Roger LJ, Breese GR, Morell P. Axonal transport of proteins and glycoproteins in the rat nigro-striatal pathway and the effects of 6-hydroxydopamine.
Brain Res 1980;
197:95-112. [PMID:
6156743 DOI:
10.1016/0006-8993(80)90437-0]
[Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Following stereotaxic injection of [35S]methionine into the substantia nigra of adult rats, there was rapid local incorporation of radioactivity into acid-insoluble material. Incorporation peaked by 4 h and then decreased. In contrast, acid-precipitable radioactivity in the corpus striatum (the major projection site of the substantia nigra) rose markedly between 1 and 8 h followed by a plateau period and another even more marked increase between 24 h and 6 days. Experiments involving injection of [3H]fucose gave similar results except that most of the acid-precipitable radioactivity in the striatum appeared in an early wave. In each case radioactivity in the contralateral striatum was less than 11% of that on the ipsilateral side. Stereotaxic injection of colchicine (20 microgram) into the nigrostriatal pathway (within the median forebrain bundle) blocked transport of [35S]protein and [3H]glycoprotein by 90% and 50%, respectively. In animals treated with 6-hydroxydopamine (6-OHDA; treated neonatally or as adults) the accumulation of striatal [35S]protein was reduced to 7 to 26% of control levels; striatal [3H]glycoprotein was also reduced, but not as much (29% to 73% of control). In control experiments, [3H]DOPA wa injected into the substantia nigra, and [3H]dopamine was measured in corpus striatum; 6-OHDA treatment reduced the amounts of striatal [3H]dopamine recovered to 3% of control values. The failure of colchicine or 6-OHDA to block transport of incorporated fucose as effectively as the transport of incorporated methionine is possible due to greater diffusion of fucose away from the injection site to non-dopaminergic nuclei projecting to the striatum. The molecular weight distribution of radioactive proteins at the substantia nigra and corpus striatum was analyzed by polyacrylamide gel electrophoresis. For both [35S]methionine and [3H]fucose, the gel electrophoretic pattern of radioactive proteins in the injection site (substantia nigra) was complex and did not change greatly between 2 h and 6 days. At the projection site (striatum) the electrophoretic distribution pattern was initially different from that of the substantia nigra, and changed markedly over the course of several days. In 6-OHDA-treated animals (treated neonatally or as adults), the bulk of proteins transported in nigro-striatal non-dopaminergic neurons appears to be very similar to that transported in the intact pathway in control rats. However, in striata of 6-OHDA-treated animals, a consistent reduction in striatal 35S- and 3H-radioactivitiy was observed in proteins with molecular weight from about 67,000 to 77,000. Assuming that the 6-OHDA treatment did not substantially affect the non-dopaminergic neurons, we interpret this to mean that some of the proteins in this molecular weight range are transported primarily by dopaminergic neurons.
Collapse