1
|
Sigal M, Matsumoto S, Beattie A, Katoh T, Suga H. Engineering tRNAs for the Ribosomal Translation of Non-proteinogenic Monomers. Chem Rev 2024; 124:6444-6500. [PMID: 38688034 PMCID: PMC11122139 DOI: 10.1021/acs.chemrev.3c00894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/21/2024] [Accepted: 04/10/2024] [Indexed: 05/02/2024]
Abstract
Ribosome-dependent protein biosynthesis is an essential cellular process mediated by transfer RNAs (tRNAs). Generally, ribosomally synthesized proteins are limited to the 22 proteinogenic amino acids (pAAs: 20 l-α-amino acids present in the standard genetic code, selenocysteine, and pyrrolysine). However, engineering tRNAs for the ribosomal incorporation of non-proteinogenic monomers (npMs) as building blocks has led to the creation of unique polypeptides with broad applications in cellular biology, material science, spectroscopy, and pharmaceuticals. Ribosomal polymerization of these engineered polypeptides presents a variety of challenges for biochemists, as translation efficiency and fidelity is often insufficient when employing npMs. In this Review, we will focus on the methodologies for engineering tRNAs to overcome these issues and explore recent advances both in vitro and in vivo. These efforts include increasing orthogonality, recruiting essential translation factors, and creation of expanded genetic codes. After our review on the biochemical optimizations of tRNAs, we provide examples of their use in genetic code manipulation, with a focus on the in vitro discovery of bioactive macrocyclic peptides containing npMs. Finally, an analysis of the current state of tRNA engineering is presented, along with existing challenges and future perspectives for the field.
Collapse
Affiliation(s)
- Maxwell Sigal
- Department of Chemistry,
Graduate School of Science, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Satomi Matsumoto
- Department of Chemistry,
Graduate School of Science, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Adam Beattie
- Department of Chemistry,
Graduate School of Science, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Takayuki Katoh
- Department of Chemistry,
Graduate School of Science, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroaki Suga
- Department of Chemistry,
Graduate School of Science, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
2
|
Bouchard P, Legault P. Structural insights into substrate recognition by the Neurospora Varkud satellite ribozyme: importance of U-turns at the kissing-loop junction. Biochemistry 2013; 53:258-69. [PMID: 24325625 PMCID: PMC3893828 DOI: 10.1021/bi401491g] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
![]()
Substrate
recognition by the Neurospora Varkud
satellite ribozyme depends on the formation of a magnesium-dependent
kissing-loop interaction between the stem-loop I (SLI) substrate and
stem-loop V (SLV) of the catalytic domain. From mutagenesis studies,
it has been established that this I/V kissing-loop interaction involves
three Watson–Crick base pairs and is associated with a structural
rearrangement of the SLI substrate that facilitates catalysis. Here,
we report the NMR structural characterization of this I/V kissing-loop
using isolated stem-loops. NMR studies were performed on different
SLI/SLV complexes containing a common SLV and shiftable, preshifted,
or double-stranded SLI variants. These studies confirm the presence
of three Watson–Crick base pairs at the kissing-loop junction
and provide evidence for the structural rearrangement of shiftable
SLI variants upon SLV binding. NMR structure determination of an SLI/SLV
complex demonstrates that both the SLI and SLV loops adopt U-turn
structures, which facilitates intermolecular Watson–Crick base
pairing. Several other interactions at the I/V interface, including
base triples and base stacking, help create a continuously stacked
structure. These NMR studies provide a structural basis to understand
the stability of the I/V kissing-loop interaction and lead us to propose
a kinetic model for substrate activation in the VS ribozyme.
Collapse
Affiliation(s)
- Patricia Bouchard
- Département de Biochimie et Médecine Moléculaire, Université de Montréal , C.P. 6128, Succursale Centre-Ville, Montréal, Quebec H3C 3J7, Canada
| | | |
Collapse
|
3
|
Shi X, Khade PK, Sanbonmatsu KY, Joseph S. Functional role of the sarcin-ricin loop of the 23S rRNA in the elongation cycle of protein synthesis. J Mol Biol 2012; 419:125-38. [PMID: 22459262 DOI: 10.1016/j.jmb.2012.03.016] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Revised: 03/10/2012] [Accepted: 03/17/2012] [Indexed: 11/19/2022]
Abstract
The sarcin-ricin loop (SRL) is one of the longest conserved sequences in the 23S ribosomal RNA. The SRL has been accepted as crucial for the activity of the ribosome because it is targeted by cytotoxins such as α-sarcin and ricin that completely abolish translation. Nevertheless, the precise functional role of the SRL in translation is not known. Recent biochemical and structural studies indicate that the SRL is critical for triggering GTP hydrolysis on elongation factor Tu (EF-Tu) and elongation factor G (EF-G). To determine the functional role of the SRL in the elongation stage of protein synthesis, we analyzed mutations in the SRL that are known to abolish protein synthesis and are lethal to cells. Here, we show that the SRL is not critical for GTP hydrolysis on EF-Tu and EF-G. The SRL also is not essential for peptide bond formation. Our results, instead, suggest that the SRL is crucial for anchoring EF-G on the ribosome during mRNA-tRNA translocation.
Collapse
MESH Headings
- Binding Sites
- Conserved Sequence
- Endoribonucleases/metabolism
- Escherichia coli/genetics
- Fungal Proteins/metabolism
- Guanosine Triphosphate/metabolism
- Mutation
- Nucleic Acid Conformation
- Peptide Chain Elongation, Translational
- Peptide Elongation Factor G/chemistry
- Peptide Elongation Factor G/genetics
- Peptide Elongation Factor G/metabolism
- Peptide Elongation Factor Tu/chemistry
- Peptide Elongation Factor Tu/genetics
- Peptide Elongation Factor Tu/metabolism
- Protein Binding
- Protein Biosynthesis
- Protein Structure, Secondary
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Messenger/metabolism
- RNA, Ribosomal/genetics
- RNA, Ribosomal/metabolism
- RNA, Ribosomal, 23S/chemistry
- RNA, Ribosomal, 23S/genetics
- RNA, Ribosomal, 23S/metabolism
- RNA, Transfer/metabolism
- Ribosomes/genetics
- Ribosomes/metabolism
- Ricin/metabolism
Collapse
Affiliation(s)
- Xinying Shi
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093-0314, USA
| | | | | | | |
Collapse
|
4
|
The human mitochondrial tRNAMet: structure/function relationship of a unique modification in the decoding of unconventional codons. J Mol Biol 2010; 406:257-74. [PMID: 21168417 DOI: 10.1016/j.jmb.2010.11.042] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2010] [Revised: 11/18/2010] [Accepted: 11/22/2010] [Indexed: 11/21/2022]
Abstract
Human mitochondrial mRNAs utilize the universal AUG and the unconventional isoleucine AUA codons for methionine. In contrast to translation in the cytoplasm, human mitochondria use one tRNA, hmtRNA(Met)(CAU), to read AUG and AUA codons at both the peptidyl- (P-), and aminoacyl- (A-) sites of the ribosome. The hmtRNA(Met)(CAU) has a unique post-transcriptional modification, 5-formylcytidine, at the wobble position 34 (f(5)C(34)), and a cytidine substituting for the invariant uridine at position 33 of the canonical U-turn in tRNAs. The structure of the tRNA anticodon stem and loop domain (hmtASL(Met)(CAU)), determined by NMR restrained molecular modeling, revealed how the f(5)C(34) modification facilitates the decoding of AUA at the P- and the A-sites. The f(5)C(34) defined a reduced conformational space for the nucleoside, in what appears to have restricted the conformational dynamics of the anticodon bases of the modified hmtASL(Met)(CAU). The hmtASL(Met)(CAU) exhibited a C-turn conformation that has some characteristics of the U-turn motif. Codon binding studies with both Escherichia coli and bovine mitochondrial ribosomes revealed that the f(5)C(34) facilitates AUA binding in the A-site and suggested that the modification favorably alters the ASL binding kinetics. Mitochondrial translation by many organisms, including humans, sometimes initiates with the universal isoleucine codons AUU and AUC. The f(5)C(34) enabled P-site codon binding to these normally isoleucine codons. Thus, the physicochemical properties of this one modification, f(5)C(34), expand codon recognition from the traditional AUG to the non-traditional, synonymous codons AUU and AUC as well as AUA, in the reassignment of universal codons in the mitochondria.
Collapse
|
5
|
Shokeen S, Johnson CM, Greenfield TJ, Manias DA, Dunny GM, Weaver KE. Structural analysis of the Anti-Q-Qs interaction: RNA-mediated regulation of E. faecalis plasmid pCF10 conjugation. Plasmid 2010; 64:26-35. [PMID: 20332003 DOI: 10.1016/j.plasmid.2010.03.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Revised: 03/08/2010] [Accepted: 03/17/2010] [Indexed: 11/18/2022]
Abstract
Conjugation of the E. faecalis plasmid pCF10 is triggered in response to peptide sex pheromone cCF10 produced by potential recipients. Regulation of this response is complex and multi-layered and includes a small regulatory RNA, Anti-Q that participates in a termination/antitermination decision controlling transcription of the conjugation structural genes. In this study, the secondary structure of the Anti-Q transcript and its sites of interaction with its target, Qs, were determined. The primary site of interaction occurred at a centrally-located loop whose sequence showed high variability in analogous molecules on other pheromone-responsive plasmids. This loop, designated the specificity loop, was demonstrated to be important but not sufficient for distinguishing between Qs molecules from pCF10 and another pheromone-responsive plasmid pAD1. A loop 5' from the specificity loop which carries a U-turn motif played no demonstrable role in Anti-Q-Qs interaction or regulation of the termination/antitermination decision. These results provide direct evidence for a critical role of Anti-Q-Qs interactions in posttranscriptional regulation of pCF10 transfer functions.
Collapse
Affiliation(s)
- Sonia Shokeen
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, 414 E Clark St. Vermillion, SD 57069, USA
| | | | | | | | | | | |
Collapse
|
6
|
Hauenstein SI, Perona JJ. Redundant synthesis of cysteinyl-tRNACys in Methanosarcina mazei. J Biol Chem 2008; 283:22007-17. [PMID: 18559341 PMCID: PMC2494925 DOI: 10.1074/jbc.m801839200] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2008] [Revised: 05/19/2008] [Indexed: 11/06/2022] Open
Abstract
A subset of methanogenic archaea synthesize the cysteinyl-tRNA(Cys) (Cys-tRNA(Cys)) needed for protein synthesis using both a canonical cysteinyl-tRNA synthetase (CysRS) as well as a set of two enzymes that operate via a separate indirect pathway. In the indirect route, phosphoseryl-tRNA(Cys) (Sep-tRNA(Cys)) is first synthesized by phosphoseryl-tRNA synthetase (SepRS), and this misacylated intermediate is then converted to Cys-tRNA(Cys) by Sep-tRNA:Cys-tRNA synthase (SepCysS) via a pyridoxal phosphate-dependent mechanism. Here, we explore the function of all three enzymes in the mesophilic methanogen Methanosarcina mazei. The genome of M. mazei also features three distinct tRNA(Cys) isoacceptors, further indicating the unusual and complex nature of Cys-tRNA(Cys) synthesis in this organism. Comparative aminoacylation kinetics by M. mazei CysRS and SepRS reveals that each enzyme prefers a distinct tRNA(Cys) isoacceptor or pair of isoacceptors. Recognition determinants distinguishing the tRNAs are shown to reside in the globular core of the molecule. Both enzymes also require the S-adenosylmethione-dependent formation of (m1)G37 in the anticodon loop for efficient aminoacylation. We further report a new, highly sensitive assay to measure the activity of SepCysS under anaerobic conditions. With this approach, we demonstrate that SepCysS functions as a multiple-turnover catalyst with kinetic behavior similar to bacterial selenocysteine synthase and the archaeal/eukaryotic SepSecS enzyme. Together, these data suggest that both metabolic routes and all three tRNA(Cys) species in M. mazei play important roles in the cellular physiology of the organism.
Collapse
Affiliation(s)
- Scott I Hauenstein
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106-9510, USA
| | | |
Collapse
|
7
|
Lehmann J, Libchaber A. Degeneracy of the genetic code and stability of the base pair at the second position of the anticodon. RNA (NEW YORK, N.Y.) 2008; 14:1264-9. [PMID: 18495942 PMCID: PMC2441979 DOI: 10.1261/rna.1029808] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
With an analysis of the structural constraints of the anticodon-codon interaction within the decoding center of the ribosome, we show that the extent of degeneracy at the third position of the anticodon is determined by the level of stability of the base pair at the second position.
Collapse
|
8
|
Slagter-Jäger JG, Wagner EGH. Loop swapping in an antisense RNA/target RNA pair changes directionality of helix progression. J Biol Chem 2003; 278:35558-63. [PMID: 12819201 DOI: 10.1074/jbc.m304867200] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The binding pathway of the natural antisense RNA CopA to its target CopT proceeds through a hierarchical order of steps. It initiates by reversible loop-loop contacts followed by unidirectional helix progression into the upper stems. This involves extensive breakage of intramolecular base pairs and the subsequent formation of two intermolecular helices, B and B'. Based on the known tRNA anticodon loop structure and on results from the Sok/Hok antisense/target RNA system, it had been suggested that a U-turn (or pi-turn) in the loop of CopT might determine the directionality of helix progression. Data presented here show that the putative U-turn is one of the structural elements of antisense/target RNA pairs required to achieve fast binding kinetics. Swapping of the hypothetical U-turn structure from the target RNA to the antisense RNA retained regulatory performance in vivo and binding rates in vitro but altered the binding pathway by changing the direction in which the initiating helix was extended. In addition, our data indicate that a helical stem immediately adjacent to the target loop sequence is required to provide a scaffold for the U-turn.
Collapse
Affiliation(s)
- Jacoba G Slagter-Jäger
- Institute of Cell and Molecular Biology, Department of Microbiology, Biomedical Center, Uppsala University, Box 596, Husargatan 3, S-75124 Uppsala, Sweden
| | | |
Collapse
|
9
|
Affiliation(s)
- M Yarus
- MCD Biology, University of Colorado, Boulder, CO 80309-0347, USA
| | | |
Collapse
|
10
|
Cload ST, Liu DR, Froland WA, Schultz PG. Development of improved tRNAs for in vitro biosynthesis of proteins containing unnatural amino acids. CHEMISTRY & BIOLOGY 1996; 3:1033-8. [PMID: 9000011 DOI: 10.1016/s1074-5521(96)90169-6] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND Chemically aminoacylated suppressor tRNAs have previously been used in vitro to generate mutant proteins in which unnatural amino acids are incorporated site-specifically. Although the existing methodology often provides adequate quantities of mutant proteins, the suppression efficiencies of some unnatural amino acids are not high enough to yield useful amounts of protein. In an effort to make this useful mutagenesis strategy more general, we report here the results of a search to find alternative tRNAs as a way of increasing suppression efficiencies. RESULTS Three suppressor tRNAs have been generated by runoff transcription and their ability to deliver unnatural amino acids site-specifically into proteins has been assessed in an E. coli-derived in vitro transcription/translation system. Analysis of their ability to insert both polar and nonpolar residues in response to an amber codon in two proteins suggests that an E. coli tRNAAsn-derived suppressor offers a significant improvement in suppression efficiency over other previously used tRNAs. CONCLUSIONS Use of an E. coli tRNAAsn-derived suppressor may provide substantially higher yields of proteins containing unnatural amino acids, in addition to offering a broader tolerance for polar amino acids. A comparison of suppressor tRNAs derived from tRNAAsn, tRNAGln or tRNAAsp with that derived from tRNAPhe supports emerging evidence that the identity of an amino acid may be important in message recognition.
Collapse
Affiliation(s)
- S T Cload
- Howard Hughes Medical Institute, Department of Chemistry, University of California, Berkeley, CA 94720, USA
| | | | | | | |
Collapse
|
11
|
Harrington KM, Nazarenko IA, Dix DB, Thompson RC, Uhlenbeck OC. In vitro analysis of translational rate and accuracy with an unmodified tRNA. Biochemistry 1993; 32:7617-22. [PMID: 7688564 DOI: 10.1021/bi00081a003] [Citation(s) in RCA: 60] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Escherichia coli tRNA(Phe) transcript lacking all the modified nucleosides was investigated in an in vitro translation system. To estimate the affinity of tRNA toward EF-Tu, Kd and K-1 were measured by the nuclease protection assay, and it was shown that the absence of modifications decreases ternary complex stability less than 2-fold. The activity of unmodified Phe-tRNA(Phe) on E. coli ribosomes was compared to modified Phe-tRNA(Phe) using the framework of the kinetic proofreading mechanism (Thompson & Dix, 1982) with both cognate and noncognate codons. Values of the individual rate constants in the elongation process showed that the modifications increased the accuracy of translation by (1) decreasing the rate of dipeptide synthesis and (2) increasing the rate of rejection with noncognate codons.
Collapse
Affiliation(s)
- K M Harrington
- Department of Chemistry and Biochemistry, University of Colorado, Boulder 80309-0215
| | | | | | | | | |
Collapse
|
12
|
Cunningham PR, Nurse K, Bakin A, Weitzmann CJ, Pflumm M, Ofengand J. Interaction between the two conserved single-stranded regions at the decoding site of small subunit ribosomal RNA is essential for ribosome function. Biochemistry 1992; 31:12012-22. [PMID: 1280994 DOI: 10.1021/bi00163a008] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Formation of the tertiary base pair G1401:C1501, which brings together two universally present and highly sequence-conserved single-stranded segments of small subunit ribosomal RNA, is essential for ribosome function. It was previously reported that mutation of G1401 inactivated all in vitro functions of the ribosome [Cunningham et al. (1992) Biochemistry 31, 7629-7637]. Here we show that mutation of C1501 to G was equally inactivating but that the double mutant C1401:G1501 with the base pair reversed had virtually full activity for tRNA binding to the P, A, and I sites and for peptide bond formation. Initiation-dependent formation of the first peptide bond remained 70-85% inhibited, despite full 70S initiation complex formation ability as evidenced by the ability to form fMET-puromycin. These results suggest that the defect in formation of the first peptide bond lies in filling the initial A site, Ai, rather than the subsequent elongation A sites, Ae. An increased mobility around the anticodon was detected by UV cross-linking of the anticodon of P-site-bound tRNA to C1399 as well as to the expected C1400. These findings provide the first experimental evidence for the existence of the G1401:C1501 base pair and show that this base pair, located at the decoding site, is essential for function. The structural implications of tertiary base pair formation are discussed.
Collapse
MESH Headings
- Base Sequence
- Binding Sites
- Cross-Linking Reagents
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Molecular Sequence Data
- Mutation
- N-Formylmethionine/metabolism
- Nucleic Acid Conformation
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Ribosomal, 16S/chemistry
- RNA, Ribosomal, 16S/genetics
- RNA, Ribosomal, 16S/metabolism
- RNA, Transfer/metabolism
- Ribosomes/metabolism
- Transcription, Genetic
Collapse
Affiliation(s)
- P R Cunningham
- Roche Institute of Molecular Biology, Roche Research Center, Nutley, New Jersey 07110
| | | | | | | | | | | |
Collapse
|
13
|
Schilling-Bartetzko S, Franceschi F, Sternbach H, Nierhaus K. Apparent association constants of tRNAs for the ribosomal A, P, and E sites. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)42889-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
14
|
Pedersen WT, Curran JF. Effects of the nucleotide 3' to an amber codon on ribosomal selection rates of suppressor tRNA and release factor-1. J Mol Biol 1991; 219:231-41. [PMID: 2038055 DOI: 10.1016/0022-2836(91)90564-m] [Citation(s) in RCA: 64] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Rates of ribosomal selection of both release factor 1 (RF1) and a suppressor tRNA (Su7C33) were studied at an amber codon at which the 3' neighbor was permuted. Rates of RF1 selection vary 2.6-fold among contexts. The 3' neighbor-dependent variation of RF1 action correlates very strongly with the non-random frequencies of 3' neighbors at UAG terminators (r = 0.97), which argues that the rate of RF1 selection is an important determinant 3' neighbor choice at termination codons. The data are consistent with a model for RF1 selection in which RF1 makes a specific contact(s) to the 3' neighbor and that this interaction is most favorable to uridylic acid. Measured rates of Su7C33 selection vary fivefold among 3' contexts. We also develop a method to calculate rates of selection for other suppressors, based on the assumption that rates of RF1 selection at each 3' context can be generalized to other sites that have the same 3' neighbor. Rates for various suppressors appear to vary from two- to fivefold depending on the 3' neighbor. Generally, the rate of selection of suppressors at different contexts correlates with the stacking strength of the 3' neighbor as measured in vitro. The two- to fivefold range of 3' neighbor effects on rate of aminoacyl-tRNA selection is greater than that previously observed within sets of codons read by the same tRNA. It is suggested that the choice of codons to achieve favorable contexts may be more important than the choice of a common codon at some message sites.
Collapse
Affiliation(s)
- W T Pedersen
- Department of Biology, Wake Forest University, Winston-Salem, NC 27109
| | | |
Collapse
|
15
|
Pyle AM, Cech TR. Ribozyme recognition of RNA by tertiary interactions with specific ribose 2'-OH groups. Nature 1991; 350:628-31. [PMID: 1708111 DOI: 10.1038/350628a0] [Citation(s) in RCA: 140] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Shortened forms of the group I intron from Tetrahymena catalyse sequence-specific cleavage of exogenous oligonucleotide substrates. The association between RNA enzyme (ribozyme) and substrate is mediated by pairing between an internal guide sequence on the ribozyme and a complementary sequence on the substrate. RNA substrates and cleavage products associate with a binding energy greater than that of base-pairing by approximately 4 kcal-mol-1 (at 42 degrees C), whereas DNA associates with an energy around that expected for base-pairing. It has been proposed that the difference in binding affinity is due to specific 2'-OH groups on an RNA substrate forming stabilizing tertiary interactions with the core of the ribozyme, or that the RNA.RNA helix formed upon association of an RNA substrate and the ribozyme might be more stable than an RNA.DNA helix of the same sequence. To differentiate between these two models, chimaeric oligonucleotides containing deoxynucleotide residues at successive positions along the chain were synthesized, and their equilibrium binding constants for association with the ribozyme were measured directly by a new gel electrophoresis technique. We report here that most of the extra binding energy can be accounted for by discrete RNA-ribozyme interactions, the 2'-OH group on the sugar residue three nucleotides from the cleavage site contributing the most interaction energy. Thus, in addition to the well documented binding of RNA to RNA by base-pairing, 2'-OH groups within a duplex can also mediate association between RNA molecules.
Collapse
Affiliation(s)
- A M Pyle
- Howard Hughes Medical Institute, University of Colorado, Boulder 80309
| | | |
Collapse
|
16
|
Anthony-Cahill SJ, Griffith MC, Noren CJ, Suich DJ, Schultz PG. Site-specific mutagenesis with unnatural amino acids. Trends Biochem Sci 1989; 14:400-3. [PMID: 2683258 DOI: 10.1016/0968-0004(89)90287-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The incorporation of unnatural amino acids into proteins by site-specific mutagenesis provides a valuable new methodology for the generation of novel proteins that possess unique structural and functional features.
Collapse
|
17
|
Abstract
We have placed aminoacyl-tRNA selection at individual codons in competition with a frameshift that is assumed to have a uniform rate. By assaying a reporter in the shifted frame, relative rates for association of the 29 YNN codons and their cognate aminoacyl-tRNAs were obtained during logarithmic growth in Escherichia coli. For five codons, three beginning with C and two with U, these relative rates agree with relative in vitro rates for elongation factor Tu-mediated aminoacyl-tRNA binding to ribosomes and subsequent GTP hydrolysis. Therefore, the frameshift assay probably measures this process in vivo. Observed rates for aminoacyl-tRNA selection span a 25-fold range. Therefore, the time required to transit different codons in vivo probably differs substantially. Codons very frequently used in highly expressed genes generally select aminoacyl-tRNAs more quickly than do rarely used codons. This suggests that speed of aminoacyl-tRNA selection is a significant factor determining biased use of synonymous codons. However, the preferential use of codons appears to be marked only for codons with the highest rates of aminoacyl-tRNA selection. Rapid selection in vivo is usually effected by elevation of the tRNA concentration for codons with moderate intrinsic speed (rate constant), not by choosing intrinsically fast codons. Despite a preference for high rate, there are quickly translated codons that are not commonly used, and common codons that are translated relatively slowly. Other factors are therefore more important than speed for some codons. Strong preference for rapid aminoacyl-tRNA selection is not observed in weakly expressed genes. Instead, there is a slight preference for slower aminoacyl-tRNA selection. The rate of aminoacyl-tRNA selection by a YNC codon is always greater than the rate of the corresponding YNU codon even though in many YNC/U pairs both codons react with the same elongation factor Tu/GTP/aminoacyl-tRNA complex. Thus, for these tRNAs, the differences between in vivo rate constants of tRNAs are dependent on the nature of anticodon base-pairing. However, no more general relationship is evident between codon/anticodon composition and rate of aminoacyl-tRNA selection. The frameshift method can be extended to all codons.
Collapse
Affiliation(s)
- J F Curran
- Department of Biology, Wake Forest University, Winston-Salem, NC 27109
| | | |
Collapse
|
18
|
Smith D, Yarus M. Transfer RNA structure and coding specificity. I. Evidence that a D-arm mutation reduces tRNA dissociation from the ribosome. J Mol Biol 1989; 206:489-501. [PMID: 2469803 DOI: 10.1016/0022-2836(89)90496-8] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The mutation G to A24 in the D-arm of Escherichia coli tRNA(Trp) or its UAG suppressor derivative Su7 has two known phenotypes: (1) an altered or relaxed coding specificity at the codon third position; and (2) partial rescue of an anticodon loop mutation. In order to study the mechanism responsible for these effects we constructed, by in vitro mutagenesis, a series of tRNAs with alterations in the anticodon loop or at the third position of the anticodon. Evaluation of the effects of the A24 mutation on the in vivo ribosomal activity of these tRNAs leads us to conclude that the mutation reduces the rate at which the ribosome is able to reject tRNAs that are structurally defective or non-cognate. The apparent interaction of the D-arm mutation with the anticodon and anticodon loop is thus primarily kinetic, rather than through the structure of the tRNA. The Appendix describes the calculation of tRNA ribosomal activity from in vivo measurement of suppression efficiency.
Collapse
Affiliation(s)
- D Smith
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder 80309
| | | |
Collapse
|
19
|
|
20
|
Mendenhall MD, Leeds P, Fen H, Mathison L, Zwick M, Sleiziz C, Culbertson MR. Frameshift suppressor mutations affecting the major glycine transfer RNAs of Saccharomyces cerevisiae. J Mol Biol 1987; 194:41-58. [PMID: 3039147 DOI: 10.1016/0022-2836(87)90714-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Mutations have been identified in Saccharomyces cerevisiae glycine tRNA genes that result in suppression of +1 frameshift mutations in glycine codons. Wild-type and suppressor alleles of genes encoding the two major glycine tRNAs, tRNA(GCC) and tRNA(UCC), were examined in this study. The genes were identified by genetic complementation and by hybridization to a yeast genomic library using purified tRNA probes. tRNA(UCC) is encoded by three genes, whereas approximately 15 genes encode tRNA(GCC). The frameshift suppressor genes suf1+, suf4+ and suf6+ were shown to encode the wild-type tRNA(UCC) tRNA. The suf1+ and suf4+ genes were identical in DNA sequence, whereas the suf6+ gene, whose DNA sequence was not determined, was shown by a hybridization experiment to encode tRNA(UCC). The ultraviolet light-induced SU F1-1 and spontaneous SU F4-1 suppressor mutations were each shown to differ from wild-type at two positions in the anticodon, including a +1 base-pair insertion and a base-pair substitution. These changes resulted in a CCCC four-base anticodon rather than the CCU three-base anticodon found in wild-type. The RNA sequence of tRNA(UCC) was shown to contain a modified uridine in the wobble position. Mutant tRNA(CCCC) isolated from a SU F1-1 strain lacked this modification. Three unlinked genes that encode wild-type tRNA(GCC), suf20+, trn2, and suf17+, were identical in DNA sequence to the previously described suf16+ frameshift suppressor gene. Spontaneous suppressor mutations at the SU F20 and SU F17 loci were analyzed. The SU F20-2 suppressor allele contained a CCCC anticodon. This allele was derived in two serial selections through two independent mutational events, a +1 base insertion and a base substitution in the anticodon. Presumably, the original suppressor allele, SU F20-1, contained the single base insertion. The SU F17-1 suppressor allele also contained a CCCC anticodon resulting from two mutations, a +1 insertion and a base substitution. However, this allele contained an additional base substitution at position 33 adjacent to the 5' side of the four-base anticodon. The possible origin and significance of multiple mutations leading to frameshift suppression is discussed.
Collapse
|