1
|
Penefsky HS, Cross RL. Structure and mechanism of FoF1-type ATP synthases and ATPases. ADVANCES IN ENZYMOLOGY AND RELATED AREAS OF MOLECULAR BIOLOGY 2006; 64:173-214. [PMID: 1828930 DOI: 10.1002/9780470123102.ch4] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- H S Penefsky
- Department of Biochemistry and Molecular Biology, SUNY Health Science Center, Syracuse
| | | |
Collapse
|
2
|
Futai M, Sun-Wada GH, Wada Y. Proton pumping ATPases and diverse inside-acidic compartments. YAKUGAKU ZASSHI 2004; 124:243-60. [PMID: 15118237 DOI: 10.1248/yakushi.124.243] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Proton-translocating ATPases are essential cellular energy converters that transduce the chemical energy of ATP hydrolysis into transmembrane proton electrochemical potential differences. The structures, catalytic mechanism, and cellular functions of three major classes of ATPases including the F-type, V-type, and P-type ATPase are discussed in this review. Physiological roles of the acidic organelles and compartments contained are also discussed.
Collapse
Affiliation(s)
- Masamitsu Futai
- Division of Biological Sciences, Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki City, Osaka 567-0047, Japan.
| | | | | |
Collapse
|
3
|
Nakamoto RK, Ketchum CJ, al-Shawi MK. Rotational coupling in the F0F1 ATP synthase. ANNUAL REVIEW OF BIOPHYSICS AND BIOMOLECULAR STRUCTURE 1999; 28:205-34. [PMID: 10410801 DOI: 10.1146/annurev.biophys.28.1.205] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The F0F1 ATP synthase is a large multisubunit complex that couples translocation of protons down an electrochemical gradient to the synthesis of ATP. Recent advances in structural analyses have led to the demonstration that the enzyme utilizes a rotational catalytic mechanism. Kinetic and biochemical evidence is consistent with the expected equal participation of the three catalytic sites in the alpha 3 beta 3 hexamer, which operate in sequential, cooperative reaction pathways. The rotation of the core gamma subunit plays critical roles in establishing the conformation of the sites and the cooperative interactions. Mutational analyses have shown that the rotor subunits are responsible for coupling and in doing so transmit specific conformational information between transport and catalysis.
Collapse
Affiliation(s)
- R K Nakamoto
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville 22906, USA.
| | | | | |
Collapse
|
4
|
Abstract
The structure of the core catalytic unit of ATP synthase, alpha 3 beta 3 gamma, has been determined by X-ray crystallography, revealing a roughly symmetrical arrangement of alternating alpha and beta subunits around a central cavity in which helical portions of gamma are found. A low-resolution structural model of F0, based on electron spectroscopic imaging, locates subunit a and the two copies of subunit b outside of a subunit c oligomer. The structures of individual subunits epsilon and c (largely) have been solved by NMR spectroscopy, but the oligomeric structure of c is still unknown. The structures of subunits a and delta remain undefined, that of b has not yet been defined but biochemical evidence indicates a credible model. Subunits gamma, epsilon, b, and delta are at the interface between F1 and F0; gamma epsilon complex forms one element of the stalk, interacting with c at the base and alpha and beta at the top. The locations of b and delta are less clear. Elucidation of the structure F0, of the stalk, and of the entire F1F0 remains a challenging goal.
Collapse
Affiliation(s)
- J Weber
- Department of Biochemistry, University of Rochester Medical Center, NY 14642, USA
| | | |
Collapse
|
5
|
The ATP Binding Sites of P-Type ION Transport ATPases: Properties, Structure, Conformations, and Mechanism of Energy Coupling. ACTA ACUST UNITED AC 1997. [DOI: 10.1016/s1569-2558(08)60152-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
6
|
Cooperativity and stoichiometry of substrate binding to the catalytic sites of Escherichia coli F1-ATPase. Effects of magnesium, inhibitors, and mutation. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)32015-x] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
7
|
Repke KR, Schön R. Synthesis of a self-contained concept of the molecular mechanism of energy interconversion by H(+)-transporting ATP synthase. Biol Rev Camb Philos Soc 1994; 69:119-45. [PMID: 8054442 DOI: 10.1111/j.1469-185x.1994.tb01503.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The original aim of the review has been to probe into the validity of the paradigm on the high energy-carrier function of ATP. It seemed to be called into question on the basis of findings with H(+)-transporting ATP synthase suggesting the formation of ATP from ADP and Pi without energy input. Thus, ATP appeared as a low-energy compound. Starting from the current, rich knowledge of the molecular structure and the inviting thinking on the mechanism of H(+)-transporting ATP synthase, we have endeavoured to freshly interpret and integrate the pertinent observations in the light of the comprehensively derived model of the molecular mechanism of energy interconversion by Na+/K(+)-transporting ATPase. In this way, we have uncovered the common mechanistic elements of the two energy-interconverting enzymes. The emerging purpose of the present paper has been the 'synthesis' of a self-contained concept of the molecular mechanism of the interconversion of electrochemical and chemical Gibbs energies by H(+)-transporting ATP synthase. The outcome is reflected in the following tentative evaluations. 1. In ATP hydrolysis, the great Gibbs energy change which is observed in solution, is largely conserved by the F1 sector of ATP synthase as mechanical Gibbs energy in the enzyme's protein fabric, so that it can be utilized in the resynthesis of ATP from enzyme-bound ADP and Pi. The plainly measured low Gibbs energy change results from large compensating enthalpy and entropy changes that reflect the underlying changes in protein conformation. 2. In stoichiometric ATP synthesis by F1 sector from ADP and Pi bound to the catalytic centre, their intrinsic binding energy brings about a loss of peptide chain entropy that makes possible an entropy-driven ATP formation. 3. The driving force for ATP synthesis cannot be the high Gibbs energy change on binding of product ATP; the tight ATP-enzyme complex rather is a low Gibbs energy intermediate from which escape is difficult. 4. The catalytic centre exists either in an open state unable to firmly bind the substrate-product couple, or in a closed state protecting formed ATP from facile hydrolysis by ambient water. 5. The cleft closure, induced by binding of Pi and ADP or ATP, does not necessarily need external energy supply, because the cleft closure proceeds from rigid domain rotations which can occur rather spontaneously. In further analogy to adenylate kinase, the driving force of this domain movement presumably comes from the electrostatic interactions between phosphate moieties and arginine side chains in the catalytic centre.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- K R Repke
- Energy Conversion Unit, Max Delbrück Centre for Molecular Medicine, Berlin-Buch, Germany
| | | |
Collapse
|
8
|
Duncan TM, Cross RL. A model for the catalytic site of F1-ATPase based on analogies to nucleotide-binding domains of known structure. J Bioenerg Biomembr 1992; 24:453-61. [PMID: 1429539 DOI: 10.1007/bf00762362] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
An updated topological model is constructed for the catalytic nucleotide-binding site of the F1-ATPase. The model is based on analogies to the known structures of the MgATP site on adenylate kinase and the guanine nucleotide sites on elongation factor Tu (Ef-Tu) and the ras p21 protein. Recent studies of these known nucleotide-binding domains have revealed several common functional features and similar alignment of nucleotide in their binding folds, and these are used as a framework for evaluating results of affinity labeling and mutagenesis studies of the beta subunit of F1. Several potentially important residues on beta are noted that have not yet been studied by mutagenesis or affinity labeling.
Collapse
Affiliation(s)
- T M Duncan
- Department of Biochemistry and Molecular Biology, SUNY Health Science Center, Syracuse 13210
| | | |
Collapse
|
9
|
Abstract
Proton ATPases function in biological energy conversion in every known living cell. Their ubiquity and antiquity make them a prime source for evolutionary studies. There are two related families of H(+)-ATPases; while the family of F-ATPases function in eubacteria chloroplasts and mitochondria, the family of V-ATPases are present in archaebacteria and the vacuolar system of eukaryotic cells. Sequence analysis of several subunits of V- and F-ATPases revealed several of the important steps in their evolution. Moreover, these studies shed light on the evolution of the various organelles of eukaryotes and suggested some events in the evolution of the three kingdoms of eubacteria, archaebacteria and eukaryotes.
Collapse
Affiliation(s)
- N Nelson
- Roche Institute of Molecular Biology, Roche Research Center, Nutley, NJ 07110
| |
Collapse
|
10
|
Jounouchi M, Takeyama M, Noumi T, Moriyama Y, Maeda M, Futai M. Role of the amino terminal region of the epsilon subunit of Escherichia coli H(+)-ATPase (F0F1). Arch Biochem Biophys 1992; 292:87-94. [PMID: 1530778 DOI: 10.1016/0003-9861(92)90054-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Escherichia coli strain KF148(SD-) defective in translation of the uncC gene for the epsilon subunit of H(+)-ATPase could not support growth by oxidative phosphorylation due to lack of F1 binding to Fo (M. Kuki, T. Noumi, M. Maeda, A. Amemura, and M. Futai, 1988, J. Biol. Chem. 263, 17, 437-17, 442). Mutant uncC genes for epsilon subunits lacking different lengths from the amino terminus were constructed and introduced into strain KF148(SD-). F1 with an epsilon subunit lacking the 15 amino-terminal residues could bind to F0 in a functionally competent manner, indicating that these amino acid residues are not absolutely necessary for formation of a functional enzyme. However, mutant F1 in which the epsilon subunit lacked 16 amino-terminal residues showed defective coupling between ATP hydrolysis (synthesis) and H(+)-translocation, although the mutant F1 showed partial binding to Fo. These findings suggest that the epsilon subunit is essential for binding of F1 to F0 and for normal H(+)-translocation. Previously, Kuki et al. (cited above) reported that 60 residues were not necessary for a functional enzyme. However, the mutant with an epsilon subunit lacking 15 residues from the amino terminus and 4 residues from the carboxyl terminus was defective in oxidative phosphorylation, suggesting that both terminal regions affect the conformation of the region essential for a functional enzyme.
Collapse
Affiliation(s)
- M Jounouchi
- Department of Organic Chemistry and Biochemistry, Osaka University, Japan
| | | | | | | | | | | |
Collapse
|
11
|
Eya S, Maeda M, Futai M. Role of the carboxyl terminal region of H(+)-ATPase (F0F1) a subunit from Escherichia coli. Arch Biochem Biophys 1991; 284:71-7. [PMID: 1824913 DOI: 10.1016/0003-9861(91)90265-k] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The effects of amino acid substitutions in the carboxyl terminal region of the H(+)-ATPase a subunit (271 amino acid residues) of Escherichia coli were studied using a defined expression system for uncB genes coded by recombinant plasmids. The a subunits with the mutations, Tyr-263----end, Trp-231----end, Glu-219----Gln, and Arg-210----Lys (or Gln) were fully defective in ATP-dependent proton translocation, and those with Gln-252----Glu (or Leu), His-245----Glu, Pro-230----Leu, and Glu-219----His were partially defective. On the other hand, the phenotypes of the Glu-269----end, Ser-265----Ala (or end), and Tyr-263----Phe mutants were essentially similar to that of the wild-type. These results suggested that seven amino acid residues between Ser-265 and the carboxyl terminus were not required for the functional proton pathway but that all the other residues except Arg-210, Glu-219, and His-245 were required for maintaining the correct conformation of the proton pathway. The results were consistent with a report that Arg-210 is directly involved in proton translocation.
Collapse
Affiliation(s)
- S Eya
- Department of Organic Chemistry and Biochemistry, Osaka University, Japan
| | | | | |
Collapse
|
12
|
|
13
|
Takeyama M, Ihara K, Moriyama Y, Noumi T, Ida K, Tomioka N, Itai A, Maeda M, Futai M. The glycine-rich sequence of the beta subunit of Escherichia coli H(+)-ATPase is important for activity. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(17)45357-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
14
|
Affiliation(s)
- R Blostein
- Department of Medicine, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
15
|
Inatomi K, Eya S, Maeda M, Futai M. Amino Acid Sequence of the α and β Subunits of Methanosarcina barkeri ATPase Deduced from Cloned Genes. J Biol Chem 1989. [DOI: 10.1016/s0021-9258(18)60411-9] [Citation(s) in RCA: 66] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
16
|
|
17
|
Manolson MF, Ouellette BF, Filion M, Poole RJ. cDNA sequence and homologies of the “57-kDa” nucleotide-binding subunit of the vacuolar ATPase from Arabidopsis. J Biol Chem 1988. [DOI: 10.1016/s0021-9258(19)81313-3] [Citation(s) in RCA: 110] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|