1
|
Grabsztunowicz M, Górski Z, Luciński R, Jackowski G. A reversible decrease in ribulose 1,5-bisphosphate carboxylase/oxygenase carboxylation activity caused by the aggregation of the enzyme's large subunit is triggered in response to the exposure of moderate irradiance-grown plants to low irradiance. PHYSIOLOGIA PLANTARUM 2015; 154:591-608. [PMID: 25594504 DOI: 10.1111/ppl.12322] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 12/11/2014] [Accepted: 12/20/2014] [Indexed: 06/04/2023]
Abstract
Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) is highly regulated in response to fluctuations in the environment, including changes in irradiance. However, no complex data are available on Rubisco regulatory mechanisms triggered in plants which are submitted to moderate-low irradiance shift. Therefore, we investigated in a comprehensive way the changes at the level of amount of Rubisco protein, its structural organization and carboxylase activity of the holoenzyme as triggered by exposure of moderate irradiance-grown Arabidopsis thaliana plants to low irradiance conditions. An exposure of moderate irradiance-grown plants to low irradiance for a single photoperiod caused the exclusion of a certain pool of Rubisco under altered conditions owing to oxidative modifications resulting in the formation of protein aggregates involving Rubisco large subunit (LS). As a result, both initial and total Rubisco carboxylase activities were reduced, whereas Rubisco activation state remained largely unchanged. The results of the determination of reactive oxygen species indicated that a moderate/low irradiance transition had stimulated (1) O2 accumulation and we strongly suggest that Rubisco oxidative modifications leading to formation of aggregates encompassing Rubisco-LS were triggered by (1) O2 . When moderate irradiance regime was resumed, the majority of Rubisco-LS containing aggregates tended to be resolubilized, and this allowed Rubisco carboxylation activities to be largely recovered, without changes in the activation state of the enzyme. In the longer term, these results allow us to better understand a complexity of Rubisco regulatory mechanisms activated in response to abiotic stresses and during recovery from the stresses.
Collapse
Affiliation(s)
- Magda Grabsztunowicz
- Department of Plant Physiology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Poznań, 61 614, Poland
| | - Zbigniew Górski
- Department of Physical Chemistry, Institute of Chemistry & Technical Electrochemistry, University of Technology, Poznań, 60 965, Poland
| | - Robert Luciński
- Department of Plant Physiology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Poznań, 61 614, Poland
| | - Grzegorz Jackowski
- Department of Plant Physiology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Poznań, 61 614, Poland
| |
Collapse
|
2
|
Berry JO, Yerramsetty P, Zielinski AM, Mure CM. Photosynthetic gene expression in higher plants. PHOTOSYNTHESIS RESEARCH 2013; 117:91-120. [PMID: 23839301 DOI: 10.1007/s11120-013-9880-8] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 06/26/2013] [Indexed: 05/08/2023]
Abstract
Within the chloroplasts of higher plants and algae, photosynthesis converts light into biological energy, fueling the assimilation of atmospheric carbon dioxide into biologically useful molecules. Two major steps, photosynthetic electron transport and the Calvin-Benson cycle, require many gene products encoded from chloroplast as well as nuclear genomes. The expression of genes in both cellular compartments is highly dynamic and influenced by a diverse range of factors. Light is the primary environmental determinant of photosynthetic gene expression. Working through photoreceptors such as phytochrome, light regulates photosynthetic genes at transcriptional and posttranscriptional levels. Other processes that affect photosynthetic gene expression include photosynthetic activity, development, and biotic and abiotic stress. Anterograde (from nucleus to chloroplast) and retrograde (from chloroplast to nucleus) signaling insures the highly coordinated expression of the many photosynthetic genes between these different compartments. Anterograde signaling incorporates nuclear-encoded transcriptional and posttranscriptional regulators, such as sigma factors and RNA-binding proteins, respectively. Retrograde signaling utilizes photosynthetic processes such as photosynthetic electron transport and redox signaling to influence the expression of photosynthetic genes in the nucleus. The basic C3 photosynthetic pathway serves as the default form used by most of the plant species on earth. High temperature and water stress associated with arid environments have led to the development of specialized C4 and CAM photosynthesis, which evolved as modifications of the basic default expression program. The goal of this article is to explain and summarize the many gene expression and regulatory processes that work together to support photosynthetic function in plants.
Collapse
Affiliation(s)
- James O Berry
- Department of Biological Sciences, University at Buffalo, Buffalo, NY, 14260, USA,
| | | | | | | |
Collapse
|
3
|
Development-Dependent Changes in the Amount and Structural Organization of Plastid DNA. PLASTID DEVELOPMENT IN LEAVES DURING GROWTH AND SENESCENCE 2013. [DOI: 10.1007/978-94-007-5724-0_11] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
4
|
Yagi Y, Ishizaki Y, Nakahira Y, Tozawa Y, Shiina T. Eukaryotic-type plastid nucleoid protein pTAC3 is essential for transcription by the bacterial-type plastid RNA polymerase. Proc Natl Acad Sci U S A 2012; 109:7541-6. [PMID: 22529394 PMCID: PMC3358912 DOI: 10.1073/pnas.1119403109] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Plastid transcription is mediated by two distinct types of RNA polymerases (RNAPs), bacterial-type RNAP (PEP) and phage-type RNAP (NEP). Recent genomic and proteomic studies revealed that higher plants have lost most prokaryotic transcription regulators and have acquired eukaryotic-type proteins during plant evolution. However, in vivo dynamics of chloroplast RNA polymerases and eukaryotic-type plastid nucleoid proteins have not been directly characterized experimentally. Here, we examine the association of the α-subunit of PEP and eukaryotic-type protein, plastid transcriptionally active chromosome 3 (pTAC3) with transcribed regions in vivo by using chloroplast chromatin immunoprecipitation (cpChIP) assays. PEP α-subunit preferentially associates with PEP promoters of photosynthesis and rRNA genes, but not with NEP promoter regions, suggesting selective and accurate recognition of PEP promoters by PEP. The cpChIP assays further demonstrate that the peak of PEP association occurs at the promoter-proximal region and declines gradually along the transcribed region. pTAC3 is a putative DNA-binding protein that is localized to chloroplast nucleoids and is essential for PEP-dependent transcription. Density gradient and immunoprecipitation analyses of PEP revealed that pTAC3 is associated with the PEP complex. Interestingly, pTAC3 associates with the PEP complex not only during transcription initiation, but also during elongation and termination. These results suggest that pTAC3 is an essential component of the chloroplast PEP complex. In addition, we demonstrate that light-dependent chloroplast transcription is mediated by light-induced association of the PEP-pTAC3 complex with promoters. This study illustrates unique dynamics of PEP and its associated protein pTAC3 during light-dependent transcription in chloroplasts.
Collapse
Affiliation(s)
- Yusuke Yagi
- Faculty of Agriculture and
- Institute of Advanced Study, Kyushu University, Fukuoka 812-8581, Japan
- Graduate School of Life and Environmental Science, Kyoto Prefectural University, Kyoto 606-8522, Japan; and
| | - Yoko Ishizaki
- Graduate School of Life and Environmental Science, Kyoto Prefectural University, Kyoto 606-8522, Japan; and
| | - Yoichi Nakahira
- Graduate School of Life and Environmental Science, Kyoto Prefectural University, Kyoto 606-8522, Japan; and
| | - Yuzuru Tozawa
- Cell-Free Science and Technology Research Center, Ehime University, Matsuyama 790-8577, Japan
| | - Takashi Shiina
- Graduate School of Life and Environmental Science, Kyoto Prefectural University, Kyoto 606-8522, Japan; and
| |
Collapse
|
5
|
Liere K, Weihe A, Börner T. The transcription machineries of plant mitochondria and chloroplasts: Composition, function, and regulation. JOURNAL OF PLANT PHYSIOLOGY 2011; 168:1345-60. [PMID: 21316793 DOI: 10.1016/j.jplph.2011.01.005] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2010] [Revised: 01/07/2011] [Accepted: 01/10/2011] [Indexed: 05/04/2023]
Abstract
Although genomes of mitochondria and plastids are very small compared to those of their bacterial ancestors, the transcription machineries of these organelles are of surprising complexity. With respect to the number of different RNA polymerases per organelle, the extremes are represented on one hand by chloroplasts of eudicots which use one bacterial-type RNA polymerase and two phage-type RNA polymerases to transcribe their genes, and on the other hand by Physcomitrella possessing three mitochondrial RNA polymerases of the phage type. Transcription of genes/operons is often driven by multiple promoters in both organelles. This review describes the principle components of the transcription machineries (RNA polymerases, transcription factors, promoters) and the division of labor between the different RNA polymerases. While regulation of transcription in mitochondria seems to be only of limited importance, the plastid genes of higher plants respond to exogenous and endogenous cues rather individually by altering their transcriptional activities.
Collapse
Affiliation(s)
- Karsten Liere
- Institut für Biologie/Genetik, Humboldt-Universität zu Berlin, Chausseestrasse 117, Berlin, Germany
| | | | | |
Collapse
|
6
|
Newell CA, Gray JC. Binding of lac repressor-GFP fusion protein to lac operator sites inserted in the tobacco chloroplast genome examined by chromatin immunoprecipitation. Nucleic Acids Res 2010; 38:e145. [PMID: 20484380 PMCID: PMC2919732 DOI: 10.1093/nar/gkq413] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Revised: 04/29/2010] [Accepted: 05/04/2010] [Indexed: 11/12/2022] Open
Abstract
Chromatin immunoprecipitation (ChIP) has been used to detect binding of DNA-binding proteins to sites in nuclear and mitochondrial genomes. Here, we describe a method for detecting protein-binding sites on chloroplast DNA, using modifications to the nuclear ChIP procedures. The method was developed using the lac operator (lacO)/lac repressor (LacI) system from Escherichia coli. The lacO sequences were integrated into a single site between the rbcL and accD genes in tobacco plastid DNA and homoplasmic transplastomic plants were crossed with transgenic tobacco plants expressing a nuclear-encoded plastid-targeted GFP-LacI fusion protein. In the progeny, the GFP-LacI fusion protein could be visualized in living tissues using confocal microscopy, and was found to co-localize with plastid nucleoids. Isolated chloroplasts from the lacO/GFP-LacI plants were lysed, treated with micrococcal nuclease to digest the DNA to fragments of approximately 600 bp and incubated with antibodies to GFP and protein A-Sepharose. PCR analysis on DNA extracted from the immunoprecipitate demonstrated IPTG (isopropylthiogalactoside)-sensitive binding of GFP-LacI to lacO. Binding of GFP-LacI to endogenous sites in plastid DNA showing sequence similarity to lacO was also detected, but required reversible cross-linking with formaldehyde. This may provide a general method for the detection of binding sites on plastid DNA for specific proteins.
Collapse
Affiliation(s)
| | - John C. Gray
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| |
Collapse
|
7
|
Transcription and transcriptional regulation in plastids. CELL AND MOLECULAR BIOLOGY OF PLASTIDS 2007. [DOI: 10.1007/4735_2007_0232] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
8
|
Demarsy E, Courtois F, Azevedo J, Buhot L, Lerbs-Mache S. Building up of the plastid transcriptional machinery during germination and early plant development. PLANT PHYSIOLOGY 2006; 142:993-1003. [PMID: 16963522 PMCID: PMC1630747 DOI: 10.1104/pp.106.085043] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2006] [Accepted: 08/30/2006] [Indexed: 05/11/2023]
Abstract
The plastid genome is transcribed by three different RNA polymerases, one is called plastid-encoded RNA polymerase (PEP) and two are called nucleus-encoded RNA polymerases (NEPs). PEP transcribes preferentially photosynthesis-related genes in mature chloroplasts while NEP transcribes preferentially housekeeping genes during early phases of plant development, and it was generally thought that during plastid differentiation the building up of the NEP transcription system precedes the building up of the PEP transcription system. We have now analyzed in detail the establishment of the two different transcription systems, NEP and PEP, during germination and early seedling development on the mRNA and protein level. Experiments have been performed with two different plant species, Arabidopsis (Arabidopsis thaliana) and spinach (Spinacia oleracea). Results show that the building up of the two different transcription systems is different in the two species. However, in both species NEP as well as PEP are already present in seeds, and results using Tagetin as a specific inhibitor of PEP activity demonstrate that PEP is important for efficient germination, i.e. PEP is already active in not yet photosynthetically active seed plastids.
Collapse
Affiliation(s)
- Emilie Demarsy
- Laboratoire Plastes et Differenciation Cellulaire, Université Joseph Fourier and Centre National de la Recherche Scientifique, F-38041 Grenoble, France
| | | | | | | | | |
Collapse
|
9
|
Wagner R, Pfannschmidt T. Eukaryotic transcription factors in plastids--Bioinformatic assessment and implications for the evolution of gene expression machineries in plants. Gene 2006; 381:62-70. [PMID: 16934950 DOI: 10.1016/j.gene.2006.06.022] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2006] [Revised: 06/01/2006] [Accepted: 06/19/2006] [Indexed: 10/24/2022]
Abstract
The expression of genes in higher plant chloroplasts includes a complex transcriptional regulation which can be explained only in part with the action of the actually known components of the transcriptional machinery. This suggests the existence of still unknown important regulatory factors which influence chloroplast transcription. In order to test if such factors could exist we performed in silico analyses of Arabidopsis genes encoding putative transcription factors looking for putative N-terminal chloroplast transit peptides in the amino acid sequences. Our results suggest that 48 (and maybe up to 100) transcription factors of eukaryotic origin are likely to be imported into plastids. None of them has been described yet. This set of transcription factors highly expands the actually known regulation capacity of the chloroplast transcription machinery and provides a possible explanation for the complex initiation patterns of chloroplast transcripts. As consequence of a massive import of eukaryotic transcription factors a comprehensive reconstruction of the ancient prokaryotic gene expression machinery must be assumed resulting in a novel compatible combination of eukaryotic and prokaryotic protein components. In turn, the opposite process has been induced in the nucleus by the integration of prokaryotic components of the plastid ancestor via its loss of genes during endosymbiosis. Thus, a mutual exchange of regulatory factors, i.e. transcription factors occurred which resulted in the unique signalling network of today's plants. An evolutionary model of how this could have emerged during endosymbiosis in a timely coordinated manner is proposed.
Collapse
Affiliation(s)
- Raik Wagner
- Junior Research Group Plant acclimation to environmental changes: Protein analysis by MS, Department for Plant Physiology, Friedrich-Schiller-University Jena, Jena, Germany
| | | |
Collapse
|
10
|
Ishizaki Y, Tsunoyama Y, Hatano K, Ando K, Kato K, Shinmyo A, Kobori M, Takeba G, Nakahira Y, Shiina T. A nuclear-encoded sigma factor, Arabidopsis SIG6, recognizes sigma-70 type chloroplast promoters and regulates early chloroplast development in cotyledons. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2005; 42:133-44. [PMID: 15807777 DOI: 10.1111/j.1365-313x.2005.02362.x] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Eubacterial-type multi-subunit plastid RNA polymerase (PEP) is responsible for the principal transcription activity in chloroplasts. PEP is composed of plastid-encoded core subunits and one of multiple nuclear-encoded sigma factors that confer promoter specificity on PEP. Thus, the replacement of sigma factors associated with PEP has been assumed to be a major mechanism for the switching of transcription patterns during chloroplast development. The null mutant (sig6-1) of plastid sigma factor gene AtSIG6 exhibited a cotyledon-specific pale green phenotype. Light-dependent chloroplast development was significantly delayed in the sig6-1 mutant. Genetic complementation of the mutant phenotype by the AtSIG6 cDNA demonstrated that AtSIG6 plays a key role in light-dependent chloroplast development. Northern and array-based global analyses for plastid transcripts revealed that the transcript levels of most PEP-dependent genes were greatly reduced in the sig6-1 mutant, but that the accumulation of nuclear-encoded RNA polymerase (NEP)-dependent transcripts generally increased. As the PEP alpha subunit and PEP-dependent trnV accumulated at normal levels in the sig6-1 mutant, the AtSIG6 knockout mutant probably retained functional PEP, and the transcriptional defects are likely to have been directly caused by AtSIG6 deficiency. Most of the AtSIG6-dependent genes are preceded by sigma70-type promoters comprised of conserved -35/-10 elements. Thus, AtSIG6 may act as a major general sigma factor in chloroplasts during early plant development. On the other hand, the mutant phenotype was restored in older seedlings. Arabidopsis probably contains another late general sigma factor, the promoter specificity of which widely overlaps with that of AtSIG6.
Collapse
Affiliation(s)
- Yoko Ishizaki
- Faculty of Human Environment, Kyoto Prefectural University, Shimogamo-nakaragi-cho, Sakyo-ku, Kyoto 606-8522, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Shiina T, Tsunoyama Y, Nakahira Y, Khan MS. Plastid RNA polymerases, promoters, and transcription regulators in higher plants. INTERNATIONAL REVIEW OF CYTOLOGY 2005; 244:1-68. [PMID: 16157177 DOI: 10.1016/s0074-7696(05)44001-2] [Citation(s) in RCA: 143] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Plastids are semiautonomous plant organelles exhibiting their own transcription-translation systems that originated from a cyanobacteria-related endosymbiotic prokaryote. As a consequence of massive gene transfer to nuclei and gene disappearance during evolution, the extant plastid genome is a small circular DNA encoding only ca. 120 genes (less than 5% of cyanobacterial genes). Therefore, it was assumed that plastids have a simple transcription-regulatory system. Later, however, it was revealed that plastid transcription is a multistep gene regulation system and plays a crucial role in developmental and environmental regulation of plastid gene expression. Recent molecular and genetic approaches have identified several new players involved in transcriptional regulation in plastids, such as multiple RNA polymerases, plastid sigma factors, transcription regulators, nucleoid proteins, and various signaling factors. They have provided novel insights into the molecular basis of plastid transcription in higher plants. This review summarizes state-of-the-art knowledge of molecular mechanisms that regulate plastid transcription in higher plants.
Collapse
Affiliation(s)
- Takashi Shiina
- Faculty of Human Environment, Kyoto Prefectural University, Kyoto 606-8522, Japan
| | | | | | | |
Collapse
|
12
|
Abstract
The plastid nucleoid consists of plastid DNA and various, mostly uncharacterized, DNA-binding proteins. The plastid DNA undoubtedly originated from an ancestral cyanobacterial genome, but the origin of the nucleoid proteins appears complex. Initial biochemical analysis of these proteins, as well as comparative genome informatics, suggest that proteins of eukaryotic origin replaced most of the original prokaryotic proteins during the evolution of plastids in the lineage of green plants.
Collapse
Affiliation(s)
- N Sato
- Dept of Molecular Biology, Faculty of Science, Saitama University, 255 Shimo-Ohkubo, Urawa 338-8570, Japan.
| |
Collapse
|
13
|
Abstract
The nuclear genome of the model plant Arabidopsis thaliana contains a small gene family consisting of three genes encoding RNA polymerases of the single-subunit bacteriophage type. There is evidence that similar gene families also exist in other plants. Two of these RNA polymerases are putative mitochondrial enzymes, whereas the third one may represent the nuclear-encoded RNA polymerase (NEP) active in plastids. In addition, plastid genes are transcribed from another, entirely different multisubunit eubacterial-type RNA polymerase, the core subunits of which are encoded by plastid genes [plastid-encoded RNA polymerase (PEP)]. This core enzyme is complemented by one of several nuclear-encoded sigma-like factors. The development of photosynthetically active chloroplasts requires both PEP and NEP. Most NEP promoters show certain similarities to mitochondrial promoters in that they include the sequence motif 5'-YRTA-3' near the transcription initiation site. PEP promoters are similar to bacterial promoters of the -10/-35 sigma 70 type.
Collapse
Affiliation(s)
- W R Hess
- Institute of Biology, Humboldt University, Berlin, Germany
| | | |
Collapse
|
14
|
Koike K. Cloning, structure, chromosomal localization and promoter analysis of human 2-oxoglutarate dehydrogenase gene. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1385:373-84. [PMID: 9655939 DOI: 10.1016/s0167-4838(98)00081-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Human 2-oxoglutarate dehydrogenase (OGDH) is an E1-component of the OGDH multi-enzyme complex and catalyzes both the ThDP-dependent decarboxylation of 2-oxoglutarate and the subsequent reductive succinylation of the lipoyl moiety which is covalently bound to the E2 component, dihydrolipoamide succinyltransferase. The cDNA and genomic DNA encoding human OGDH has been cloned and sequenced. The cDNA contains a 3006-bp open reading frame encoding a 40-amino acid leader peptide and a 962-amino acid mature OGDH protein (Mr=108878). The gene contains 22 exons spanning approximately 85 kb. The putative ThDP-binding sequence motif is identified in both DNAs. The gene is localized to chromosome 7 at p13-p14 by fluorescence in situ hybridization. With the TATA- and CAAT-less 5'-flanking region (wild type, -3276/+212) of the OGDH gene-luciferase reporter vector construct and its nested deletion or linker-scanning mutant constructs the transient reporter expression assays in BHK-21 cells reveal the existence of two 10-bp cis-acting elements (-53/-44 and -33/-24) and two trans-acting elements (-536/-496 and -93/-84). A nuclear factor that binds to the region from -63 to -24 including two cis-acting elements.
Collapse
Affiliation(s)
- K Koike
- Department of Pathological Biochemistry, Atomic Disease Institute, Nagasaki University School of Medicine, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| |
Collapse
|
15
|
Abstract
Sacrificing an infected cell or cells in order to prevent systemic spread of a pathogen appears to be a conserved strategy in both plants and animals. We studied some of the morphological and biochemical events that accompany programmed cell death during the hypersensitive response of tobacco plants infected with tobacco mosaic virus. Certain aspects of this cell death process appeared to be similar to those that take place during apoptosis in animal cells. These included condensation and vacuolization of the cytoplasm and cleavage of nuclear DNA to 50 kb fragments. In contrast, internucleosomal fragmentation, condensation of chromatin at the nuclear periphery and apoptotic bodies were not observed in tobacco plants during tobacco mosaic virus-induced hypersensitive response. A unique aspect of programmed cell death during the hypersensitive response of tobacco to tobacco mosaic virus involved an increase in the amount of monomeric chloroplast DNA. Morphological changes to the chloroplast and cytosol of tobacco cells and increase in monomeric chloroplast DNA occurred prior to gross changes in nuclear morphology and significant chromatin cleavage. Our findings suggest that certain aspects of programmed cell death may have been conserved during the evolution of plants and animals.
Collapse
Affiliation(s)
- R Mittler
- Center for Agricultural Molecular Biology, Rutgers The State University of New Jersey, Cook College, New Brunswick 08903-0231, USA
| | | | | |
Collapse
|
16
|
Koike K, Matsuo S. Functional characterization of the 5'-flanking region of the gene encoding human 2-oxoglutarate dehydrogenase. Gene 1997; 186:45-53. [PMID: 9047343 DOI: 10.1016/s0378-1119(96)00677-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The 5'-flanking region of the gene (OGDH) encoding human 2-oxoglutarate dehydrogenase (OGDH) does not contain TATA or CAAT boxes, but contains an inverted GC box. To identify a functional OGDH promoter, systematic transient expression analysis of the 5'-flanking region (wild type, -3276/+212) of the OGDH was performed using serially nested deletions and linker-scanning mutations. The OGDH (wild type)-luciferase (LUC) reporter vector (pGV-E) construct and its deletion or linker-mutant constructs were transfected into BHK-21 cells and LUC activity was assessed. The OGDH-LUC construct expressed reproducibly >12-fold more LUC activity than did a control pGV-E vector. The promoter activity was up-regulated by treatment with 2-oxoglutarate and 2-oxoglutarate/glutamate. Deletions of sequences between nt -563 and -62 (M6 and M7) resulted in a 2-fold increase in LUC activity. Further deletion of the sequence between nt -61 and +212 (M8-M10) abolished LUC activity. High resolution mutagenesis within the -113 to -14 region indicated that the -53 to -44 and -33 to -24 sequences were required for positive regulation and the -93 to -84 sequence for negative regulation. We have identified a nuclear factor that binds to nt -63 to -24 including two cis-acting sites.
Collapse
Affiliation(s)
- K Koike
- Department of Pathological Biochemistry, Atomic Disease Institute, Nagasaki University School of Medicine, Sakamoto, Japan
| | | |
Collapse
|
17
|
Olson DC, Oetiker JH, Yang SF. Analysis of LE-ACS3, a 1-aminocyclopropane-1-carboxylic acid synthase gene expressed during flooding in the roots of tomato plants. J Biol Chem 1995; 270:14056-61. [PMID: 7775465 DOI: 10.1074/jbc.270.23.14056] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The plant hormone ethylene is produced in response to a variety of environmental stresses. Previous work has shown that flooding or anaerobic stress in the roots of tomato plants caused an increase in the production of the ethylene precursor 1-aminocyclopropane-1-carboxylate (ACC) in the roots, due to flooding-induced activity of ACC synthase (EC 4.4.1.14). RNA was extracted from roots and leaves of tomato plants flooded over a period of 48 h. Blot analysis of these RNAs hybridized with probes for four different ACC synthases revealed that the ACC synthase gene LE-ACS3 is rapidly induced in roots. LE-ACS2 is also induced, but at later times. The genomic clone for LE-ACS3 was isolated and sequenced. At all time points, the probe from the LE-ACS3 coding region hybridized to two bands in the RNA blots. Hybridization using the first and third introns of LE-ACS3 separately as probes indicate that flooding may inhibit processing of the LE-ACS3 transcript. Sequence homology analysis identified three putative cis-acting response elements in the promoter region, corresponding to the anaerobic response element from the maize adh1 promoter, the root-specific expression element from the cauliflower mosaic virus 35S promoter and a recognition element for chloroplast DNA binding factor I from the maize chloroplast ATP synthase promoter.
Collapse
Affiliation(s)
- D C Olson
- Mann Laboratory, Department of Vegetable Crops, University of California, Davis 95616, USA
| | | | | |
Collapse
|
18
|
Affiliation(s)
- G Link
- University of Bochum, Plant Cell Physiology and Molecular Biology, FRG
| |
Collapse
|
19
|
Jahn D. Expression of the Chlamydomonas reinhardtii chloroplast tRNA(Glu) gene in a homologous in vitro transcription system is independent of upstream promoter elements. Arch Biochem Biophys 1992; 298:505-13. [PMID: 1416980 DOI: 10.1016/0003-9861(92)90442-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Chloroplast tRNA(Glu) is a bifunctional molecule involved in both the early steps of chlorophyll synthesis and chloroplast protein biosynthesis. Recently the enzymes involved in these processes have been characterized from the green alga Chlamydomonas reinhardtii. In order to investigate whether transcription of the gene for the tRNA(Glu) cofactor would be a possible point of regulation for the biosynthesis of chlorophyll, a homologous in vitro transcription system for C. reinhardtii chloroplast RNA polymerase was developed. The enzymatic activity was partially purified by ion-exchange chromatography to separate it from nuclear RNA polymerases. The highest rate of synthesis was found at pH 7.9, 40 mM KCl, 9 mM MgCl2 and with 25 micrograms plasmid DNA containing the chloroplast tRNA gene per milliliter. The activity was not sensitive to high amounts of alpha-amanitin (500 micrograms/ml) and rifampicin, but was clearly inhibited by heparin. This system was used to undertake a promoter analysis of one of the two identical tRNA(Glu) gene copies found in the C. reinhardtii chloroplast genome (trnE1). The analyzed tRNA gene behaved like a single transcription unit driven by its own promoter. The transcript terminated in a run of four consecutive T residues downstream of the gene. The nucleotide sequence in the 5' region of the gene revealed several potential promoter elements with homology to known chloroplast promoters of the "-10 and -35 region" and the "Euglena promoter" types. Surprisingly, deletion of the complete 5' region did not affect in vitro transcription, while partial deletions of the 5' and 3' coding region totally abolished transcription. This indicates the presence of an internal control region previously found for genes transcribed by nuclear RNA polymerase III. Protein binding studies with the coding region of trnE1 using gel retardation assays demonstrated the formation of two differently sized complexes. In vitro transcription of the tRNA(Glu) gene in extracts prepared from light and dark grown algae failed to demonstrate any significant influence of light on the transcription reaction.
Collapse
Affiliation(s)
- D Jahn
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06511
| |
Collapse
|
20
|
|
21
|
Baumgartner BJ, Mullet JE. Plastid DNA synthesis and nucleic acid-binding proteins in developing barley chloroplasts. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 1991; 11:203-18. [PMID: 1770405 DOI: 10.1016/1011-1344(91)80261-f] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Activation of plastid DNA synthesis occurred early in barley leaf chloroplast development. High rates of DNA synthesis were observed in the leaf basal meristem of dark-grown plants where plastid transcription activity was low. DNA synthesis activity decreased in later stages of chloroplast development. Plastid nuclei acid-binding proteins were detected after lithium dodecylsulfate (LDS)-polyacrylamide gel separation and renaturation. One set of nucleic acid-binding proteins was associated with plastid nucleoids. A second set of nucleic acid-binding proteins co-sedimented with ribosomes and most probably corresponds to ribosomal proteins. Changes in the composition of the nucleic acid-binding proteins were characterized as a function of chloroplast development in dark-grown and illuminated barley plants.
Collapse
Affiliation(s)
- B J Baumgartner
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843-2128
| | | |
Collapse
|
22
|
Tiller K, Eisermann A, Link G. The chloroplast transcription apparatus from mustard (Sinapis alba L.). Evidence for three different transcription factors which resemble bacterial sigma factors. EUROPEAN JOURNAL OF BIOCHEMISTRY 1991; 198:93-9. [PMID: 2040293 DOI: 10.1111/j.1432-1033.1991.tb15990.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A chloroplast protein fraction with sigma-like activity [Bülow, S. & Link, G. (1988) Plant Mol. Biol. 10, 349-357], was further purified and characterized. Chromatography on heparin-Sepharose, DEAE-Sepharose and Sephacryl S-300 led to the separation of three sigma-like factors (SLF) polypeptides with Mr 67,000 (SLF67), 52,000 (SLF52) and 29,000 (SLF29). None of these polypeptides bind to DNA itself, but each one confers enhanced binding and transcriptional activity when added to Escherichia coli RNA-polymerase core enzyme and DNA fragments carrying a chloroplast promoter. SLF67, SLF52, and SLF29 differ in their ionic-strength requirements for activity. They each mediate the binding to promoters of the chloroplast genes psbA, trnQ, and rps16, with different efficiencies. It is suggested that chloroplast transcription in vivo might be controlled at least in part by these functionally distinct factors.
Collapse
Affiliation(s)
- K Tiller
- Plant Cell Physiology and Molecular Biology, University of Bochum, Federal Republic of Germany
| | | | | |
Collapse
|
23
|
Chen LJ, Rogers SA, Bennett DC, Hu MC, Orozco EM. An in vitro transcription termination system to analyze chloroplast promoters: identification of multiple promoters for the spinach atpB gene. Curr Genet 1990; 17:55-64. [PMID: 1690085 DOI: 10.1007/bf00313249] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Promoters for spinach chloroplast genes were cloned 5' to a strong factor-independent transcription terminator from E. coli. These "minigene" constructions were transcribed in vitro by a transcriptionally active extract of spinach chloroplasts. Transcription of supercoiled DNA templates resulted in synthesis of discretely-sized RNAs that were readily quantifiable. The efficiency of transcription was up to 3.5 RNAs per template. The transcription termination system described in this report was used to identify the primary transcripts for the plastid atpB gene. Four in vivo transcripts for the atpB gene have been previously identified with 5' untranslated leaders of approximately 455, 275, 180 and 100 nucleotides, respectively. In this report we show that the "-455", "-275" and "-180" regions function as chloroplast promoters in vitro. In addition, a fourth promoter was found that yields a primary transcript totally lacking an untranslated leader.
Collapse
Affiliation(s)
- L J Chen
- Department of Agronomy, University of Illinois
| | | | | | | | | |
Collapse
|
24
|
Hanley-Bowdoin L, Chua NH. Transcriptional interaction between the promoters of the maize chloroplast genes which encode the beta subunit of ATP synthase and the large subunit of ribulose 1,5-bisphosphate carboxylase. MOLECULAR & GENERAL GENETICS : MGG 1989; 215:217-24. [PMID: 2523512 DOI: 10.1007/bf00339720] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The genes encoding the beta subunit of ATP synthase and the large subunit of ribulose 1,5-bisphosphate carboxylase are located on opposite strands of the maize chloroplast genome. Their transcription start sites are separated by a 159 bp sequence that includes the promoters for both genes. The effects of deleting or modifying one of the two promoters on transcription from the adjacent, unaltered promoter were assessed in vitro using maize chloroplast extracts to transcribe cloned maize DNA templates. When the atpB promoter was disrupted by an 8 bp insertion, rbcL transcription was not altered. When the rbcL promoter was disrupted by a 2 bp insertion, atpB transcription decreased, whereas when the rbcL promoter region was deleted, atpB transcription increased. Activity of the atpB promoter was also reduced when the + 2 bp-rbcL promoter template was transcribed in vitro by Escherichia coli RNA polymerase. The changes in atpB transcriptional efficiency were only seen when the atpB and rbcL promoters were closely spaced on the same template molecule. These results established that the atpB and rbcL promoters interact in vitro in a cis and spacing dependent manner. The interaction may have physiological relevance in vivo.
Collapse
Affiliation(s)
- L Hanley-Bowdoin
- Laboratory of Plant Molecular Biology, Rockefeller University, New York, NY 10021-6399
| | | |
Collapse
|