1
|
Morris PJ. THE DEVELOPMENTAL ROLE OF THE EXTRACELLULAR MATRIX SUGGESTS A MONOPHYLETIC ORIGIN OF THE KINGDOM ANIMALIA. Evolution 2017; 47:152-165. [DOI: 10.1111/j.1558-5646.1993.tb01206.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/1992] [Accepted: 05/17/1992] [Indexed: 11/28/2022]
Affiliation(s)
- Paul J. Morris
- Museum of Comparative Zoology; Harvard University; Cambridge MA 02138 USA
| |
Collapse
|
2
|
Kamerling JP, de Souza AC. Studying carbohydrate self-recognition in marine sponges using synthetic aggregation factor epitopes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 705:493-510. [PMID: 21618126 DOI: 10.1007/978-1-4419-7877-6_26] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Johannis P Kamerling
- Department of Bio-Organic Chemistry, Bijvoet Center, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.
| | | |
Collapse
|
3
|
|
4
|
Müller WEG, Wiens M, Adell T, Gamulin V, Schröder HC, Müller IM. Bauplan of Urmetazoa: Basis for Genetic Complexity of Metazoa. INTERNATIONAL REVIEW OF CYTOLOGY 2004; 235:53-92. [PMID: 15219781 DOI: 10.1016/s0074-7696(04)35002-3] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Sponges were first grouped to the animal-plants or plant-animals then to the Zoophyta or Mesozoa and finally to the Parazoa. Only after the application of molecular biological techniques was it possible to place the Porifera monophyletically with the other metazoan phyla, justifying a unification of all multicellular animals to only one kingdom, the Metazoa. The first strong support came from the discovery that cell-cell and cell-matrix adhesion molecules that were cloned from sponges and were subsequently expressed share a high DNA sequence and protein function similarity with the corresponding molecules of other metazoans. Besides these evolutionary novelties for Metazoa, sponges also have morphogens and transcription factors in common with other metazoan phyla. Surprisingly, even those elements exist in Porifera, which are characteristic for pattern and axis formation. Recent studies showed that epithelial layers of sponges are sealed against the extracellular milieu through tight-junction proteins. The cell culture system from sponges, the primmorphs, was suitable for understanding morphogenetic events. Finally, stem cell marker genes were isolated, which underscored that sponge cells have the capacity to differentiate. In the relatively short period of time, approximately 200 million years, the basic pathways had to be established that allowed the transition for multicellular organisms to a colonial system through the formation of adhesion molecules; based on the development of a complex immune system and the apoptotic machinery of an integrated system, the Urmetazoa, which evolved approximately 800 million years ago, could be reached. Hence, the Bauplan of the hypothetical Urmetazoa can now be constructed according to genomic regulatory systems similar to those found in higher Metazoa. These data caused a paradigmatic change; the Porifera are complex and simple but by far not primitive.
Collapse
Affiliation(s)
- Werner E G Müller
- Institut für Physiologische Chemie, Abteilung Angewandte Molekularbiologie, Universität, D-55099 Mainz, Germany
| | | | | | | | | | | |
Collapse
|
5
|
Yu S, Kojima N, Hakomori SI, Kudo S, Inoue S, Inoue Y. Binding of rainbow trout sperm to egg is mediated by strong carbohydrate-to-carbohydrate interaction between (KDN)GM3 (deaminated neuraminyl ganglioside) and Gg3-like epitope. Proc Natl Acad Sci U S A 2002; 99:2854-9. [PMID: 11880637 PMCID: PMC122437 DOI: 10.1073/pnas.052707599] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
KDNalpha2-->3Galbeta4Glcbeta1Cer [(KDN)GM3] is a major (approximately 90%) component of total gangliosides found in sperm of rainbow trout (Oncorhynchus mykiss) and was shown to be present prominently at the sperm head by immunochemical staining with its specific mAb kdn3G. Liposomes containing (KDN)GM3 adhere specifically to GalNAcbeta4Galbeta4Glcbeta1Cer (Gg3Cer)-coated plastic plates. Interaction between (KDN)GM3 and Gg3Cer was much stronger than that previously observed between Neu5Acalpha2-->3Galbeta4Glcbeta1Cer and Gg3Cer. (KDN)GM3-Gg3Cer interaction did not require the presence of Ca2+ and Mg2+, but was enhanced in the presence of Mn2+. Fresh trout sperm adhered specifically to Gg3Cer-coated plates under physiological conditions, and the binding was inhibited by pretreatment of sperm with mAb kdn3G. The presence of Gg3 or Gg3-related epitope structure in the specific area surrounding the micropyle, through which sperm enter the egg, was confirmed by immunogold labeling under electron microscopy. These findings suggest that initial sperm-egg adhesion during the process of fertilization occurs when sperm adhere to the area surrounding the micropyle through specific interaction between (KDN)GM3 on the sperm head and Gg3 epitope (GalNAcbeta4Galbeta1-->) expressed at a defined region of the egg surface membrane.
Collapse
Affiliation(s)
- Song Yu
- Division of Biomembrane Research, Pacific Northwest Research Institute, Seattle, WA 98122, USA
| | | | | | | | | | | |
Collapse
|
6
|
Schütze J, Krasko A, Diehl-Seifert B, Müller WE. Cloning and expression of the putative aggregation factor from the marine sponge Geodia cydonium. J Cell Sci 2001; 114:3189-98. [PMID: 11590245 DOI: 10.1242/jcs.114.17.3189] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sponges (phylum Porifera) have extensively been used as a model system to study cell-cell interaction on molecular level. Recently, we identified and cloned the putative aggregation receptor (AR) of the sponge Geodia cydonium, which interacts in a heterophilic way with the aggregation factor (AF) complex. In the present study, antibodies against this complex have been raised that abolish the adhesion function of the enriched sponge AF, the AF-Fraction 6B. Using this antibody as a tool, a complete 1.7 kb long cDNA, GEOCYAF, could be isolated from a cDNA library that encodes the putative AF. Its deduced aa sequence in the N-terminal section comprises high similarity to amphiphysin/BIN1 sequences found in Protostomia and Deuterostomia. However, the C-terminal portion of the sponge sequence lacks the SH3 domain characteristic for amphiphysin/BIN1. The polypeptide with a calculated size of 47 kDa was expressed in Escherichia coli. The recombinant, soluble 36 kDa putative AF was prepared and found to compete with the AF complex-associated adhesion protein of the AF-Fraction 6B for the binding sites at the cell surface. Furthermore, the recombinant putative AF was recognized by the antibody used to screen the cDNA library by western blotting. In addition, there is evidence that the recombinant putative AF binds to the G. cydonium galectin. It is concluded that the putative G. cydonium AF - a further autapomorphic molecule characteristic for Metazoa - binds to the AR present on the cell surface in association with the homologous galectin.
Collapse
Affiliation(s)
- J Schütze
- Institut für Physiologische Chemie, Abteilung Angewandte Molekularbiologie, Universität, Duesbergweg 6, D-55099 Mainz, Germany
| | | | | | | |
Collapse
|
7
|
Jarchow J, Burger MM. Species-specific association of the cell-aggregation molecule mediates recognition in marine sponges. CELL ADHESION AND COMMUNICATION 1999; 6:405-14. [PMID: 10223356 DOI: 10.3109/15419069809109149] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Reaggregation of dissociated cells of marine sponges, resulting in reformation of functional sponges, is a calcium-dependent process mediated by large, proteoglycan-like molecules termed aggregation factors (AF). During aggregation, species-specific sorting of cells is often observed. We purified and characterized AFs from three different sponge species and investigated their role in species-specific aggregation using novel approaches. The calcium-dependent association between purified AFs is species-specific in most combinations, as was shown in overlay assays and bead-sorting assays with AFs immobilized onto colored beads. Species-specific interactions of living cells and AF-beads resulted in incorporation of only homospecific AF-beads into reforming cell aggregates. Sequences from peptides obtained from the AF core proteins could all be aligned to the sequence of one species, the Microciona prolifera AFp3 core protein. In contrast to this similarity, major species-specific differences were seen in carbohydrate composition and in the response of AFs to specific carbohydrate-recognizing antibodies. In summary, our data point to a prominent role for the calcium-dependent association of AFs in recognition processes during aggregation. As this association of AFs occurs via carbohydrate-carbohydrate interactions, we speculate that the specificity of those interactions may be fundamental to recognition mechanisms required for regeneration of individuals from dissociated cells and for rejection of foreign material by sponge individuals.
Collapse
Affiliation(s)
- J Jarchow
- Friedrich Miescher-Institute, Basel, Switzerland.
| | | |
Collapse
|
8
|
|
9
|
Abstract
Sponges are the lowest extant metazoan phylum and for about a century they have been used as a model system to study cell adhesion. There are three classes of molecules in the extracellular matrix of vertebrates: collagens, proteoglycans, and adhesive glycoproteins, all of them have been identified in sponges. Species-specific cell recognition in sponges is mediated by supramolecular proteoglycan-like complexes termed aggregation factors, still to be identified in higher animals. Polyvalent glycosaminoglycan interactions are involved in the species-specificity, representing one of the few known examples of a regulatory role for carbohydrates. Aggregation factors mediate cell adhesion via a bifunctional activity that combines a calcium-dependent self-interaction of aggregation factor molecules plus a calcium-independent heterophilic interaction with cell surface receptors. Important cases of cell adhesion are the phenomena involved in histocompatibility reactions. A long-standing prediction has been that the evolutionary ancestors of histocompatibility systems might be found among primitive cell-cell interaction molecules. A surprising characteristic of sponges, considering their low phylogenetic position, is that they possess an exquisitely sophisticated histocompatibility system. Any grafting between two different sponge individuals (allograft) is almost invariably incompatible in the many species investigated, exhibiting a variety of transitive qualitatively and quantitatively different responses, which can only be explained by the existence of a highly polymorphic gene system. Individual variability of protein and glycan components in the aggregation factor of the red beard sponge, Microciona prolifera, matches the elevated sponge alloincompatibility, suggesting an involvement of the cell adhesion system in sponge allogeneic reactions and, therefore, an evolutionary relationship between cell adhesion and histocompatibility systems.
Collapse
|
10
|
Blumbach B, Pancer Z, Diehl-Seifert B, Steffen R, Münkner J, Müller I, Müller WE. The putative sponge aggregation receptor. Isolation and characterization of a molecule composed of scavenger receptor cysteine-rich domains and short consensus repeats. J Cell Sci 1998; 111 ( Pt 17):2635-44. [PMID: 9701562 DOI: 10.1242/jcs.111.17.2635] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Porifera (sponges) are the oldest extant metazoan phylum. Dissociated sponge cells serve as a classic system to study processes of cell reaggregation. The reaggregation of dissociated cells is mediated by an extracellularly localized aggregation factor (AF), based on heterophilic interactions of the third order; the AF bridges two cells by ligating a cell-surface-bound aggregation receptor (AR). In the present study we report cloning, expression and immunohistochemical localization of a polypeptide from the marine sponge Geodia cydonium, which very likely represents the AR. The presumed AR gene gives rise to at least three forms of alternatively spliced transcripts of 6.5, 4.9 and 3.9 kb, as detected by northern blotting. Two cDNA clones corresponding to the shorter forms were already reported earlier; here we present an analysis of the largest. All three putative polypeptides feature scavenger receptor cysteine-rich (SRCR) domains. The largest form, SRCR-SCR-Car, is a cell-surface receptor of molecular mass 220 kDa, which is assumed to be the cell-adhesion receptor AR; the second form, SRCR-Re, is also a putative receptor of 166 kDa, while the third form, SRCR-Mo, is a soluble molecule of 129 kDa. The SRCR-SCR-Car molecule consists of fourteen SRCR domains, six short consensus repeats (SCRs), a C-terminal transmembrane domain and a cytoplasmic tail; its fourteenth SRCR domain features an Arg-Gly-Asp tripeptide. To obtain monoclonal antibodies, a 170-amino-acid-long polypeptide that is found in all three forms of the SRCR-containing proteins was expressed in E. coli. In a western blot of sponge cells lysate the monoclonal antibody raised against the recombinant polypeptide recognized two major immuno-reacting polypeptides (220 and 117 kDa) and two minor bands (36 and 32 kDa). The antibody was found to react with antigen(s) predominantly localized on the plasma membranes of cells, especially those of spherulous cells. In a functional assay Fab' fragments of the antibodies suppressed AF-mediated cell-cell reaggregation. Additionally, a recombinant SRCR-soluble fragment effectively inhibited AF-mediated cell-cell reaggregation. We conclude that the 220 kDa SRCR-containing protein of the sponge G. cydonium is very likely the AR.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Base Sequence
- Cell Aggregation/immunology
- Cell Communication/genetics
- Cloning, Molecular
- Consensus Sequence/genetics
- Membrane Proteins
- Molecular Sequence Data
- Polymerase Chain Reaction
- Porifera/physiology
- Protein Binding/genetics
- Receptors, Cell Surface/chemistry
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/isolation & purification
- Receptors, Immunologic/chemistry
- Receptors, Lipoprotein
- Receptors, Scavenger
- Recombinant Proteins/genetics
- Recombinant Proteins/isolation & purification
- Recombinant Proteins/pharmacology
- Repetitive Sequences, Amino Acid
- Repetitive Sequences, Nucleic Acid
- Scavenger Receptors, Class B
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
Collapse
Affiliation(s)
- B Blumbach
- Institut für Physiologische Chemie, Abteilung Angewandte Molekularbiologie, Universität, Duesbergweg 6, D-55099 Mainz, Germany
| | | | | | | | | | | | | |
Collapse
|
11
|
Fernàndez-Busquets X, Kammerer RA, Burger MM. A 35-kDa protein is the basic unit of the core from the 2 x 10(4)-kDa aggregation factor responsible for species-specific cell adhesion in the marine sponge Microciona prolifera. J Biol Chem 1996; 271:23558-65. [PMID: 8798565 DOI: 10.1074/jbc.271.38.23558] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Dissociated sponge cells quickly reaggregate in a species-specific manner, differentiate, and reconstruct tissue, providing a very handy system to investigate the molecular basis of more complex intercellular recognition processes. Species-specific cell adhesion in the marine sponge Microciona prolifera is mediated by a supramolecular complex with a Mr = 2 x 10(7), termed aggregation factor. Guanidinium hydrochloride/cesium chloride dissociative gradients and rhodamine B isothiocyanate staining indicated the presence of several proteins with different degrees of glycosylation. Hyaluronate has been found to be associated with the aggregation factor. Chemical deglycosylation revealed a main component accounting for nearly 90% of the total protein. The cDNA-deduced amino acid sequence predicts a 35-kDa protein (MAFp3), the first sponge aggregation factor core protein ever described. The open reading frame is uninterrupted upstream from the amino terminus of the mature protein, and the deduced amino acid sequence for this region has been found to contain a long stretch sharing homology with the Na+-Ca2+ exchanger protein. A putative hyaluronic acid binding domain and several putative N- and O-glycosylation signals are present in MAFp3, as well as eight cysteines, some of them involved in intermolecular disulfide bridges. Northern blot data suggest variable expression, and Southern blot analysis reveals the presence of other related gene sequences. According to the respective molecular masses, one aggregation factor molecule would contain about 300 MAFp3 units, suggesting that sponge cell adhesion might be based on the assembly of multiple small glycosylated protein subunits.
Collapse
|
12
|
|
13
|
Abstract
Cell-cell interactions play an important role in the development, maintenance, and pathogenesis of tissues. They are highly dynamic processes which include migration, recognition, signaling, adhesion, and finally attachment. Cells on their pathway to a final location have to pass and interact with their substratum formed of matrix and cell layers. Testing and recognition are important keys for the proper result of tissue formation. They can, however, also lead to diseases when they are misused in pathological situations, by microorganisms or malignant cells, for instance. Carbohydrates, which are the most prominent surface-exposed structures, must play an important role as recognition molecules in such processes. The rich variability of carbohydrate sequences which cell surfaces can present to lectins, adhesion molecules, and other ligands creates a refined pattern of potential attachment sites. The subtle control of the surface presentation density can provide variations in attachment strength. Not only the carbohydrate sequences but also the fact that carbohydrates can be branched while proteins cannot and that the oligosaccharide chains can be attached to the protein backbone in different densities and patterns will create yet more interaction possibilities. Maximal use of the combinatorial richness of carbohydrate molecules would be made when carbohydrate sequences could interact with other carbohydrate sequences. Such interactions have only very rarely been considered for biochemically and biologically relevant situations since they are difficult to measure. A few are known and will be summarized here with the hope that this wealth of possible chemical interactions may be considered more and more by surface cell biochemists when analyzing fine tuning in cellular interactions.
Collapse
Affiliation(s)
- D Spillmann
- Department of Medical Biochemistry, University of Turku, Finland
| | | |
Collapse
|
14
|
Lipke PN. Cell adhesion proteins in the nonvertebrate eukaryotes. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 1996; 17:119-57. [PMID: 8822803 DOI: 10.1007/978-3-642-80106-8_7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- P N Lipke
- Department of Biological Sciences, Hunter College of the City University of New York, New York 10021, USA
| |
Collapse
|
15
|
Varner JA. Cell adhesion in sponges: potentiation by a cell surface 68 kDa proteoglycan-binding protein. J Cell Sci 1995; 108 ( Pt 9):3119-26. [PMID: 8537451 DOI: 10.1242/jcs.108.9.3119] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Constitutive, stable intercellular adhesion is one of the distinguishing properties of metazoans, of which the sponges (Phylum Porifera) are the most primitive representatives. In sponges, intercellular adhesion is mediated by the large proteoglycan-like cell agglutinating molecule ‘aggregation factor’, which binds to cell surfaces via an oligosaccharide moiety. Previous studies indicated that this aggregation factor binds to two proteins associated with the surface of sponge cells. One of these, a 68 kDa peripheral membrane protein, was isolated by affinity chromatography on aggregation factor conjugated to Sepharose. This monomeric 68 kDa glycoprotein plays a key role in sponge cell adhesion since it potently inhibits the binding of aggregation factor to cell surfaces and completely prevents aggregation factor-mediated cell adhesion. The 68 kDa aggregation factor ligand binds with high affinity to both aggregation factor (KD = 2 × 10(−9) M) and cell surfaces (KD = 6 × 10(−8) M) providing evidence that it serves as an intramolecular bridge between the aggregation factor molecule and a cell surface receptor. Therefore, this early metazoan protein may represent one of the earliest extracellular matrix adhesion proteins to have arisen in the course of metazoan evolution.
Collapse
|
16
|
Chen JH, Bayne CJ. The roles of carbohydrates in aggregation and adhesion of hemocytes from the California mussel (Mytilus calif ornianus). ACTA ACUST UNITED AC 1994. [DOI: 10.1016/0300-9629(94)90317-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
17
|
Spillmann D, Hård K, Thomas-Oates J, Vliegenthart J, Misevic G, Burger M, Finne J. Characterization of a novel pyruvylated carbohydrate unit implicated in the cell aggregation of the marine sponge Microciona prolifera. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(19)38662-4] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
18
|
The species-specific cell-binding site of the aggregation factor from the sponge Microciona prolifera is a highly repetitive novel glycan containing glucuronic acid, fucose, and mannose. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(17)30541-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
19
|
Misevic GN, Burger MM. Involvement of a highly polyvalent glycan in the cell-binding of the aggregation factor from the marine sponge Microciona prolifera. J Cell Biochem 1990; 43:307-14. [PMID: 2118911 DOI: 10.1002/jcb.240430403] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A proteoglycan-like aggregation factor from the marine sponge Microciona prolifera (MAF) mediates cell-cell recognition via a cell-binding and a self-association domain. After repetitive and prolonged treatment of MAF with glycopeptide-N-glycosidase (PNGase) the specific binding of MAF to homotypic cells was decreased by 72%. Polyacrylamide gel electrophoresis and gel filtration analysis of such PNGase digests showed that: 1) the enzyme released a single glycan type of Mr = 6 X 10(3) (G-6) from MAF, 2) 1 mole of MAF contains at least 830 moles of N-linked chains of G-6 glycan. The correlation between the loss of the binding activity of MAF and the extent of the release of the repetitive G-6 polysaccharide strongly suggests its involvement in MAF-cell association via highly polyvalent interactions.
Collapse
Affiliation(s)
- G N Misevic
- Friedrich Miescher-Institut, Basel, Switzerland
| | | |
Collapse
|