotein localization in Brucella. Front Microbiol 2015; 6:1189. [PMID: 26579096 PMCID: PMC4623201 DOI: 10.3389/fmicb.2015.01189] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 10/12/2015] [Indexed: 01/18/2023] Open
Abstract
Bacterial lipoproteins possess diverse structure and functionality, ranging from bacterial physiology to pathogenic processes. As such many lipoproteins, originating from Brucella are exploited as potential vaccines to countermeasure brucellosis infection in the host. These membrane proteins are translocated from the cytoplasm to the cell membrane where they are anchored peripherally by a multifaceted targeting mechanism. Although much research has focused on the identification and classification of Brucella lipoproteins and their potential use as vaccine candidates for the treatment of Brucellosis, the underlying route for the translocation of these lipoproteins to the outer surface of the Brucella (and other pathogens) outer membrane (OM) remains mostly unknown. This is partly due to the complexity of the organism and evasive tactics used to escape the host immune system, the variation in biological structure and activity of lipoproteins, combined with the complex nature of the translocation machinery. The biosynthetic pathway of Brucella lipoproteins involves a distinct secretion system aiding translocation from the cytoplasm, where they are modified by lipidation, sorted by the lipoprotein localization machinery pathway and thereafter equipped for export to the OM. Surface localized lipoproteins in Brucella may employ a lipoprotein flippase or the β-barrel assembly complex for translocation. This review provides an overview of the characterized Brucella OM proteins that form part of the OM, including a handful of other characterized bacterial lipoproteins and their mechanisms of translocation. Lipoprotein localization pathways in gram negative bacteria will be used as a model to identify gaps in Brucella lipoprotein localization and infer a potential pathway. Of particular interest are the dual topology lipoproteins identified in Escherichia coli and Haemophilus influenza. The localization and topology of these lipoproteins from other gram negative bacteria are well characterized and may be useful to infer a solution to better understand the translocation process in Brucella.
Collapse
Affiliation(s)
- Shivani Goolab
- Protein Technologies, Biosciences, Council for Scientific and Industrial ResearchPretoria, South Africa
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of PretoriaPretoria, South Africa
| | - Robyn L. Roth
- Protein Technologies, Biosciences, Council for Scientific and Industrial ResearchPretoria, South Africa
| | - Henriette van Heerden
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of PretoriaPretoria, South Africa
| | - Michael C. Crampton
- Protein Technologies, Biosciences, Council for Scientific and Industrial ResearchPretoria, South Africa
| |
Collapse
|
28
|
Yao J, Dodson VJ, Frank MW, Rock CO. Chlamydia trachomatis Scavenges Host Fatty Acids for Phospholipid Synthesis via an Acyl-Acyl Carrier Protein Synthetase. J Biol Chem 2015. [PMID: 26195634 DOI: 10.1074/jbc.m115.671008] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The obligate intracellular parasite Chlamydia trachomatis has a reduced genome but relies on de novo fatty acid and phospholipid biosynthesis to produce its membrane phospholipids. Lipidomic analyses showed that 8% of the phospholipid molecular species synthesized by C. trachomatis contained oleic acid, an abundant host fatty acid that cannot be made by the bacterium. Mass tracing experiments showed that isotopically labeled palmitic, myristic, and lauric acids added to the medium were incorporated into C. trachomatis-derived phospholipid molecular species. HeLa cells did not elongate lauric acid, but infected HeLa cell cultures elongated laurate to myristate and palmitate. The elongated fatty acids were incorporated exclusively into C. trachomatis-produced phospholipid molecular species. C. trachomatis has adjacent genes encoding the separate domains of the bifunctional acyl-acyl carrier protein (ACP) synthetase/2-acylglycerolphosphoethanolamine acyltransferase gene (aas) of Escherichia coli. The CT775 gene encodes an acyltransferase (LpaT) that selectively transfers fatty acids from acyl-ACP to the 1-position of 2-acyl-glycerophospholipids. The CT776 gene encodes an acyl-ACP synthetase (AasC) with a substrate preference for palmitic compared with oleic acid in vitro. Exogenous fatty acids were elongated and incorporated into phospholipids by Escherichia coli-expressing AasC, illustrating its function as an acyl-ACP synthetase in vivo. These data point to an AasC-dependent pathway in C. trachomatis that selectively scavenges host saturated fatty acids to be used for the de novo synthesis of its membrane constituents.
Collapse
Affiliation(s)
- Jiangwei Yao
- From the Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee 38105
| | - V Joshua Dodson
- From the Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee 38105
| | - Matthew W Frank
- From the Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee 38105
| | - Charles O Rock
- From the Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee 38105
| |
Collapse
|
29
|
Yao J, Cherian PT, Frank MW, Rock CO. Chlamydia trachomatis Relies on Autonomous Phospholipid Synthesis for Membrane Biogenesis. J Biol Chem 2015; 290:18874-88. [PMID: 25995447 DOI: 10.1074/jbc.m115.657148] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Indexed: 11/06/2022] Open
Abstract
The obligate intracellular parasite Chlamydia trachomatis has a reduced genome and is thought to rely on its mammalian host cell for nutrients. Although several lines of evidence suggest C. trachomatis utilizes host phospholipids, the bacterium encodes all the genes necessary for fatty acid and phospholipid synthesis found in free living Gram-negative bacteria. Bacterially derived phospholipids significantly increased in infected HeLa cell cultures. These new phospholipids had a distinct molecular species composition consisting of saturated and branched-chain fatty acids. Biochemical analysis established the role of C. trachomatis-encoded acyltransferases in producing the new disaturated molecular species. There was no evidence for the remodeling of host phospholipids and no change in the size or molecular species composition of the phosphatidylcholine pool in infected HeLa cells. Host sphingomyelin was associated with C. trachomatis isolated by detergent extraction, but it may represent contamination with detergent-insoluble host lipids rather than being an integral bacterial membrane component. C. trachomatis assembles its membrane systems from the unique phospholipid molecular species produced by its own fatty acid and phospholipid biosynthetic machinery utilizing glucose, isoleucine, and serine.
Collapse
Affiliation(s)
| | - Philip T Cherian
- Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee 38105
| | | | | |
Collapse
|
30
|
Diomandé SE, Nguyen-the C, Abee T, Tempelaars MH, Broussolle V, Brillard J. Involvement of the CasK/R two-component system in optimal unsaturation of the Bacillus cereus fatty acids during low-temperature growth. Int J Food Microbiol 2015; 213:110-7. [PMID: 25987542 DOI: 10.1016/j.ijfoodmicro.2015.04.043] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 04/21/2015] [Accepted: 04/25/2015] [Indexed: 11/26/2022]
Abstract
Bacillus cereus sensu lato is composed of a set of ubiquitous strains including human pathogens that can survive a range of food processing conditions, grow in refrigerated food, and sometimes cause food poisoning. We previously identified the two-component system CasK/R that plays a key role in cold adaptation. To better understand the CasK/R-controlled mechanisms that support low-temperature adaptation, we performed a transcriptomic analysis on the ATCC 14579 strain and its isogenic ∆casK/R mutant grown at 12°C. Several genes involved in fatty acid (FA) metabolism were downregulated in the mutant, including desA and desB encoding FA acyl-lipid desaturases that catalyze the formation of a double-bond on the FA chain in positions ∆5 and ∆10, respectively. A lower proportion of FAs presumably unsaturated by DesA was observed in the ΔcasK/R strain compared to the parental strain while no difference was found for FAs presumably unsaturated by DesB. Addition of phospholipids from egg yolk lecithin rich in unsaturated FAs, to growth medium, abolished the cold-growth impairment of ΔcasK/R suggesting that exogenous unsaturated FAs can support membrane-level modifications and thus compensate for the decreased production of these FAs in the B. cereus ∆casK/R mutant during growth at low temperature. Our findings indicate that CasK/R is involved in the regulation of FA metabolism, and is necessary for cold adaptation of B. cereus unless an exogenous source of unsaturated FAs is available.
Collapse
Affiliation(s)
- Sara Esther Diomandé
- INRA, UMR408 Sécurité et Qualité des Produits d'Origine Végétale, 84000 Avignon, France; Université d'Avignon, UMR408 Sécurité et Qualité des Produits d'Origine Végétale, 84000 Avignon, France
| | - Christophe Nguyen-the
- INRA, UMR408 Sécurité et Qualité des Produits d'Origine Végétale, 84000 Avignon, France; Université d'Avignon, UMR408 Sécurité et Qualité des Produits d'Origine Végétale, 84000 Avignon, France
| | - Tjakko Abee
- Top Institute Food and Nutrition, NieuweKanaal 9A, 6709 PA, Wageningen, The Netherlands; Food Microbiology Laboratory, Wageningen University, BornseWeilanden 9, 6708 WG, Wageningen, The Netherlands
| | - Marcel H Tempelaars
- Food Microbiology Laboratory, Wageningen University, BornseWeilanden 9, 6708 WG, Wageningen, The Netherlands
| | - Véronique Broussolle
- INRA, UMR408 Sécurité et Qualité des Produits d'Origine Végétale, 84000 Avignon, France; Université d'Avignon, UMR408 Sécurité et Qualité des Produits d'Origine Végétale, 84000 Avignon, France
| | - Julien Brillard
- INRA, UMR408 Sécurité et Qualité des Produits d'Origine Végétale, 84000 Avignon, France; Université d'Avignon, UMR408 Sécurité et Qualité des Produits d'Origine Végétale, 84000 Avignon, France; INRA, Université Montpellier, UMR1333 Diversité Génomes et Interactions Microorganismes-Insectes (DGIMI), Montpellier, France.
| |
Collapse
|
31
|
Buddelmeijer N. The molecular mechanism of bacterial lipoprotein modification—How, when and why? FEMS Microbiol Rev 2015; 39:246-61. [DOI: 10.1093/femsre/fuu006] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
32
|
Gélis-Jeanvoine S, Lory S, Oberto J, Buddelmeijer N. Residues located on membrane-embedded flexible loops are essential for the second step of the apolipoprotein N-acyltransferase reaction. Mol Microbiol 2015; 95:692-705. [PMID: 25471278 DOI: 10.1111/mmi.12897] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2014] [Indexed: 11/30/2022]
Abstract
Apolipoprotein N-acyltransferase (Lnt) is an essential membrane-bound enzyme that catalyzes the third and last step in the post-translational modification of bacterial lipoproteins. In order to identify essential residues implicated in substrate recognition and/or binding we screened for non-functional variants of Lnt obtained by error-prone polymerase chain reaction in a complementation assay using a lnt depletion strain. Mutations included amino acid substitutions in the active site and of residues located on flexible loops in the catalytic periplasmic domain. All, but one mutation, led to the formation of the thioester acyl-enzyme intermediate and to the accumulation of apo-Lpp, suggesting that these residues are involved in the second step of the reaction. A large cytoplasmic loop contains a highly conserved region and two hydrophobic segments. Accessibility analysis to alkylating reagents of substituted cysteine residues introduced in this region demonstrated that the hydrophobic segments do not completely span the membrane. Two residues in the highly conserved cytoplasmic region were shown to be essential for Lnt function. Together, our data suggest that amino acids located on flexible cytoplasmic and periplasmic loops, predicted to be membrane embedded, are required for efficient N-acylation of lipoproteins.
Collapse
Affiliation(s)
- Sébastien Gélis-Jeanvoine
- Institut Pasteur, Biology and Genetics of the Bacterial Cell Wall Unit, Inserm Group Avenir, 28 rue du docteur Roux, Paris, F-75724 cedex 15, France
| | | | | | | |
Collapse
|
33
|
Secretion of bacterial lipoproteins: through the cytoplasmic membrane, the periplasm and beyond. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:1509-16. [PMID: 24780125 DOI: 10.1016/j.bbamcr.2014.04.022] [Citation(s) in RCA: 153] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 04/16/2014] [Accepted: 04/18/2014] [Indexed: 11/20/2022]
Abstract
Bacterial lipoproteins are peripherally anchored membrane proteins that play a variety of roles in bacterial physiology and virulence in monoderm (single membrane-enveloped, e.g., gram-positive) and diderm (double membrane-enveloped, e.g., gram-negative) bacteria. After export of prolipoproteins through the cytoplasmic membrane, which occurs predominantly but not exclusively via the general secretory or Sec pathway, the proteins are lipid-modified at the cytoplasmic membrane in a multistep process that involves sequential modification of a cysteine residue and cleavage of the signal peptide by the signal II peptidase Lsp. In both monoderms and diderms, signal peptide processing is preceded by acylation with a diacylglycerol through preprolipoprotein diacylglycerol transferase (Lgt). In diderms but also some monoderms, lipoproteins are further modified with a third acyl chain through lipoprotein N-acyl transferase (Lnt). Fully modified lipoproteins that are destined to be anchored in the inner leaflet of the outer membrane (OM) are selected, transported and inserted by the Lol (lipoprotein outer membrane localization) pathway machinery, which consists of the inner-membrane (IM) ABC transporter-like LolCDE complex, the periplasmic LolA chaperone and the OM LolB lipoprotein receptor. Retention of lipoproteins in the cytoplasmic membrane results from Lol avoidance signals that were originally described as the "+2 rule". Surface localization of lipoproteins in diderms is rare in most bacteria, with the exception of several spirochetal species. Type 2 (T2SS) and type 5 (T5SS) secretion systems are involved in secretion of specific surface lipoproteins of γ-proteobacteria. In the model spirochete Borrelia burgdorferi, surface lipoprotein secretion does not follow established sorting rules, but remains dependent on N-terminal peptide sequences. Secretion through the outer membrane requires maintenance of lipoproteins in a translocation-competent unfolded conformation, likely through interaction with a periplasmic holding chaperone, which delivers the proteins to an outer membrane lipoprotein flippase. This article is part of a Special Issue entitled: Protein trafficking and secretion in bacteria. Guest Editors: Anastassios Economou and Ross Dalbey.
Collapse
|
34
|
Brülle JK, Tschumi A, Sander P. Lipoproteins of slow-growing Mycobacteria carry three fatty acids and are N-acylated by apolipoprotein N-acyltransferase BCG_2070c. BMC Microbiol 2013; 13:223. [PMID: 24093492 PMCID: PMC3850990 DOI: 10.1186/1471-2180-13-223] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 09/30/2013] [Indexed: 12/20/2022] Open
Abstract
Background Lipoproteins are virulence factors of Mycobacterium tuberculosis. Bacterial lipoproteins are modified by the consecutive action of preprolipoprotein diacylglyceryl transferase (Lgt), prolipoprotein signal peptidase (LspA) and apolipoprotein N- acyltransferase (Lnt) leading to the formation of mature triacylated lipoproteins. Lnt homologues are found in Gram-negative and high GC-rich Gram-positive, but not in low GC-rich Gram-positive bacteria, although N-acylation is observed. In fast-growing Mycobacterium smegmatis, the molecular structure of the lipid modification of lipoproteins was resolved recently as a diacylglyceryl residue carrying ester-bound palmitic acid and ester-bound tuberculostearic acid and an additional amide-bound palmitic acid. Results We exploit the vaccine strain Mycobacterium bovis BCG as model organism to investigate lipoprotein modifications in slow-growing mycobacteria. Using Escherichia coli Lnt as a query in BLASTp search, we identified BCG_2070c and BCG_2279c as putative lnt genes in M. bovis BCG. Lipoproteins LprF, LpqH, LpqL and LppX were expressed in M. bovis BCG and BCG_2070c lnt knock-out mutant and lipid modifications were analyzed at molecular level by matrix-assisted laser desorption ionization time-of-flight/time-of-flight analysis. Lipoprotein N-acylation was observed in wildtype but not in BCG_2070c mutants. Lipoprotein N- acylation with palmitoyl and tuberculostearyl residues was observed. Conclusions Lipoproteins are triacylated in slow-growing mycobacteria. BCG_2070c encodes a functional Lnt in M. bovis BCG. We identified mycobacteria-specific tuberculostearic acid as further substrate for N-acylation in slow-growing mycobacteria.
Collapse
Affiliation(s)
- Juliane K Brülle
- Institute of Medical Microbiology, University of Zurich, Gloriastrasse 30/32, CH-8006, Zurich, Switzerland.
| | | | | |
Collapse
|
35
|
Parsons JB, Rock CO. Bacterial lipids: metabolism and membrane homeostasis. Prog Lipid Res 2013; 52:249-76. [PMID: 23500459 PMCID: PMC3665635 DOI: 10.1016/j.plipres.2013.02.002] [Citation(s) in RCA: 321] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 02/27/2013] [Accepted: 02/28/2013] [Indexed: 11/29/2022]
Abstract
Membrane lipid homeostasis is a vital facet of bacterial cell physiology. For decades, research in bacterial lipid synthesis was largely confined to the Escherichia coli model system. This basic research provided a blueprint for the biochemistry of lipid metabolism that has largely defined the individual steps in bacterial fatty acid and phospholipids synthesis. The advent of genomic sequencing has revealed a surprising amount of diversity in the genes, enzymes and genetic organization of the components responsible for bacterial lipid synthesis. Although the chemical steps in fatty acid synthesis are largely conserved in bacteria, there are surprising differences in the structure and cofactor requirements for the enzymes that perform these reactions in Gram-positive and Gram-negative bacteria. This review summarizes how the explosion of new information on the diversity of biochemical and genetic regulatory mechanisms has impacted our understanding of bacterial lipid homeostasis. The potential and problems of developing therapeutics that block pathogen phospholipid synthesis are explored and evaluated. The study of bacterial lipid metabolism continues to be a rich source for new biochemistry that underlies the variety and adaptability of bacterial life styles.
Collapse
Affiliation(s)
- Joshua B Parsons
- Department of Infectious Diseases, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | | |
Collapse
|
36
|
Viarengo G, Sciara MI, Salazar MO, Kieffer PM, Furlán RLE, García Véscovi E. Unsaturated long chain free fatty acids are input signals of the Salmonella enterica PhoP/PhoQ regulatory system. J Biol Chem 2013; 288:22346-58. [PMID: 23782700 DOI: 10.1074/jbc.m113.472829] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The Salmonella enterica serovar Typhimurium PhoP/PhoQ system has largely been studied as a paradigmatic two-component regulatory system not only to dissect structural and functional aspects of signal transduction in bacteria but also to gain knowledge about the versatile devices that have evolved allowing a pathogenic bacterium to adjust to or counteract environmental stressful conditions along its life cycle. Mg(2+) limitation, acidic pH, and the presence of cationic antimicrobial peptides have been identified as cues that the sensor protein PhoQ can monitor to reprogram Salmonella gene expression to cope with extra- or intracellular challenging conditions. In this work, we show for the first time that long chain unsaturated free fatty acids (LCUFAs) present in Salmonella growth medium are signals specifically detected by PhoQ. We demonstrate that LCUFAs inhibit PhoQ autokinase activity, turning off the expression of the PhoP-dependent regulon. We also show that LCUFAs exert their action independently of their cellular uptake and metabolic utilization by means of the β-oxidative pathway. Our findings put forth the complexity of input signals that can converge to finely tune the activity of the PhoP/PhoQ system. In addition, they provide a new potential biochemical platform for the development of antibacterial strategies to fight against Salmonella infections.
Collapse
Affiliation(s)
- Gastón Viarengo
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Predio CCT-CONICET-Rosario, Ocampo y Esmeralda, 2000 Rosario, Argentina
| | | | | | | | | | | |
Collapse
|
37
|
Dowhan W. A retrospective: use of Escherichia coli as a vehicle to study phospholipid synthesis and function. BIOCHIMICA ET BIOPHYSICA ACTA 2013; 1831:471-94. [PMID: 22925633 PMCID: PMC3513495 DOI: 10.1016/j.bbalip.2012.08.007] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2012] [Revised: 08/07/2012] [Accepted: 08/07/2012] [Indexed: 12/11/2022]
Abstract
Although the study of individual phospholipids and their synthesis began in the 1920s first in plants and then mammals, it was not until the early 1960s that Eugene Kennedy using Escherichia coli initiated studies of bacterial phospholipid metabolism. With the base of information already available from studies of mammalian tissue, the basic blueprint of phospholipid biosynthesis in E. coli was worked out by the late 1960s. In 1970s and 1980s most of the enzymes responsible for phospholipid biosynthesis were purified and many of the genes encoding these enzymes were identified. By the late 1990s conditional and null mutants were available along with clones of the genes for every step of phospholipid biosynthesis. Most of these genes had been sequenced before the complete E. coli genome sequence was available. Strains of E. coli were developed in which phospholipid composition could be changed in a systematic manner while maintaining cell viability. Null mutants, strains in which phospholipid metabolism was artificially regulated, and strains synthesizing foreign lipids not found in E. coli have been used to this day to define specific roles for individual phospholipid. This review will trace the findings that have led to the development of E. coli as an excellent model system to study mechanisms underlying the synthesis and function of phospholipids that are widely applicable to other prokaryotic and eukaryotic systems. This article is part of a Special Issue entitled Phospholipids and Phospholipid Metabolism.
Collapse
Affiliation(s)
- William Dowhan
- Department of Biochemistry and Molecular Biology, University of Texas Medical School-Houston, Houston, TX 77030, USA.
| |
Collapse
|
38
|
Nakayama H, Kurokawa K, Lee BL. Lipoproteins in bacteria: structures and biosynthetic pathways. FEBS J 2012; 279:4247-68. [PMID: 23094979 DOI: 10.1111/febs.12041] [Citation(s) in RCA: 152] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 10/02/2012] [Accepted: 10/19/2012] [Indexed: 11/29/2022]
Abstract
Bacterial lipoproteins are characterized by the presence of a conserved N-terminal lipid-modified cysteine residue that allows the hydrophilic protein to anchor onto bacterial cell membranes. These proteins play important roles in a wide variety of bacterial physiological processes, including virulence, and induce innate immune reactions by functioning as ligands of the mammalian Toll-like receptor 2. We review recent advances in our understanding of bacterial lipoprotein structure, biosynthesis and structure-function relationships between bacterial lipoproteins and Toll-like receptor 2. Notably, 40 years after the first report of the triacyl structure of Braun's lipoprotein in Escherichia coli, recent intensive MS-based analyses have led to the discovery of three new lipidated structures of lipoproteins in monoderm bacteria: the lyso, N-acetyl and peptidyl forms. Moreover, the bacterial lipoprotein structure is considered to be constant in each bacterium; however, lipoprotein structures in Staphylococcus aureus vary between the diacyl and triacyl forms depending on the environmental conditions. Thus, the lipidation state of bacterial lipoproteins, particularly in monoderm bacteria, is more complex than previously assumed.
Collapse
Affiliation(s)
- Hiroshi Nakayama
- Biomolecular Characterization Team, RIKEN Advanced Science Institute, Wako, Saitama, Japan.
| | | | | |
Collapse
|
39
|
N
-Acylation of Lipoproteins: Not When Sour. J Bacteriol 2012; 194:3297-8. [DOI: 10.1128/jb.00441-12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
40
|
Influence of medium components on the expression of recombinant lipoproteins in Escherichia coli. Appl Microbiol Biotechnol 2011; 93:1539-52. [DOI: 10.1007/s00253-011-3516-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2011] [Revised: 07/18/2011] [Accepted: 07/24/2011] [Indexed: 01/22/2023]
|
41
|
Hillmann F, Argentini M, Buddelmeijer N. Kinetics and phospholipid specificity of apolipoprotein N-acyltransferase. J Biol Chem 2011; 286:27936-46. [PMID: 21676878 DOI: 10.1074/jbc.m111.243519] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The enzyme apolipoprotein N-acyltransferase (Lnt) is an integral membrane protein that catalyzes the last step in the post-translational modification of bacterial lipoproteins. Lnt undergoes covalent modification in the presence of phospholipids resulting in a thioester acyl-enzyme intermediate. It then transfers the acyl chain to the α-amino group of the N-terminal diacylglyceryl-modified cysteine of apolipoprotein, leading to the formation of mature triacylated lipoprotein. To gain insight into the catalytic mechanism of this two-step reaction, we overproduced and purified the enzyme of Escherichia coli and studied its N-acyltransferase activity using a novel in vitro assay. The purified enzyme was fully active, as judged by its ability to form a stable thioester acyl-enzyme intermediate and N-acylate the apo-form of the murein lipoprotein Lpp in vitro. Incorporation of [(3)H]palmitate and mass spectrometry analysis demonstrated that Lnt recognized the synthetic diacylglyceryl-modified lipopeptide FSL-1 as a substrate in a mixed micelle assay. Kinetics of Lnt using phosphatidylethanolamine as an acyl donor and FSL-1 as a substrate were consistent with a ping-pong type mechanism, demonstrating slow acyl-enzyme intermediate formation and rapid N-acyl transfer to the apolipopeptide in vitro. In contrast to earlier in vitro observations, the N-acyltransferase activity was strongly affected by the phospholipid headgroup and acyl chain composition.
Collapse
Affiliation(s)
- Falk Hillmann
- Institut Pasteur, CNRS URA 2172, 25 Rue du Docteur Roux, 75724 Paris Cedex 15, 91198 Gif-sur-Yvette Cedex, France
| | | | | |
Collapse
|
42
|
Sarabia F, Chammaa S, García-Ruiz C. Solid Phase Synthesis of Globomycin and SF-1902 A5. J Org Chem 2011; 76:2132-44. [DOI: 10.1021/jo1025145] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Francisco Sarabia
- Department of Organic Chemistry, Faculty of Sciences, University of Malaga, Campus de Teatinos s/n 29071, Malaga, Spain
| | - Samy Chammaa
- Department of Organic Chemistry, Faculty of Sciences, University of Malaga, Campus de Teatinos s/n 29071, Malaga, Spain
| | - Cristina García-Ruiz
- Department of Organic Chemistry, Faculty of Sciences, University of Malaga, Campus de Teatinos s/n 29071, Malaga, Spain
| |
Collapse
|
43
|
Abstract
Bacterial lipoproteins are a set of membrane proteins with many different functions. Due to this broad-ranging functionality, these proteins have a considerable significance in many phenomena, from cellular physiology through cell division and virulence. Here we give a general overview of lipoprotein biogenesis and highlight examples of the roles of lipoproteins in bacterial disease caused by a selection of medically relevant Gram-negative and Gram-positive pathogens: Mycobacterium tuberculosis, Streptococcus pneumoniae, Borrelia burgdorferi, and Neisseria meningitidis. Lipoproteins have been shown to play key roles in adhesion to host cells, modulation of inflammatory processes, and translocation of virulence factors into host cells. As such, a number of lipoproteins have been shown to be potential vaccines. This review provides a summary of some of the reported roles of lipoproteins and of how this knowledge has been exploited in some cases for the generation of novel countermeasures to bacterial diseases.
Collapse
|
44
|
Buddelmeijer N, Young R. The essential Escherichia coli apolipoprotein N-acyltransferase (Lnt) exists as an extracytoplasmic thioester acyl-enzyme intermediate. Biochemistry 2010; 49:341-6. [PMID: 20000742 DOI: 10.1021/bi9020346] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Escherichia coli apolipoprotein N-acyltransferase (Lnt) transfers an acyl group from sn-1-glycerophospholipid to the free alpha-amino group of the N-terminal cysteine of apolipoproteins, resulting in mature triacylated lipoprotein. Here we report that the Lnt reaction proceeds through an acyl-enzyme intermediate in which a palmitoyl group forms a thioester bond with the thiol of the active site residue C387 that was cleaved by neutral hydroxylamine. Lnt(C387S) also formed a fatty acyl intermediate that was resistant to neutral hydroxylamine treatment, consistent with formation of an oxygen-ester linkage. Lnt(C387A) did not form an acyl-enzyme intermediate and, like Lnt(C387S), did not have any detectable Lnt activity, indicating that acylation cannot occur at other positions in the catalytic domain. The existence of this thioacyl-enzyme intermediate allowed us to determine whether essential residues in the catalytic domain of Lnt affect the first step of the reaction, the formation of the acyl-enzyme intermediate, or the second step in which the acyl chain is transferred to the apolipoprotein substrate. In the catalytic triad, E267 is required for the formation of the acyl-enzyme intermediate, indicating its role in enhancing the nucleophilicity of C387. E343 is also involved in the first step but is not in close proximity to the active site. W237, Y388, and E389 play a role in the second step of the reaction since acyl-Lnt is formed but N-acylation does not occur. The data presented allow discrimination between the functions of essential Lnt residues in catalytic activity and substrate recognition.
Collapse
Affiliation(s)
- Nienke Buddelmeijer
- Molecular Genetics Unit, Institut Pasteur, and CNRS URA 2172, 25 rue du docteur Roux, 75724 Paris cedex 15, France.
| | | |
Collapse
|
45
|
Brülle JK, Grau T, Tschumi A, Auchli Y, Burri R, Polsfuss S, Keller PM, Hunziker P, Sander P. Cloning, expression and characterization of Mycobacterium tuberculosis lipoprotein LprF. Biochem Biophys Res Commun 2009; 391:679-84. [PMID: 19944079 DOI: 10.1016/j.bbrc.2009.11.120] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2009] [Accepted: 11/19/2009] [Indexed: 01/13/2023]
Abstract
Lipoproteins are well known virulence factors of bacterial pathogens in general and of Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis, in particular. Lipoprotein lipidation between Gram-positive and Gram-negative bacteria differs significantly as these are di- and triacylated, respectively. Little is known about the lipid anchor of mycobacterial lipoproteins. We reported recently that mycobacterial LppX, a lipoprotein involved in synthesis of cell wall components is triacylated, although mycobacteria are classified as GC-rich Gram-positive bacteria. We here exploited the model organism Mycobacterium smegmatis for the expression of Mtb LprF and characterized N-terminal modifications at the molecular level. LprF is a putative lipoprotein of Mtb involved in signaling of potassium-dependent osmotic stress. LprF is extensively modified in a mycobacterium-specific manner by a thioether-linked diacylglyceryl residue with one ester-bound tuberculostearic- and one C16:0 fatty acid and additionally by a third N-linked C16:0 fatty acid, and a hexose.
Collapse
Affiliation(s)
- Juliane K Brülle
- Institute of Medical Microbiology, University of Zurich, Gloriastr 30/32, CH-8006 Zurich, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Tschumi A, Nai C, Auchli Y, Hunziker P, Gehrig P, Keller P, Grau T, Sander P. Identification of apolipoprotein N-acyltransferase (Lnt) in mycobacteria. J Biol Chem 2009; 284:27146-56. [PMID: 19661058 DOI: 10.1074/jbc.m109.022715] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Lipoproteins of Gram-negative and Gram-positive bacteria carry a thioether-bound diacylglycerol but differ by a fatty acid amide bound to the alpha-amino group of the universally conserved cysteine. In Escherichia coli the N-terminal acylation is catalyzed by the N-acyltransferase Lnt. Using E. coli Lnt as a query in a BLASTp search, we identified putative lnt genes also in Gram-positive mycobacteria. The Mycobacterium tuberculosis lipoprotein LppX, heterologously expressed in Mycobacterium smegmatis, was N-acylated at the N-terminal cysteine, whereas LppX expressed in a M. smegmatis lnt::aph knock-out mutant was accessible for N-terminal sequencing. Western blot analyses of a truncated and tagged form of LppX indicated a smaller size of about 0.3 kDa in the lnt::aph mutant compared with the parental strain. Matrix-assisted laser desorption ionization time-of-flight/time-of-flight analyses of a trypsin digest of LppX proved the presence of the diacylglycerol modification in both strains, the parental strain and lnt::aph mutant. N-Acylation was found exclusively in the M. smegmatis parental strain. Complementation of the lnt::aph mutant with M. tuberculosis ppm1 restored N-acylation. The substrate for N-acylation is a C16 fatty acid, whereas the two fatty acids of the diacylglycerol residue were identified as C16 and C19:0 fatty acid, the latter most likely tuberculostearic acid. We demonstrate that mycobacterial lipoproteins are triacylated. For the first time to our knowledge, we identify Lnt activity in Gram-positive bacteria and assigned the responsible genes. In M. smegmatis and M. tuberculosis the open reading frames are annotated as MSMEG_3860 and M. tuberculosis ppm1, respectively.
Collapse
Affiliation(s)
- Andreas Tschumi
- Institut für Medizinische Mikrobiologie, Universität Zürich, Gloriastrasse 30/32, CH-8006 Zurich, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Clark DP, Cronan JE. Two-Carbon Compounds and Fatty Acids as Carbon Sources. EcoSal Plus 2005; 1. [PMID: 26443509 DOI: 10.1128/ecosalplus.3.4.4] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2004] [Indexed: 06/05/2023]
Abstract
This review concerns the uptake and degradation of those molecules that are wholly or largely converted to acetyl-coenzyme A (CoA) in the first stage of metabolism in Escherichia coli and Salmonella enterica. These include acetate, acetoacetate, butyrate and longer fatty acids in wild type cells plus ethanol and some longer alcohols in certain mutant strains. Entering metabolism as acetyl-CoA has two important general consequences. First, generation of energy from acetyl-CoA requires operation of both the citric acid cycle and the respiratory chain to oxidize the NADH produced. Hence, acetyl-CoA serves as an energy source only during aerobic growth or during anaerobic respiration with such alternative electron acceptors as nitrate or trimethylamine oxide. In the absence of a suitable oxidant, acetyl-CoA is converted to a mixture of acetic acid and ethanol by the pathways of anaerobic fermentation. Catabolism of acetyl-CoA via the citric acid cycle releases both carbon atoms of the acetyl moiety as carbon dioxide and growth on these substrates as sole carbon source therefore requires the operation of the glyoxylate bypass to generate cell material. The pair of related two-carbon compounds, glycolate and glyoxylate are also discussed. However, despite having two carbons, these are metabolized via malate and glycerate, not via acetyl-CoA. In addition, mutants of E. coli capable of growth on ethylene glycol metabolize it via the glycolate pathway, rather than via acetyl- CoA. Propionate metabolism is also discussed because in many respects its pathway is analogous to that of acetate. The transcriptional regulation of these pathways is discussed in detail.
Collapse
Affiliation(s)
- David P Clark
- Department of Microbiology, Southern Illinois University, Carbondale, Illinois 62901
| | - John E Cronan
- Departments of Microbiology and Biochemistry, University of Illinois, B103 CLSL, 601 S. Goodwin Avenue, Urbana, Illinois 61801
| |
Collapse
|
48
|
Harvat EM, Zhang YM, Tran CV, Zhang Z, Frank MW, Rock CO, Saier MH. Lysophospholipid Flipping across the Escherichia coli Inner Membrane Catalyzed by a Transporter (LplT) Belonging to the Major Facilitator Superfamily. J Biol Chem 2005; 280:12028-34. [PMID: 15661733 DOI: 10.1074/jbc.m414368200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The transfer of phospholipids across membrane bilayers is protein-mediated, and most of the established transporters catalyze the energy-dependent efflux of phospholipids from cells. This work identifies and characterizes a lysophospholipid transporter gene (lplT, formally ygeD) in Escherichia coli that is an integral component in the 2-acylglycerophosphoethanolamine (2-acyl-GPE) metabolic cycle for membrane protein acylation. The lplT gene is adjacent to and in the same operon as the aas gene, which encodes the bifunctional enzyme 2-acyl-GPE acyltransferase/acyl-acyl carrier protein synthetase. In some bacteria, acyltransferase/acyl-ACP synthetase (Aas) and LplT homologues are fused in a single polypeptide chain. 2-Acyl-GPE transport to the inside of the cell was assessed by measuring the Aas-dependent formation of phosphatidylethanolamine. The Aas-dependent incorporation of [3H]palmitate into phosphatidylethanolamine was significantly diminished in deltalplT mutants, and the LplT-Aas transport/acylation activity was independent of the proton motive force. The deltalplT mutants accumulated acyl-GPE in vivo and had a diminished capacity to transport exogenous 2-acylglycerophosphocholine into the cell. Spheroplasts prepared from wild-type E. coli transported and acylated fluorescent 2-acyl-GPE with an apparent K(d) of 7.5 microM, whereas this high-affinity process was absent in deltalplT mutants. Thus, LplT catalyzes the transbilayer movement of lysophospholipids and is the first example of a phospholipid flippase that belongs to the major facilitator superfamily.
Collapse
Affiliation(s)
- Edgar M Harvat
- Division of Biological Sciences, University of California at San Diego, La Jolla, California 92093-0116, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
Morgan-Kiss RM, Cronan JE. The Escherichia coli fadK (ydiD) gene encodes an anerobically regulated short chain acyl-CoA synthetase. J Biol Chem 2004; 279:37324-33. [PMID: 15213221 DOI: 10.1074/jbc.m405233200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We recently reported a new metabolic competency for Escherichia coli, the ability to degrade and utilize fatty acids of various chain lengths as sole carbon and energy sources. This beta-oxidation pathway is distinct from the previously described aerobic fatty acid degradation pathway and requires enzymes encoded by two operons, yfcYX and ydiQRSTD. The yfcYX operon (renamed fadIJ) encodes enzymes required for hydration, oxidation, and thiolytic cleavage of the acyl chain. The ydiQRSTD operon encodes a putative acyl-CoA synthetase, ydiD (renamed fadK), as well as putative electron transport chain components. We report that FadK is as an acyl-CoA synthetase that has a preference for short chain length fatty acid substrates (<10 C atoms). The enzymatic mechanism of FadK is similar to other acyl-CoA synthetases in that it forms an acyl-AMP intermediate prior to the formation of the final acyl-CoA product. Expression of FadK is repressed during aerobic growth and is maximally expressed under anaerobic conditions in the presence of the terminal electron acceptor, fumarate.
Collapse
Affiliation(s)
- Rachael M Morgan-Kiss
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | | |
Collapse
|
50
|
Kol MA, Kuster DWD, Boumann HA, de Cock H, Heck AJR, de Kruijff B, de Kroon AIPM. Uptake and remodeling of exogenous phosphatidylethanolamine in E. coli. Biochim Biophys Acta Mol Cell Biol Lipids 2004; 1636:205-12. [PMID: 15164768 DOI: 10.1016/j.bbalip.2004.01.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2003] [Revised: 01/06/2004] [Accepted: 01/06/2004] [Indexed: 10/26/2022]
Abstract
The fate of exogenous short-chain analogues of phosphatidylethanolamine and phosphatidylserine was studied in a deep-rough derivative of E. coli mutant strain AD93 that cannot synthesize phosphatidylethanolamine de novo. Using mass spectrometry, it was shown that dicaproyl(di 6:0)-phosphatidylethanolamine is extensively remodeled, eventually adopting the phosphatidylethanolamine species profile of the parental wild-type strain of AD93. Dicaproyl-phosphatidylserine was decarboxylated to form phosphatidylethanolamine, and yielded a species profile, which strongly resembled that of the introduced phosphatidylethanolamine. This demonstrates transport of phosphatidylserine to the cytosolic leaflet of the inner membrane. The changes of the species profile of phosphatidylethanolamine indicate that the short-chain phospholipids are most likely remodeled via two consecutive acyl chain substitutions, and at least part of this remodeling involves transport to the inner membrane.
Collapse
Affiliation(s)
- Matthijs A Kol
- Department of Biochemistry of Membranes, Institute of Biomembranes, Ctr. Biomem. and Lipid Enz. (CBLE), Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | | | | | | | | | | | | |
Collapse
|