1
|
5′ Untranslated mRNA Regions Allow Bypass of Host Cell Translation Inhibition by Legionella pneumophila. Infect Immun 2022; 90:e0017922. [DOI: 10.1128/iai.00179-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Legionella pneumophila
grows within membrane-bound vacuoles in alveolar macrophages during human disease. Pathogen manipulation of the host cell is driven by bacterial proteins translocated through a type IV secretion system (T4SS).
Collapse
|
2
|
Abstract
The stage at which ribosomes are recruited to messenger RNAs (mRNAs) is an elaborate and highly regulated phase of protein synthesis. Upon completion of this step, a ribosome is positioned at an appropriate initiation codon and primed to synthesize the encoded polypeptide product. In most circumstances, this step commits the ribosome to translate the mRNA. We summarize the knowledge regarding the initiation factors implicated in this activity as well as review different mechanisms by which this process is conducted.
Collapse
Affiliation(s)
- Jerry Pelletier
- Department of Biochemistry, McGill University, Montreal, Quebec H3G 1Y6, Canada; , .,Rosalind and Morris Goodman Cancer Research Center, McGill University, Montreal, Quebec H3A 1A3, Canada.,Department of Oncology, McGill University, Montreal, Quebec H4A 3T2, Canada
| | - Nahum Sonenberg
- Department of Biochemistry, McGill University, Montreal, Quebec H3G 1Y6, Canada; , .,Rosalind and Morris Goodman Cancer Research Center, McGill University, Montreal, Quebec H3A 1A3, Canada
| |
Collapse
|
3
|
Cencic R, Pelletier J. Hippuristanol - A potent steroid inhibitor of eukaryotic initiation factor 4A. ACTA ACUST UNITED AC 2016; 4:e1137381. [PMID: 27335721 DOI: 10.1080/21690731.2015.1137381] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 12/08/2015] [Accepted: 12/24/2015] [Indexed: 01/02/2023]
Abstract
Protein synthesis and its regulatory signaling pathways play essential roles in the initiation and maintenance of the cancer phenotype. Insight obtained over the last 3 decades on the mechanisms regulating translation in normal and transformed cells have revealed that perturbed control in cancer cells may offer an Achilles' heel for the development of novel anti-neoplastic agents. Several small molecule inhibitors have been identified and characterized that target translation initiation - more specifically, the rate-limiting step where ribosomes are recruited to mRNA templates. Among these, hippuristanol, a polyhydroxysteroid from the gorgonian Isis hippuris has been found to inhibit translation initiation by blocking the activity of eukaryotic initiation factor (eIF) 4A, an essential RNA helicase involved in this process. Herein, we highlight the biological properties of this compound, its potential development as an anti-cancer agent, and its use to validate eIF4A as an anti-neoplastic target.
Collapse
Affiliation(s)
- Regina Cencic
- Department of Biochemistry, McGill University , Montreal, Québec, Canada
| | - Jerry Pelletier
- Department of Biochemistry, McGill University, Montreal, Québec, Canada; The Rosalind and Morris Goodman Cancer Research Center, McGill University, Montreal, Québec, Canada; Department of Oncology, McGill University, Montreal, Québec, Canada
| |
Collapse
|
4
|
Pelletier J, Graff J, Ruggero D, Sonenberg N. Targeting the eIF4F translation initiation complex: a critical nexus for cancer development. Cancer Res 2015; 75:250-63. [PMID: 25593033 DOI: 10.1158/0008-5472.can-14-2789] [Citation(s) in RCA: 267] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Elevated protein synthesis is an important feature of many cancer cells and often arises as a consequence of increased signaling flux channeled to eukaryotic initiation factor 4F (eIF4F), the key regulator of the mRNA-ribosome recruitment phase of translation initiation. In many cellular and preclinical models of cancer, eIF4F deregulation results in changes in translational efficiency of specific mRNA classes. Importantly, many of these mRNAs code for proteins that potently regulate critical cellular processes, such as cell growth and proliferation, enhanced cell survival and cell migration that ultimately impinge on several hallmarks of cancer, including increased angiogenesis, deregulated growth control, enhanced cellular survival, epithelial-to-mesenchymal transition, invasion, and metastasis. By being positioned as the molecular nexus downstream of key oncogenic signaling pathways (e.g., Ras, PI3K/AKT/TOR, and MYC), eIF4F serves as a direct link between important steps in cancer development and translation initiation. Identification of mRNAs particularly responsive to elevated eIF4F activity that typifies tumorigenesis underscores the critical role of eIF4F in cancer and raises the exciting possibility of developing new-in-class small molecules targeting translation initiation as antineoplastic agents.
Collapse
Affiliation(s)
- Jerry Pelletier
- Department of Biochemistry, McGill University, Montreal, Québec, Canada. The Rosalind and Morris Goodman Cancer Research Center, McGill University, Montreal, Québec, Canada. Department of Oncology, McGill University, Montreal, Québec, Canada.
| | - Jeremy Graff
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana
| | - Davide Ruggero
- School of Medicine and Department of Urology, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California
| | - Nahum Sonenberg
- Department of Biochemistry, McGill University, Montreal, Québec, Canada. The Rosalind and Morris Goodman Cancer Research Center, McGill University, Montreal, Québec, Canada
| |
Collapse
|
5
|
Ludwig AL, Hershey JWB, Hagerman PJ. Initiation of translation of the FMR1 mRNA Occurs predominantly through 5'-end-dependent ribosomal scanning. J Mol Biol 2011; 407:21-34. [PMID: 21237174 DOI: 10.1016/j.jmb.2011.01.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2010] [Revised: 01/04/2011] [Accepted: 01/04/2011] [Indexed: 01/17/2023]
Abstract
The fragile X mental retardation 1 (FMR1) gene contains a CGG repeat within its 5' untranslated region (5'UTR) that, when expanded to 55-200 CGG repeats (premutation allele), can result in the late-onset neurodegenerative disorder, fragile X-associated tremor/ataxia syndrome. The CGG repeat is expected to form a highly stable secondary structure that is capable of inhibiting 5'-cap-dependent translation. Paradoxically, translation in vivo is only mildly impaired within the premutation range, suggesting that other modes of translation initiation may be operating. To address this issue, we translated in vitro a set of reporter mRNAs containing between 0 and 99 CGG repeats in either native (FMR1) or unrelated (heterologous) 5'UTR context. The 5'-cap dependence of translation was assessed by inserting a stable hairpin (HP) near the 5' end of the mRNAs. The results of the current studies indicate that translation initiation of the FMR1 mRNA occurs primarily by scanning, with little evidence of internal ribosome entry or shunting. Additionally, the efficiency of translation initiation depends on transcription start site selection, with the shorter 5'UTR (downstream transcription start site I) translating with greater efficiency compared to the longer mRNA (start site III) for all CGG-repeat elements studied. Lastly, an HP previously shown to block translation gave differing results depending on the 5'UTR context, in one case initiating translation from within the HP.
Collapse
Affiliation(s)
- Anna L Ludwig
- Department of Biochemistry and Molecular Medicine, University of California Davis School of Medicine, Davis, CA 95616, USA
| | | | | |
Collapse
|
6
|
Lindqvist L, Imataka H, Pelletier J. Cap-dependent eukaryotic initiation factor-mRNA interactions probed by cross-linking. RNA (NEW YORK, N.Y.) 2008; 14:960-969. [PMID: 18367715 PMCID: PMC2327359 DOI: 10.1261/rna.971208] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Accepted: 02/15/2008] [Indexed: 05/26/2023]
Abstract
Cap-dependent ribosome recruitment to eukaryotic mRNAs during translation initiation is stimulated by the eukaryotic initiation factor (eIF) 4F complex and eIF4B. eIF4F is a heterotrimeric complex composed of three subunits: eIF4E, a 7-methyl guanosine cap binding protein; eIF4A, a DEAD-box RNA helicase; and eIF4G. The interactions of eIF4E, eIF4A, and eIF4B with mRNA have previously been monitored by chemical- and UV-based cross-linking approaches aimed at characterizing the initial protein/mRNA interactions that lead to ribosome recruitment. These studies have led to a model whereby eIF4E interacts with the 7-methyl guanosine cap structure in an ATP-independent manner, followed by an ATP-dependent interaction of eIF4A and eIF4B. Herein, we apply a splint-ligation-mediated approach to generate 4-thiouridine-containing mRNA adjacent to a radiolabel group that we utilize to monitor cap-dependent cross-linking of proteins adjacent to, and downstream from, the cap structure. Using this approach, we demonstrate interactions between eIF4G, eIF4H, and eIF3 subunits with the mRNA during the cap recognition process.
Collapse
Affiliation(s)
- Lisa Lindqvist
- Department of Biochemistry, Faculty of Medicine, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | | | | |
Collapse
|
7
|
Koritzinsky M, Magagnin MG, van den Beucken T, Seigneuric R, Savelkouls K, Dostie J, Pyronnet S, Kaufman RJ, Weppler SA, Voncken JW, Lambin P, Koumenis C, Sonenberg N, Wouters BG. Gene expression during acute and prolonged hypoxia is regulated by distinct mechanisms of translational control. EMBO J 2006; 25:1114-25. [PMID: 16467844 PMCID: PMC1409715 DOI: 10.1038/sj.emboj.7600998] [Citation(s) in RCA: 273] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2005] [Accepted: 01/18/2006] [Indexed: 12/13/2022] Open
Abstract
Hypoxia has recently been shown to activate the endoplasmic reticulum kinase PERK, leading to phosphorylation of eIF2alpha and inhibition of mRNA translation initiation. Using a quantitative assay, we show that this inhibition exhibits a biphasic response mediated through two distinct pathways. The first occurs rapidly, reaching a maximum at 1-2 h and is due to phosphorylation of eIF2alpha. Continued hypoxic exposure activates a second, eIF2alpha-independent pathway that maintains repression of translation. This phase is characterized by disruption of eIF4F and sequestration of eIF4E by its inhibitor 4E-BP1 and transporter 4E-T. Quantitative RT-PCR analysis of polysomal RNA indicates that the translation efficiency of individual genes varies widely during hypoxia. Furthermore, the translation efficiency of individual genes is dynamic, changing dramatically during hypoxic exposure due to the initial phosphorylation and subsequent dephosphorylation of eIF2alpha. Together, our data indicate that acute and prolonged hypoxia regulates mRNA translation through distinct mechanisms, each with important contributions to hypoxic gene expression.
Collapse
Affiliation(s)
- Marianne Koritzinsky
- Department of Radiation Oncology (Maastro), GROW Research Institute, University of Maastricht, The Netherlands
| | - Michaël G Magagnin
- Department of Radiation Oncology (Maastro), GROW Research Institute, University of Maastricht, The Netherlands
| | - Twan van den Beucken
- Department of Radiation Oncology (Maastro), GROW Research Institute, University of Maastricht, The Netherlands
| | - Renaud Seigneuric
- Department of Radiation Oncology (Maastro), GROW Research Institute, University of Maastricht, The Netherlands
| | - Kim Savelkouls
- Department of Radiation Oncology (Maastro), GROW Research Institute, University of Maastricht, The Netherlands
| | - Josée Dostie
- Department of Biochemistry, McGill Cancer Centre, McGill University, Canada
| | - Stéphane Pyronnet
- Department of Biochemistry, McGill Cancer Centre, McGill University, Canada
| | - Randal J Kaufman
- Howard Hughes Medical Institute, University of Michigan Medical Center, USA
| | - Sherry A Weppler
- Department of Radiation Oncology (Maastro), GROW Research Institute, University of Maastricht, The Netherlands
| | - Jan Willem Voncken
- Department of Molecular Genetics, University of Maastricht, The Netherlands
| | - Philippe Lambin
- Department of Radiation Oncology (Maastro), GROW Research Institute, University of Maastricht, The Netherlands
| | - Constantinos Koumenis
- Departments of Radiation Oncology and Cancer Biology, Wake Forest University School of Medicine, USA
| | - Nahum Sonenberg
- Department of Biochemistry, McGill Cancer Centre, McGill University, Canada
| | - Bradly G Wouters
- Department of Radiation Oncology (Maastro), GROW Research Institute, University of Maastricht, The Netherlands
- Department of Radiation Oncology (Maastro), GROW Research Institute, University of Maastricht, UNS50/23 Postbus 616, 6200 MD Maastricht, The Netherlands. Tel.: +31 43 388 2912; Fax: +31 43 388 4540; E-mail:
| |
Collapse
|
8
|
Holz MK, Ballif BA, Gygi SP, Blenis J. mTOR and S6K1 mediate assembly of the translation preinitiation complex through dynamic protein interchange and ordered phosphorylation events. Cell 2006; 123:569-80. [PMID: 16286006 DOI: 10.1016/j.cell.2005.10.024] [Citation(s) in RCA: 877] [Impact Index Per Article: 46.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2005] [Revised: 09/05/2005] [Accepted: 10/31/2005] [Indexed: 11/29/2022]
Abstract
In response to nutrients, energy sufficiency, hormones, and mitogenic agents, S6K1 phosphorylates several targets linked to translation. However, the molecular mechanisms whereby S6K1 is activated, encounters substrate, and contributes to translation initiation are poorly understood. We show that mTOR and S6K1 maneuver on and off the eukaryotic initiation factor 3 (eIF3) translation initiation complex in a signal-dependent, choreographed fashion. When inactive, S6K1 associates with the eIF3 complex, while the S6K1 activator mTOR/raptor does not. Cell stimulation promotes mTOR/raptor binding to the eIF3 complex and phosphorylation of S6K1 at its hydrophobic motif. Phosphorylation results in S6K1 dissociation, activation, and subsequent phosphorylation of its translational targets, including eIF4B, which is then recruited into the complex in a phosphorylation-dependent manner. Thus, the eIF3 preinitiation complex acts as a scaffold to coordinate a dynamic sequence of events in response to stimuli that promote efficient protein synthesis.
Collapse
Affiliation(s)
- Marina K Holz
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
9
|
von der Haar T, Gross JD, Wagner G, McCarthy JEG. The mRNA cap-binding protein eIF4E in post-transcriptional gene expression. Nat Struct Mol Biol 2004; 11:503-11. [PMID: 15164008 DOI: 10.1038/nsmb779] [Citation(s) in RCA: 177] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2004] [Accepted: 04/22/2004] [Indexed: 11/09/2022]
Abstract
Eukaryotic initiation factor 4E (eIF4E) has central roles in the control of several aspects of post-transcriptional gene expression and thereby affects developmental processes. It is also implicated in human diseases. This review explores the relationship between structural, biochemical and biophysical aspects of eIF4E and its function in vivo, including both long-established roles in translation and newly emerging ones in nuclear export and mRNA decay pathways.
Collapse
Affiliation(s)
- Tobias von der Haar
- Post-transcriptional Control Group, Department of Biomolecular Sciences, University of Manchester Institute of Science and Technology, PO Box 88, Manchester M60 1QD, UK.
| | | | | | | |
Collapse
|
10
|
Mitzel DN, Weisend CM, White MW, Hardy ME. Translational regulation of rotavirus gene expression. J Gen Virol 2003; 84:383-391. [PMID: 12560571 DOI: 10.1099/vir.0.18558-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Rotavirus mRNAs are transcribed from 11 genomic dsRNA segments within a subviral particle. The mRNAs are extruded into the cytoplasm where they serve as mRNA for protein synthesis and as templates for packaging and replication into dsRNA. The molecular steps in the replication pathway that regulate the levels of viral gene expression are not well defined. We have investigated potential mechanisms of regulation of rotavirus gene expression by functional evaluation of two differentially expressed viral mRNAs. NSP1 (gene 5) and VP6 (gene 6) are expressed early in infection, and VP6 is expressed in excess over NSP1. We formulated the hypothesis that the amounts of NSP1 and VP6 were regulated by the translational efficiencies of the respective mRNAs. We measured the levels of gene 5 and gene 6 mRNA and showed that they were not significantly different, and protein analysis indicated no difference in stability of NSP1 compared with VP6. Polyribosome analysis showed that the majority of gene 6 mRNA was present on large polysomes. In contrast, sedimentation of more than half of the gene 5 mRNA was subpolysomal. The change in distribution of gene 5 mRNA in polyribosome gradients in response to treatment with low concentrations of cycloheximide suggested that gene 5 is a poor translation initiation template compared with gene 6 mRNA. These data define a regulatory mechanism for the difference in amounts of VP6 and NSP1 and provide evidence for post-transcriptional control of rotavirus gene expression mediated by the translational efficiency of individual viral mRNAs.
Collapse
Affiliation(s)
- Dana N Mitzel
- Veterinary Molecular Biology, PO Box 173610, Montana State University, Bozeman, MT 59717-3610, USA
| | - Carla M Weisend
- Veterinary Molecular Biology, PO Box 173610, Montana State University, Bozeman, MT 59717-3610, USA
| | - Michael W White
- Veterinary Molecular Biology, PO Box 173610, Montana State University, Bozeman, MT 59717-3610, USA
| | - Michele E Hardy
- Veterinary Molecular Biology, PO Box 173610, Montana State University, Bozeman, MT 59717-3610, USA
| |
Collapse
|
11
|
Abstract
The development of functional genomic resources is essential to understand and utilize information generated from genome sequencing projects. Central to the development of this technology is the creation of high-quality cDNA resources and improved technologies for analyzing coding and noncoding mRNA sequences. The isolation and mapping of cDNAs is an entrée to characterizing the information that is of significant biological relevance in the genome of an organism. However, a bottleneck is often encountered when attempting to bring to full-length (or at least full-coding) a number of incomplete cDNAs in parallel, since this involves the nonsystematic, time consuming, and labor-intensive iterative screening of a number of cDNA libraries of variable quality and/or directed strategies to process individual clones (e.g., 5' rapid amplification of cDNA ends). Here, we review the current state of the art in cDNA library generation, as well as present an analysis of the different steps involved in cDNA library generation.
Collapse
Affiliation(s)
- M Das
- Department of Biochemistry, McGill Cancer Center, McGill University, Montreal, Quebec, Canada H3G 1Y6
| | | | | | | | | |
Collapse
|
12
|
Gavin AC, Schorderet-Slatkine S. Ribosomal S6 kinase p90rsk and mRNA cap-binding protein eIF4E phosphorylations correlate with MAP kinase activation during meiotic reinitiation of mouse oocytes. Mol Reprod Dev 1997; 46:383-91. [PMID: 9041142 DOI: 10.1002/(sici)1098-2795(199703)46:3<383::aid-mrd18>3.0.co;2-#] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
During meiotic reinitiation of the mouse oocyte, entry into M-phase is regulated by changes of protein phosphorylation and by the stimulation of selective mRNA translation following the nuclear membrane dissolution. Our results reveal that M-phase kinases (MAP kinase and histone H1 kinase) are being activated together with S6 kinase and with the phosphorylation of eIF4E, the cap-binding subunit of the initiation factor eIF-4F. In order to test which signaling pathway(s) is(are) involved, okadaic acid and cycloheximide have been used as tools for differentially modulating MAP and histone H1 kinase activities. A role for MAP kinases in the phosphorylation of eIF4E and the activation of S6 kinase is suggested. The possible implication of p90rsk and/or of p70s6k in the overall increase in S6 kinase activity has been examined. p70s6k does not appear to be involved since phosphorylated forms are found in prophase and maturing oocytes. In contrast, p90rsk is phosphorylated and activated in maturing oocytes. p90rSk phosphorylation correlates with the activation of S6 kinase. These results suggest that the overall increase of S6 kinase activity is mostly due to p90rsk activation. The roles of eIF4E phosphorylation and S6 kinase activation in the physiological induction of M-phase and in the okadaic acid-induced premature mitotic events are discussed.
Collapse
Affiliation(s)
- A C Gavin
- Clinique de Stérilité et d'Endocrinologie Gynécologique, Department of Obstetrics and Gynaecology, Hôpital Cantonal Universitaire, Geneva,Switzerland
| | | |
Collapse
|
13
|
HILLE MERRILLB, XU ZHE, DHOLAKIA JAYDEVN. The signal cascade for the activation of protein synthesis during the maturation of starfish oocytes: a role for protein kinase C and homologies with maturation inXenopusand mammatian oocytes. INVERTEBR REPROD DEV 1996. [DOI: 10.1080/07924259.1996.9672534] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
14
|
Song HJ, Gallie DR, Duncan RF. m7GpppG Cap Dependence for Efficient Translation of Drosophila 70-kDa Heat-Shock-Protein (Hsp70) mRNA. ACTA ACUST UNITED AC 1995. [DOI: 10.1111/j.1432-1033.1995.tb20873.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
15
|
Klein PS, Melton DA. Induction of mesoderm in Xenopus laevis embryos by translation initiation factor 4E. Science 1994; 265:803-6. [PMID: 8047887 DOI: 10.1126/science.8047887] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The microinjection of messenger RNA encoding the eukaryotic translation initiation factor 4E (eIF-4E) into early embryos of Xenopus laevis leads to the induction of mesoderm in ectodermal explants. This induction occurs without a stimulation of overall protein synthesis and is blocked by the co-expression of a dominant negative mutant of the proto-oncogene ras or a truncated activin type II receptor. Although other translation factors have been studied in vertebrate and invertebrate embryos, none have been shown to play a direct role in development. The results here suggest a mechanism for relaying and amplifying signals for mesoderm induction.
Collapse
Affiliation(s)
- P S Klein
- Department of Biochemistry and Molecular Biology, Harvard University, Cambridge, MA 02138
| | | |
Collapse
|
16
|
Xu Z, Dholakia JN, Hille MB. Maturation hormone induced an increase in the translational activity of starfish oocytes coincident with the phosphorylation of the mRNA cap binding protein, eIF-4E, and the activation of several kinases. DEVELOPMENTAL GENETICS 1993; 14:424-39. [PMID: 8111971 DOI: 10.1002/dvg.1020140604] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The stimulation of translation in starfish oocytes by the maturation hormone, 1-methyladenine (1-MA), requires the activation or mobilization of both initiation factors and mRNAs [Xu and Hille, Cell Regul. 1:1057, 1990]. We identify here the translational initiation complex, eIF-4F, and the guanine nucleotide exchange factor for eIF-2, eIF-2B, as the rate controlling components of protein synthesis in immature oocytes of the starfish, Pisaster orchraceus. Increased phosphorylation of eIF-4E, the cap binding subunit of the eIF-4F complex, is coincident with the initial increase in translational activity during maturation of these oocytes. Significantly, protein kinase C activity increased during oocyte maturation in parallel with the increase in eIF-4E phosphorylation and protein synthesis. An increase in the activities of cdc2 kinase and mitogen-activated myelin basic protein kinase (MBP kinase) similarly coincide with the increase in eIF-4E phosphorylation. However, neither cdc2 kinase nor MBP kinase phosphorylates eIF-4E in vitro. Casein kinase II activity does not change during oocyte maturation, and therefore, cannot be responsible for the activation of translation. Treatment of oocytes with phorbol 12-myristate 13-acetate, an activator of protein kinase C, for 30 min prior to the addition of 1-MA resulted in the inhibition of 1-MA-induced phosphorylation of eIF-4E, translational activation, and germinal vesicle breakdown. Therefore, protein kinase C may phosphorylate eIF-4E, after very early events of maturation. Another possibility is that eIF-4E is phosphorylated by an unknown kinase that is activated by the cascade of reactions stimulated by 1-MA. In conclusion, our results suggest a role for the phosphorylation of eIF-4E in the activation of translation during maturation, similar to translational regulation during the stimulation of growth in mammalian cells.
Collapse
Affiliation(s)
- Z Xu
- Department of Zoology, University of Washington, Seattle 98195
| | | | | |
Collapse
|
17
|
Berben-Bloemheuvel G, Kasperaitis MA, van Heugten H, Thomas AA, van Steeg H, Voorma HO. Interaction of initiation factors with the cap structure of chimaeric mRNA containing the 5'-untranslated regions of Semliki Forest virus RNA is related to translational efficiency. EUROPEAN JOURNAL OF BIOCHEMISTRY 1992; 208:581-7. [PMID: 1396664 DOI: 10.1111/j.1432-1033.1992.tb17222.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Chimaeric chloramphenicol acetyltransferase (CAT) mRNA, containing the leader sequences of genomic 42S RNA and subgenomic 26S RNA of Semliki Forest virus (SFV) were synthesized by in-vitro transcription. These transcripts were translated with different efficiencies, as the authentic mRNA in SFV-infected cells. Therefore, they can be used as model mRNA species to study the mechanism underlying SFV-directed shut off of host protein synthesis. The interaction of translation initiation factors with the 5' cap structure was studied. Transcripts prepared in vitro using T7 RNA polymerase were capped and methylated posttranscriptionally with [32P]-GTP and S-adenosyl-L-methionine to yield cap-labelled mRNA species. Irradiation with ultraviolet light of 26S CAT and 42S CAT transcripts, together with crude rabbit reticulocyte initiation factors, resulted in the cap-specific cross-linking of eukaryotic initiation factors (eIF) eIF-4E and eIF-4B. The relative binding efficiency of these two factors to the cap structure of the various transcripts was, however, markedly different; the cap structure present in 26S CAT mRNA interacted efficiently with cap-binding proteins, whereas the cap structure of 42S CAT mRNA hardly bound to these proteins. Comparable results were obtained under competitive conditions. Data are presented that the secondary structure close to the 5' cap structure determines the efficiency of recognition of the mRNA by these initiation factors. Using a chemical cross-linking assay, it was demonstrated that eIF-4F, and also eIF-4E, differentially interacted with the cap structure of the various transcripts. The data are discussed with respect to the possible mechanisms involved in SFV-induced shut off of host cell protein synthesis.
Collapse
|
18
|
van Heugten HA, Thomas AA, Voorma HO. Interaction of protein synthesis initiation factors with the mRNA cap structure. Biochimie 1992; 74:463-75. [PMID: 1637872 DOI: 10.1016/0300-9084(92)90087-u] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The mechanism of mRNA recognition by proteins interacting with the mRNA cap structure was investigated by photochemical cross-linking of proteins with 32P-labelled reoviral RNAs. Using ribosomal washes as a source of eukaryotic protein synthesis initiation factors, we identified the well-known cap binding proteins eIF-4B and -4E, but eIF-2 and eIF-3 as well. The interplay of purified eIF-4A, -4B, and -4F was studied in relation to ATP dependence and cap analogue sensitivity of cap binding. Next to their well-known roles in the initiation process, eIF-2 and eIF-3 also cross-linked to the 5' cap. eIF-2 stimulated eIF-4B and -4E cross-linking, an observation that has been previously described more extensively. The interaction of eIF-2 with the 5' end of mRNA was extremely sensitive to K(+)-ions and was resistant to a high concentration of Mg(2+)-ions; this influence of mono- and divalent ions was in contrast with the cross-linking of eIF-4B and -4E. Optimal interaction of these factors was obtained at moderate K+ concentration and low Mg(2+)-ion concentrations. eIF-2 cross-linking was sensitive to high protein to mRNA ratios indicating a weak affinity as compared to eIF-4E and -4B. The interaction of eIF-3 with the cap of mRNA is also weak as it was counteracted by all other cap binding proteins, leading to an inability to detect the cross-linking of this protein in crude eIF preparations. Time kinetics of formation of complexes suggested eIF-2 to be one of the first factors to interact with mRNA. Preformed RNA-protein complexes were dissociated after cap analogue addition, suggesting reversible interactions between RNA and proteins.
Collapse
Affiliation(s)
- H A van Heugten
- Department of Molecular Cell Biology, University of Utrecht, The Netherlands
| | | | | |
Collapse
|
19
|
Rinker-Schaeffer C, Austin V, Zimmer S, Rhoads R. Ras transformation of cloned rat embryo fibroblasts results in increased rates of protein synthesis and phosphorylation of eukaryotic initiation factor 4E. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)50068-0] [Citation(s) in RCA: 64] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
20
|
Carberry SE, Friedland DE, Rhoads RE, Goss DJ. Binding of protein synthesis initiation factor 4E to oligoribonucleotides: effects of cap accessibility and secondary structure. Biochemistry 1992; 31:1427-32. [PMID: 1737000 DOI: 10.1021/bi00120a020] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The binding of rabbit globin mRNA to the 25-kDa cap binding protein eIF-4E from human erythrocytes was found to be 5.3-fold stronger than the binding of the cap analogue m7GpppG to eIF-4E [Gross et al. (1990) Biochemistry 29, 5008-5012]. In order to investigate whether this effect is due to the longer sequence of nucleotides in globin mRNA or to other features such as cap accessibility or secondary structure, oligoribonucleotide analogues of rabbit alpha-globin mRNA were synthesized by T7 RNA polymerase from a synthetic oligodeoxynucleotide template in the presence of m7GpppG; these oligoribonucleotide analogues possess varying degrees of cap accessibility and secondary structure. Equilibrium association constants for the interaction of these oligoribonucleotides and purified human erythrocyte eIF-4E were obtained from direct fluorescence titration experiments. The data indicate that while the presence of the m7G cap is required for efficient recognition by eIF-4E, the cap need not be completely sterically accessible, since other structural features within the mRNA also influence binding.
Collapse
Affiliation(s)
- S E Carberry
- Department of Chemistry, Hunter College of the City University of New York 10021-5024
| | | | | | | |
Collapse
|
21
|
Zapata J, Maroto F, Sierra J. Inactivation of mRNA cap-binding protein complex in Drosophila melanogaster embryos under heat shock. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)98508-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
22
|
Marino MW, Feld LJ, Jaffe EA, Pfeffer LM, Han HM, Donner DB. Phosphorylation of the proto-oncogene product eukaryotic initiation factor 4E is a common cellular response to tumor necrosis factor. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)49896-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
23
|
Tahara SM, Dietlin TA, Dever TE, Merrick WC, Worrilow LM. Effect of eukaryotic initiation factor 4F on AUG selection in a bicistronic mRNA. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(19)67836-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
24
|
Lamphear BJ, Panniers R. Cap binding protein complex that restores protein synthesis in heat-shocked Ehrlich cell lysates contains highly phosphorylated eIF-4E. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(19)39358-5] [Citation(s) in RCA: 90] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
25
|
Kaspar RL, Rychlik W, White MW, Rhoads RE, Morris DR. Simultaneous cytoplasmic redistribution of ribosomal protein L32 mRNA and phosphorylation of eukaryotic initiation factor 4E after mitogenic stimulation of Swiss 3T3 cells. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(19)39637-1] [Citation(s) in RCA: 89] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
26
|
Duncan RF. Protein synthesis initiation factor modifications during viral infections: implications for translational control. Electrophoresis 1990; 11:219-27. [PMID: 2188834 DOI: 10.1002/elps.1150110305] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Infection of tissue culture cells with certain viruses results in the shutoff of host cell protein synthesis. We have examined virally infected cell lysates using two-dimensional gel electrophoresis and immunoblotting to ascertain whether initiation factor protein modifications are correlated with translational repression. Moderate increases in eukaryotic initiation factor (eIF)-2 alpha phosphorylation are detected in reovirus- and adenovirus-infected cells, as reported previously (Samuel et al., 1984; O'Malley et al., 1989). Neither vesicular stomatitis virus, vaccinia virus, frog virus III, rhinovirus, nor encephalomyocarditis virus caused significantly increased 2 alpha phosphorylation. There were no reproducible, significant changes in eIF-4A, eIF-4B, or eIF-2 beta in cells infected by any of these viruses. The cleavage of eIF-4F subunit p220, such as has been previously demonstrated to occur in poliovirus (Etchison et al., 1982) and rhinovirus (Etchison and Fout, 1985), was not detected in any of the other virus infections analyzed.
Collapse
Affiliation(s)
- R F Duncan
- School of Pharmacy, University of Southern California, Los Angeles 90033
| |
Collapse
|
27
|
Lawson TG, Lee KA, Maimone MM, Abramson RD, Dever TE, Merrick WC, Thach RE. Dissociation of double-stranded polynucleotide helical structures by eukaryotic initiation factors, as revealed by a novel assay. Biochemistry 1989; 28:4729-34. [PMID: 2548591 DOI: 10.1021/bi00437a033] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A new technique has been applied to the study of the RNA secondary structure unwinding activity of the eukaryotic initiation factors (eIFs) 4F, 4A, and 4B. Secondary structures were generated at the 5' ends of reovirus and globin mRNA molecules by hybridization with 32P-labeled cDNA molecules 15 nucleotide residues long. The dissociation of the labeled cDNAs from the mRNAs was assayed by a gel filtration chromatography procedure which separates the free cDNAs from mRNAs and mRNA/cDNA hybrids. When the three factors were tested alone, only eIF-4F stimulated dissociation of hybrids. The combination of eIF-4A plus eIF-4B also exhibited a strong hybrid dissociating activity, which was markedly temperature dependent. Under optimum conditions, up to 90% of the hybrid structures are disrupted in 60 min. These results demonstrate for the first time that stable double-stranded regions can be melted and dissociated by eIFs. They also characterize more precisely the first step in the structure unwinding reaction.
Collapse
Affiliation(s)
- T G Lawson
- Department of Biology, Washington University, St. Louis, Missouri 63130
| | | | | | | | | | | | | |
Collapse
|
28
|
Roner MR, Gaillard RK, Joklik WK. Control of reovirus messenger RNA translation efficiency by the regions upstream of initiation codons. Virology 1989; 168:292-301. [PMID: 2916327 DOI: 10.1016/0042-6822(89)90269-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The 10 species of reovirus messenger RNA are translated in vivo with efficiencies/frequencies that differ by as much as 100-fold. The s1 mRNA, which is translated 10 times less efficiently than the s4 mRNA but 10 times more efficiently than the/1 and m1 mRNAs, has a unique BamH1 cleavage site located immediately downstream of its initiation codon. Because the reovirus mRNAs have been cloned, this provides the opportunity for placing modified and altered sequences upstream of its coding sequence. The translation efficiencies of the variant mRNAs, transcribed via the SP6 in vitro transcription system, can then be measured in the rabbit reticulocyte lysate in vitro translation system. Using this system it was found that replacing the 5'-upstream sequence of the s1 mRNA with that of the s4 mRNA increases its in vitro translation efficiency by 4-fold; that the trinucleotide immediately upstream of the s1 initiation codon renders it very weak, and that it is only slightly superior to the weakest Kozak consensus sequence; that the nature of the nucleotides further upstream than position -3 can profoundly affect translation efficiency; that the nature of this effect is in turn markedly modified by the nature of nucleotides in positions -1 to -3; and that there is a minimum optimal 5'-upstream sequence length of about 14 nucleotides. We also investigated the effect of secondary structure involvement on the ability of 5'-upstream sequences to promote translation. Two effects were noted. First, being part of moderately stable stem loops (delta G, -18 kcal/mol) decreased translation efficiency about 3-fold; second, mRNA in which only three 5'-terminal nucleotides were unpaired were translated five times less efficiently than mRNA in which six nucleotides were unpaired. Accessibility of the 5'-cap as well as secondary structure of the 5'-upstream sequences are therefore factors that affect translation efficiency. Finally, we showed that the m1 mRNA, which is transcribed very poorly in vivo, is translated very efficiently in vitro; and that its 5'-upstream sequence is as effective in increasing protein sigma 1 formation as that of s4 mRNA. Since both m1 mRNA and protein mu 2 are stable in infected cells, the reason why m1 mRNA is translated so inefficiently in vivo therefore remains unexplained.
Collapse
Affiliation(s)
- M R Roner
- Department of Microbiology and Immunology, Duke University Medical Center, Durham, North Carolina 27710
| | | | | |
Collapse
|
29
|
Edery I, Petryshyn R, Sonenberg N. Activation of double-stranded RNA-dependent kinase (dsl) by the TAR region of HIV-1 mRNA: a novel translational control mechanism. Cell 1989; 56:303-12. [PMID: 2536299 DOI: 10.1016/0092-8674(89)90904-5] [Citation(s) in RCA: 181] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
All mRNAs of human immunodeficiency virus 1 (HIV-1) contain in their 5' untranslated region a sequence termed TAR that responds to trans-activation by the tat (trans-activating) protein. This RNA sequence assumes a stable secondary structure, and its cap structure is relatively inaccessible. Here we report that these structural properties of the TAR sequence underlie the ability of TAR to inhibit in trans the translation of other mRNAs. This mechanism of translation inhibition involves the activation of the double-stranded RNA-dependent kinase (dsl), which in turn phosphorylates the protein synthesis initiation factor 2 (eIF-2). Mutations in the TAR region that diminish the stability of the secondary structure cause a significant reduction in the trans-inhibition. A similar reduction in the dsl activation occurs when TAR is placed further downstream of the cap structure. This is a clear demonstration of a specific naturally occurring mRNA sequence that can activate dsl. We suggest a novel translational regulatory mechanism that interdigitates the activities of eIF-2 and eIF-4F.
Collapse
Affiliation(s)
- I Edery
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | | | | |
Collapse
|
30
|
Abstract
This chapter discusses some observations concerning the natural occurrence and structural organization of polycistronic animal virus mRNAs, and the mechanisms by which they may be translated to yield two or more unique polypeptide products. In most polycistronic viral mRNAs, initiation of translation of both the 5’-proximal, upstream cistron and the internal, downstream cistron(s) likewise occurs at an AUG codon. Animal viruses encoding polycistronic mRNAs in which translation-initiation occurs alternatively at one or more AUG initiation sites, include members of several virus families that utilize a variety of different replication strategies as parts of their life cycles. They include: 1. viruses with DNA genomes and viruses with RNA genomes; 2. viruses with circular genomes and viruses with linear genomes; 3. viruses whose genomes are constituted by a single piece of nucleic acid, as well as viruses with segmented genomes; and 4. viruses that utilize the cell nucleus as the site for mRNA biogenesis, as well as viruses whose mRNA is synthesized in the cytoplasm. Furthermore, many different biochemical mechanisms may exist in animal cells to permit the expression of functionally polycistronic viral mRNAs.
Collapse
|