1
|
Puzakova LV, Puzakov MV. Tissue Specificity of the AqE Gene Activity in the Yellow Croaker Larimichthys crocea. RUSS J GENET+ 2022. [DOI: 10.1134/s1022795422050076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
2
|
Xue C, Gu X, Bao Z, Su Y, Lu J, Li L. The Mechanism Underlying the ncRNA Dysregulation Pattern in Hepatocellular Carcinoma and Its Tumor Microenvironment. Front Immunol 2022; 13:847728. [PMID: 35281015 PMCID: PMC8904560 DOI: 10.3389/fimmu.2022.847728] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 02/04/2022] [Indexed: 12/16/2022] Open
Abstract
HCC is one of the most common malignant tumors and has an extremely poor prognosis. Accumulating studies have shown that noncoding RNA (ncRNA) plays an important role in hepatocellular carcinoma (HCC) development. However, the details of the related mechanisms remain unclear. The heterogeneity of the tumor microenvironment (TME) calls for ample research with deep molecular characterization, with the hope of developing novel biomarkers to improve prognosis, diagnosis and treatment. ncRNAs, particularly microRNAs (miRNAs), long noncoding RNAs (lncRNAs), and circular RNAs (circRNAs), have been found to be correlated with HCC neogenesis and progression. In this review, we summarized the aberrant epigenetic and genetic alterations caused by dysregulated ncRNAs and the functional mechanism of classical ncRNAs in the regulation of gene expression. In addition, we focused on the role of ncRNAs in the TME in the regulation of tumor cell proliferation, invasion, migration, immune cell infiltration and functional activation. This may provide a foundation for the development of promising potential prognostic/predictive biomarkers and novel therapies for HCC patients.
Collapse
Affiliation(s)
- Chen Xue
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Xinyu Gu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Zhengyi Bao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yuanshuai Su
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Juan Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
3
|
Mayer J, Denger K, Hollemeyer K, Schleheck D, Cook AM. (R)-Cysteate-nitrogen assimilation by Cupriavidus necator H16 with excretion of 3-sulfolactate: a patchwork pathway. Arch Microbiol 2012; 194:949-57. [PMID: 22797525 DOI: 10.1007/s00203-012-0825-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Revised: 05/07/2012] [Accepted: 06/06/2012] [Indexed: 11/27/2022]
Abstract
Cupriavidus necator H16 grew exponentially with (R)-cysteate, a structural analogue of aspartate, as sole source of nitrogen in succinate-salts medium. Utilization of cysteate was quantitative and concomitant with growth and with the excretion of the deaminated product (R)-sulfolactate, which was identified thoroughly. The deaminative pathway started with transport of (R)-cysteate into the cell, which we attributed to an aspartate transporter. Transamination to sulfopyruvate involved an aspartate/(R)-cysteate:2-oxoglutarate aminotransferase (Aoa/Coa) and regeneration of the amino group acceptor by NADP⁺-coupled glutamate dehydrogenase. Reduction of sulfopyruvate to (R)-sulfolactate was catalyzed by a (S)-malate/(R)-sulfolactate dehydrogenase (Mdh/Sdh). Excretion of the sulfolactate could be attributed to the sulfite/organosulfonate exporter TauE, which was co-encoded and co-expressed, with sulfoacetaldehyde acetyltransferase (Xsc), though Xsc was irrelevant to the current pathway. The metabolic enzymes could be assayed biochemically. Aoa/Coa and Mdh/Sdh were highly enriched by protein separation, partly characterized, and the relevant locus-tags identified by peptide-mass fingerprinting. Finally, RT-PCR was used to confirm the transcription of all appropriate genes. We thus demonstrated that Cupriavidus necator H16 uses a patchwork pathway by recruitment of 'housekeeping' genes and sulfoacetaldehyde-degradative genes to scavenge for (R)-cysteate-nitrogen.
Collapse
Affiliation(s)
- Jutta Mayer
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | | | | | | | | |
Collapse
|
4
|
Mayer J, Huhn T, Habeck M, Denger K, Hollemeyer K, Cook AM. 2,3-Dihydroxypropane-1-sulfonate degraded by Cupriavidus pinatubonensis JMP134: purification of dihydroxypropanesulfonate 3-dehydrogenase. MICROBIOLOGY-SGM 2010; 156:1556-1564. [PMID: 20150239 DOI: 10.1099/mic.0.037580-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
2,3-Dihydroxypropane-1-sulfonate (DHPS) is a widespread intermediate in plant and algal transformations of sulfoquinovose (SQ) from the plant sulfolipid sulfoquinovosyl diacylglycerol. Further, DHPS is recovered quantitatively during bacterial degradation of SQ by Klebsiella sp. strain ABR11. DHPS is also a putative precursor of sulfolactate in e.g. Ruegeria pomeroyi DSS-3. A bioinformatic approach indicated that some 28 organisms with sequenced genomes might degrade DHPS inducibly via sulfolactate, with three different desulfonative enzymes involved in its degradation in different organisms. The hypothesis for Cupriavidus pinatubonensis JMP134 (formerly Ralstonia eutropha) involved a seven-gene cluster (Reut_C6093-C6087) comprising a LacI-type transcriptional regulator, HpsR, a major facilitator superfamily uptake system, HpsU, three NAD(P)(+)-coupled DHPS dehydrogenases, HpsNOP, and (R)-sulfolactate sulfo-lyase (SuyAB) [EC 4.4.1.24]. HpsOP effected a DHPS-racemase activity, and HpsN oxidized (R)-DHPS to (R)-sulfolactate. The hypothesis for Roseovarius nubinhibens ISM was similar, but involved a tripartite ATP-independent transport system for DHPS, HpsKLM, and two different desulfonative enzymes, (S)-cysteate sulfo-lyase [EC 4.4.1.25] and sulfoacetaldehyde acetyltransferase (Xsc) [EC 2.3.3.15]. Representative organisms were found to grow with DHPS and release sulfate. C. pinatubonensis JMP134 was found to express at least one NAD(P)(+)-coupled DHPS dehydrogenase inducibly, and three different peaks of activity were separated by anion-exchange chromatography. Protein bands (SDS-PAGE) were subjected to peptide-mass fingerprinting, which identified the corresponding genes (hpsNOP). Purified HpsN converted DHPS to sulfolactate. Reverse-transcription PCR confirmed that hpsNOUP were transcribed inducibly in strain JMP134, and that hpsKLM and hpsNOP were transcribed in strain ISM. DHPS degradation is widespread and diverse, implying that DHPS is common in marine and terrestrial environments.
Collapse
Affiliation(s)
- Jutta Mayer
- Department of Biology, The University, D-78457 Konstanz, Germany
| | - Thomas Huhn
- Department of Chemistry, The University, D-78457 Konstanz, Germany
| | - Michael Habeck
- Department of Biology, The University, D-78457 Konstanz, Germany
| | - Karin Denger
- Department of Biology, The University, D-78457 Konstanz, Germany
| | - Klaus Hollemeyer
- Institute of Biochemical Engineering, University of the Saarland, D-66041 Saarbrücken, Germany
| | - Alasdair M Cook
- Department of Biology, The University, D-78457 Konstanz, Germany
| |
Collapse
|
5
|
Denger K, Cook AM. Racemase activity effected by two dehydrogenases in sulfolactate degradation by Chromohalobacter salexigens: purification of (S)-sulfolactate dehydrogenase. MICROBIOLOGY-SGM 2009; 156:967-974. [PMID: 20007648 DOI: 10.1099/mic.0.034736-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Chromohalobacter salexigens DSM 3043, whose genome has been sequenced, is known to degrade (R,S)-sulfolactate as a sole carbon and energy source for growth. Utilization of the compound(s) was shown to be quantitative, and an eight-gene cluster (Csal_1764-Csal_1771) was hypothesized to encode the enzymes in the degradative pathway. It comprised a transcriptional regulator (SuyR), a Tripartite Tricarboxylate Transporter-family uptake system for sulfolactate (SlcHFG), two sulfolactate dehydrogenases of opposite sulfonate stereochemistry, namely novel SlcC and ComC [(R)-sulfolactate dehydrogenase] [EC 1.1.1.272] and desulfonative sulfolactate sulfo-lyase (SuyAB) [EC 4.4.1.24]. Inducible reduction of 3-sulfopyruvate, inducible SuyAB activity and induction of an unknown protein were detected. Separation of the soluble proteins from induced cells on an anion-exchange column yielded four relevant fractions. Two different fractions reduced sulfopyruvate with NAD(P)H, a third yielded SuyAB activity, and the fourth contained the unknown protein. The latter was identified by peptide-mass fingerprinting as SlcH, the candidate periplasmic binding protein of the transport system. Separated SuyB was also identified by peptide-mass fingerprinting. ComC was partially purified and identified by peptide-mass fingerprinting. The (R)-sulfolactate that ComC produced from sulfopyruvate was a substrate for SuyAB, which showed that SuyAB is (R)-sulfolactate sulfo-lyase. SlcC was purified to homogeneity. This enzyme also formed sulfolactate from sulfopyruvate, but the latter enantiomer was not a substrate for SuyAB. SlcC was obviously ( S)-sulfolactate dehydrogenase.
Collapse
Affiliation(s)
- Karin Denger
- Department of Biology, The University, D-78457 Konstanz, Germany
| | - Alasdair M Cook
- Department of Biology, The University, D-78457 Konstanz, Germany
| |
Collapse
|
6
|
Convergent evolution of coenzyme M biosynthesis in the Methanosarcinales: cysteate synthase evolved from an ancestral threonine synthase. Biochem J 2009; 424:467-78. [PMID: 19761441 DOI: 10.1042/bj20090999] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The euryarchaeon Methanosarcina acetivorans has no homologues of the first three enzymes that produce the essential methanogenic coenzyme M (2-mercaptoethanesulfonate) in Methanocaldococcus jannaschii. A single M. acetivorans gene was heterologously expressed to produce a functional sulfopyruvate decarboxylase protein, the fourth canonical enzyme in this biosynthetic pathway. An adjacent gene, at locus MA3297, encodes one of the organism's two threonine synthase homologues. When both paralogues from this organism were expressed in an Escherichia coli threonine synthase mutant, the MA1610 gene complemented the thrC mutation, whereas the MA3297 gene did not. Both PLP (pyridoxal 5'-phosphate)-dependent proteins were heterologously expressed and purified, but only the MA1610 protein catalysed the canonical threonine synthase reaction. The MA3297 protein specifically catalysed a new beta-replacement reaction that converted L-phosphoserine and sulfite into L-cysteate and inorganic phosphate. This oxygen-independent mode of sulfonate biosynthesis exploits the facile nucleophilic addition of sulfite to an alpha,beta-unsaturated intermediate (PLP-bound dehydroalanine). An amino acid sequence comparison indicates that cysteate synthase evolved from an ancestral threonine synthase through gene duplication, and the remodelling of active site loop regions by amino acid insertion and substitutions. The cysteate product can be converted into sulfopyruvate by an aspartate aminotransferase enzyme, establishing a new convergent pathway for coenzyme M biosynthesis that appears to function in members of the orders Methanosarcinales and Methanomicrobiales. These differences in coenzyme M biosynthesis afford the opportunity to develop methanogen inhibitors that discriminate between the classes of methanogenic archaea.
Collapse
|
7
|
Denger K, Mayer J, Buhmann M, Weinitschke S, Smits THM, Cook AM. Bifurcated degradative pathway of 3-sulfolactate in Roseovarius nubinhibens ISM via sulfoacetaldehyde acetyltransferase and (S)-cysteate sulfolyase. J Bacteriol 2009; 191:5648-56. [PMID: 19581363 PMCID: PMC2737982 DOI: 10.1128/jb.00569-09] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2009] [Accepted: 06/28/2009] [Indexed: 11/20/2022] Open
Abstract
Data from the genome sequence of the aerobic, marine bacterium Roseovarius nubinhibens ISM were interpreted such that 3-sulfolactate would be degraded as a sole source of carbon and energy for growth via a novel bifurcated pathway including two known desulfonative enzymes, sulfoacetaldehyde acetyltransferase (EC 2.3.3.15) (Xsc) and cysteate sulfo-lyase (EC 4.4.1.25) (CuyA). Strain ISM utilized sulfolactate quantitatively with stoichiometric excretion of the sulfonate sulfur as sulfate. A combination of enzyme assays, analytical chemistry, enzyme purification, peptide mass fingerprinting, and reverse transcription-PCR data supported the presence of an inducible, tripartite sulfolactate uptake system (SlcHFG), and a membrane-bound sulfolactate dehydrogenase (SlcD) which generated 3-sulfopyruvate, the point of bifurcation. 3-Sulfopyruvate was in part decarboxylated by 3-sulfopyruvate decarboxylase (EC 4.1.1.79) (ComDE), which was purified. The sulfoacetaldehyde that was formed was desulfonated by Xsc, which was identified, and the acetyl phosphate was converted to acetyl-coenzyme A by phosphate acetyltransferase (Pta). The other portion of the 3-sulfopyruvate was transaminated to (S)-cysteate, which was desulfonated by CuyA, which was identified. The sulfite that was formed was presumably exported by CuyZ (TC 9.B.7.1.1 in the transport classification system), and a periplasmic sulfite dehydrogenase is presumed. Bioinformatic analyses indicated that transporter SlcHFG is rare but that SlcD is involved in three different combinations of pathways, the bifurcated pathway shown here, via CuyA alone, and via Xsc alone. This novel pathway involves ComDE in biodegradation, whereas it was discovered in the biosynthesis of coenzyme M. The different pathways of desulfonation of sulfolactate presumably represent final steps in the biodegradation of sulfoquinovose (and exudates derived from it) in marine and aquatic environments.
Collapse
Affiliation(s)
- Karin Denger
- Department of Biology, University of Konstanz, D-78457 Konstanz, Germany
| | | | | | | | | | | |
Collapse
|
8
|
Krejcík Z, Denger K, Weinitschke S, Hollemeyer K, Paces V, Cook AM, Smits THM. Sulfoacetate released during the assimilation of taurine-nitrogen by Neptuniibacter caesariensis: purification of sulfoacetaldehyde dehydrogenase. Arch Microbiol 2008; 190:159-68. [PMID: 18506422 DOI: 10.1007/s00203-008-0386-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2008] [Revised: 04/28/2008] [Accepted: 05/05/2008] [Indexed: 11/25/2022]
Abstract
Taurine (2-aminoethanesulfonate) is a widespread natural product whose nitrogen moiety was recently shown to be assimilated by bacteria, usually with excretion of an organosulfonate via undefined novel pathways; other data involve transcriptional regulator TauR in taurine metabolism. A screen of genome sequences for TauR with the BLAST algorithm allowed the hypothesis that the marine gammaproteobacterium Neptuniibacter caesariensis MED92 would inducibly assimilate taurine-nitrogen and excrete sulfoacetate. The pathway involved an ABC transporter (TauABC), taurine:pyruvate aminotransferase (Tpa), a novel sulfoacetaldehyde dehydrogenase (SafD) and exporter(s) of sulfoacetate (SafE) (DUF81). Ten candidate genes in two clusters involved three sets of paralogues (for TauR, Tpa and SafE). Inducible Tpa and SafD were detected in cell extracts. SafD was purified 600-fold to homogeneity in two steps. The monomer had a molecular mass of 50 kDa (SDS-PAGE); data from gel filtration chromatography indicated a tetrameric native protein. SafD was specific for sulfoacetaldehyde with a K (m)-value of 0.12 mM. The N-terminal amino acid sequence of SafD confirmed the identity of the safD gene. The eight pathway genes were transcribed inducibly, which indicated expression of the whole hypothetical pathway. We presume that this pathway is one source of sulfoacetate in nature, where this compound is dissimilated by many bacteria.
Collapse
Affiliation(s)
- Zdenĕk Krejcík
- Department of Biology, The University, 78457, Constance, Germany
| | | | | | | | | | | | | |
Collapse
|
9
|
Cook AM, Denger K, Smits THM. Dissimilation of C3-sulfonates. Arch Microbiol 2005; 185:83-90. [PMID: 16341843 DOI: 10.1007/s00203-005-0069-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2005] [Revised: 11/02/2005] [Accepted: 11/21/2005] [Indexed: 10/25/2022]
Abstract
Cysteate and sulfolactate are widespread natural products in the environment, while propanesulfonate, 3-aminopropanesulfonate and propane-1,3-disulfonate are xenobiotics. While some understanding of the bacterial assimilation of cysteate sulfur has been achieved, details of the dissimilation of cysteate and sulfolactate by microbes together with information on the degradation of the xenobiotics have only recently become available. This minireview centres on bacterial catabolism of the carbon moiety in these C(3)-sulfonates and on the fate of the sulfonate group. Three mechanisms of desulfonation have been established. Firstly, cysteate is converted via sulfopyruvate to sulfolactate, which is desulfonated to pyruvate and sulfite; the latter is oxidized to sulfate by a sulfite dehydrogenase and excreted as sulfate in Paracoccus pantotrophus NKNCYSA. Secondly, sulfolactate can be converted to cysteate, which is cleaved in a pyridoxal 5'-phosphate-coupled reaction to pyruvate, sulfite and ammonium ions; in Silicibacter pomeroyi DSS-3, the sulfite is excreted largely as sulfite. Both desulfonation reactions seem to be widespread. The third desulfonation mechanism is oxygenolysis of, e.g. propanesulfonate(s), about which less is known.
Collapse
Affiliation(s)
- Alasdair M Cook
- Department of Biology, The University of Konstanz, 78457, Konstanz, Germany.
| | | | | |
Collapse
|
10
|
Rein U, Gueta R, Denger K, Ruff J, Hollemeyer K, Cook AM. Dissimilation of cysteate via 3-sulfolactate sulfo-lyase and a sulfate exporter in Paracoccus pantotrophus NKNCYSA. Microbiology (Reading) 2005; 151:737-747. [PMID: 15758220 DOI: 10.1099/mic.0.27548-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Paracoccus pantotrophusNKNCYSA utilizes (R)-cysteate (2-amino-3-sulfopropionate) as a sole source of carbon and energy for growth, with either nitrate or molecular oxygen as terminal electron acceptor, and the specific utilization rate of cysteate is about 2 mkat (kg protein)−1. The initial degradative reaction is catalysed by an (R)-cysteate : 2-oxoglutarate aminotransferase, which yields 3-sulfopyruvate. The latter was reduced to 3-sulfolactate by an NAD-linked sulfolactate dehydrogenase [3·3 mkat (kg protein)−1]. The inducible desulfonation reaction was not detected initially in cell extracts. However, a strongly induced protein with subunits of 8 kDa (α) and 42 kDa (β) was found and purified. The corresponding genes had similarities to those encoding altronate dehydratases, which often require iron for activity. The purified enzyme could then be shown to convert 3-sulfolactate to sulfite and pyruvate and it was termed sulfolactate sulfo-lyase (Suy). A high level of sulfite dehydrogenase was also induced during growth with cysteate, and the organism excreted sulfate. A putative regulator, OrfR, was encoded upstream ofsuyABon the reverse strand. Downstream ofsuyABwassuyZ, which was cotranscribed withsuyB. The gene, an allele oftauZ, encoded a putative membrane protein with transmembrane helices (COG2855), and is a candidate to encode the sulfate exporter needed to maintain homeostasis during desulfonation.suyAB-like genes are widespread in sequenced genomes and environmental samples where, in contrast to the current annotation, several presumably encode the desulfonation of 3-sulfolactate, a component of bacterial spores.
Collapse
Affiliation(s)
- Ulrike Rein
- Department of Biology, The University, D-78457 Konstanz, Germany
| | - Ronnie Gueta
- Department of Biology, The University, D-78457 Konstanz, Germany
| | - Karin Denger
- Department of Biology, The University, D-78457 Konstanz, Germany
| | - Jürgen Ruff
- Department of Biology, The University, D-78457 Konstanz, Germany
| | - Klaus Hollemeyer
- Institute of Biochemical Engineering, Saarland University, Box 50 11 50, D-66041 Saarbrücken, Germany
| | - Alasdair M Cook
- Department of Biology, The University, D-78457 Konstanz, Germany
| |
Collapse
|
11
|
Stipanuk MH. Sulfur amino acid metabolism: pathways for production and removal of homocysteine and cysteine. Annu Rev Nutr 2004; 24:539-77. [PMID: 15189131 DOI: 10.1146/annurev.nutr.24.012003.132418] [Citation(s) in RCA: 696] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Tissue concentrations of both homocysteine (Hcy) and cysteine (Cys) are maintained at low levels by regulated production and efficient removal of these thiols. The regulation of the metabolism of methionine and Cys is discussed from the standpoint of maintaining low levels of Hcy and Cys while, at the same time, ensuring an adequate supply of these thiols for their essential functions. S-Adenosylmethionine coordinately regulates the flux through remethylation and transsulfuration, and glycine N-methyltransferase regulates flux through transmethylation and hence the S-adenosylmethionine/S-adenosylhomocysteine ratio. Cystathionine beta-synthase activity is also regulated in response to the redox environment, and transcription of the gene is hormonally regulated in response to fuel supply (insulin, glucagon, and glucocorticoids). The H2S-producing capacity of cystathionine gamma-lyase may be regulated in response to nitric oxide. Cys is substrate for a variety of anabolic and catabolic enzymes. Its concentration is regulated primarily by hepatic Cys dioxygenase; the level of Cys dioxygenase is upregulated in a Cys-responsive manner via a decrease in the rate of polyubiquitination and, hence, degradation by the 26S proteasome.
Collapse
Affiliation(s)
- Martha H Stipanuk
- Division of Nutritional Sciences, Cornell University, Ithaca, New York 14853, USA.
| |
Collapse
|
12
|
Metzler DE, Metzler CM, Sauke DJ. The Metabolism of Nitrogen and Amino Acids. Biochemistry 2001. [DOI: 10.1016/b978-012492543-4/50027-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
13
|
Graupner M, Xu H, White RH. Identification of an archaeal 2-hydroxy acid dehydrogenase catalyzing reactions involved in coenzyme biosynthesis in methanoarchaea. J Bacteriol 2000; 182:3688-92. [PMID: 10850983 PMCID: PMC94539 DOI: 10.1128/jb.182.13.3688-3692.2000] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2000] [Accepted: 04/14/2000] [Indexed: 11/20/2022] Open
Abstract
Two putative malate dehydrogenase genes, MJ1425 and MJ0490, from Methanococcus jannaschii and one from Methanothermus fervidus were cloned and overexpressed in Escherichia coli, and their gene products were tested for the ability to catalyze pyridine nucleotide-dependent oxidation and reduction reactions of the following alpha-hydroxy-alpha-keto acid pairs: (S)-sulfolactic acid and sulfopyruvic acid; (S)-alpha-hydroxyglutaric acid and alpha-ketoglutaric acid; (S)-lactic acid and pyruvic acid; and 1-hydroxy-1,3,4,6-hexanetetracarboxylic acid and 1-oxo-1,3,4, 6-hexanetetracarboxylic acid. Each of these reactions is involved in the formation of coenzyme M, methanopterin, coenzyme F(420), and methanofuran, respectively. Both the MJ1425-encoded enzyme and the MJ0490-encoded enzyme were found to function to different degrees as malate dehydrogenases, reducing oxalacetate to (S)-malate using either NADH or NADPH as a reductant. Both enzymes were found to use either NADH or NADPH to reduce sulfopyruvate to (S)-sulfolactate, but the V(max)/K(m) value for the reduction of sulfopyruvate by NADH using the MJ1425-encoded enzyme was 20 times greater than any other combination of enzymes and pyridine nucleotides. Both the M. fervidus and the MJ1425-encoded enzyme catalyzed the NAD(+)-dependent oxidation of (S)-sulfolactate to sulfopyruvate. The MJ1425-encoded enzyme also catalyzed the NADH-dependent reduction of alpha-ketoglutaric acid to (S)-hydroxyglutaric acid, a component of methanopterin. Neither of the enzymes reduced pyruvate to (S)-lactate, a component of coenzyme F(420). Only the MJ1425-encoded enzyme was found to reduce 1-oxo-1,3,4,6-hexanetetracarboxylic acid, and this reduction occurred only to a small extent and produced an isomer of 1-hydroxy-1,3,4,6-hexanetetracarboxylic acid that is not involved in the biosynthesis of methanofuran c. We conclude that the MJ1425-encoded enzyme is likely to be involved in the biosynthesis of both coenzyme M and methanopterin.
Collapse
Affiliation(s)
- M Graupner
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, USA
| | | | | |
Collapse
|
14
|
Edgar SE, Kirk CA, Rogers QR, Morris JG. Taurine status in cats is not maintained by dietary cysteinesulfinic acid. J Nutr 1998; 128:751-7. [PMID: 9521639 DOI: 10.1093/jn/128.4.751] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Endogenous synthesis of taurine by cats is limited. Putative precursors of taurine, cysteinesulfinic acid and cysteic acid, were fed to cats to determine whether they were utilized. Groups of five cats were depleted of taurine by a resin (Colestipol(R)) diet, then given 6 dietary treatments containing (g/kg diet): 0.0, 0.4, or 0.8 taurine; or 0.98 or 1.96 cysteinesulfinic acid, or 0.4 taurine + 1.0 cysteic acid for 12 wk. Plasma and whole blood taurine concentrations and body weights were measured weekly. Concentration of taurine in semitendinosus muscle was measured initially, after 2 wk of taurine depletion (after resin-diet), and monthly thereafter. The resin diet decreased concentrations of taurine in plasma, whole blood, and muscle to 0.20, 0.49, and 0.37 of initial values, respectively. Cysteinesulfinic acid diets resulted in no significant (P > 0.05) increase in the concentration of taurine in plasma, whole blood, or muscle, and no increased excretion of cysteinesulfinate or taurine in urine or feces. Cats fed the diets containing 1.0 g cysteic acid + 0.4 g taurine, or 0.8 g taurine/kg diet had similar concentrations of taurine in plasma, whole blood, and muscle. Aminotransferase activity for cysteinesulfinic acid in the liver and intestinal mucosa of cats and rats was higher than that for aspartic or cysteic acids. Transamination of dietary cysteinesulfinic acid to beta-sulfinylpyruvate (which spontaneously decomposes), rather than decarboxylation is postulated as the basis for no detectable conversion to taurine. In contrast, cysteic acid is reversibly transaminated to beta-sulfopyruvate which is stable and thereby is a precursor for taurine in cats.
Collapse
Affiliation(s)
- S E Edgar
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616-8741, USA
| | | | | | | |
Collapse
|
15
|
Ide T. Dietary regulation of hepatic enzymes in taurine biosynthesis in rats. J Nutr Biochem 1998. [DOI: 10.1016/s0955-2863(97)00174-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
16
|
Stipanuk MH, Bagley PJ, Hou YC, Bella DL, Banks MF, Hirschberger LL. Hepatic regulation of cysteine utilization for taurine synthesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1994; 359:79-89. [PMID: 7887291 DOI: 10.1007/978-1-4899-1471-2_9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- M H Stipanuk
- Division of Nutritional Sciences, Cornell University, Ithaca, New York 14830
| | | | | | | | | | | |
Collapse
|
17
|
Mårtensson J, Denneberg T, Lindell A, Textorius O. Sulfur amino acid metabolism in cystinuria: a biochemical and clinical study of patients. Kidney Int 1990; 37:143-9. [PMID: 2299801 DOI: 10.1038/ki.1990.20] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Sulfur amino acid metabolism was studied in 26 homozygotic cystinuric patients, some of whom received D-penicillamine, 2-mercaptopropionylglycine or N-acetylcysteine treatments in order to evaluate signs of cyst(e)ine deficiency. Decreased leukocyte glutathione and taurine levels, plasma cyst(e)ine and taurine concentrations and urinary inorganic sulfate, taurine, mercaptolactate and thiosulfate outputs were found in cystinuric patients, probably reflecting intracellular cyst(e)ine deficiency. An increased mercaptoacetate-cysteine mixed disulfide output was found, probably as result of a poor tubular reabsorption of this compound, as well as for cystine. Normal retinal function was recorded in all patients. During drug treatments, the excretion of most of the sulfur compounds in cystinurics was as those found in controls, probably reflecting an increased mobilization of cysteine. N-acetylcysteine treatment increased the excretion of cyst(e)ine and can thus not be recommended as stone preventive therapy in cystinuria.
Collapse
Affiliation(s)
- J Mårtensson
- Department of Clinical Chemistry, University Hospital, Linköping, Sweden
| | | | | | | |
Collapse
|
18
|
Weinstein CL, Haschemeyer RH, Griffith OW. In vivo studies of cysteine metabolism. Use of D-cysteinesulfinate, a novel cysteinesulfinate decarboxylase inhibitor, to probe taurine and pyruvate synthesis. J Biol Chem 1988. [DOI: 10.1016/s0021-9258(18)37428-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|