1
|
Shiraishi K, Hioki T, Habata A, Yurimoto H, Sakai Y. Yeast Hog1 proteins are sequestered in stress granules during high-temperature stress. J Cell Sci 2018; 131:jcs.209114. [PMID: 29183915 DOI: 10.1242/jcs.209114] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Accepted: 11/22/2017] [Indexed: 11/20/2022] Open
Abstract
The yeast high-osmolarity glycerol (HOG) pathway plays a central role in stress responses. It is activated by various stresses, including hyperosmotic stress, oxidative stress, high-temperature stress and exposure to arsenite. Hog1, the crucial MAP kinase of the pathway, localizes to the nucleus in response to high osmotic concentrations, i.e. high osmolarity; but, otherwise, little is known about its intracellular dynamics and regulation. By using the methylotrophic yeast Candida boidinii, we found that CbHog1-Venus formed intracellular dot structures after high-temperature stress in a reversible manner. Microscopic observation revealed that CbHog1-mCherry colocalized with CbPab1-Venus, a marker protein of stress granules. Hog1 homologs in Pichia pastoris and Schizosaccharomyces pombe also exhibited similar dot formation under high-temperature stress, whereas Saccharomyces cerevisiae Hog1 (ScHog1)-GFP did not. Analysis of CbHog1-Venus in C. boidinii revealed that a β-sheet structure in the N-terminal region was necessary and sufficient for its localization to stress granules. Physiological studies revealed that sequestration of activated Hog1 proteins in stress granules was responsible for downregulation of Hog1 activity under high-temperature stress.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Kosuke Shiraishi
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwake, Sakyo-ku, 606-8502, Kyoto, Japan
| | - Takahiro Hioki
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwake, Sakyo-ku, 606-8502, Kyoto, Japan
| | - Akari Habata
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwake, Sakyo-ku, 606-8502, Kyoto, Japan
| | - Hiroya Yurimoto
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwake, Sakyo-ku, 606-8502, Kyoto, Japan
| | - Yasuyoshi Sakai
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwake, Sakyo-ku, 606-8502, Kyoto, Japan .,Research Unit for Physiological Chemistry, the Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, 606-8502, Kyoto, Japan
| |
Collapse
|
2
|
Cox AD, Der CJ. Ras history: The saga continues. Small GTPases 2014; 1:2-27. [PMID: 21686117 DOI: 10.4161/sgtp.1.1.12178] [Citation(s) in RCA: 524] [Impact Index Per Article: 47.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2010] [Revised: 05/17/2010] [Accepted: 05/24/2010] [Indexed: 12/24/2022] Open
Abstract
Although the roots of Ras sprouted from the rich history of retrovirus research, it was the discovery of mutationally activated RAS genes in human cancer in 1982 that stimulated an intensive research effort to understand Ras protein structure, biochemistry and biology. While the ultimate goal has been developing anti-Ras drugs for cancer treatment, discoveries from Ras have laid the foundation for three broad areas of science. First, they focused studies on the origins of cancer to the molecular level, with the subsequent discovery of genes mutated in cancer that now number in the thousands. Second, elucidation of the biochemical mechanisms by which Ras facilitates signal transduction established many of our fundamental concepts of how a normal cell orchestrates responses to extracellular cues. Third, Ras proteins are also founding members of a large superfamily of small GTPases that regulate all key cellular processes and established the versatile role of small GTP-binding proteins in biology. We highlight some of the key findings of the last 28 years.
Collapse
Affiliation(s)
- Adrienne D Cox
- Department of Radiation Oncology; Lineberger Comprehensive Cancer Center; University of North Carolina at Chapel Hill; Chapel Hill, NC USA
| | | |
Collapse
|
3
|
Vellano CP, Brown NE, Blumer JB, Hepler JR. Assembly and function of the regulator of G protein signaling 14 (RGS14)·H-Ras signaling complex in live cells are regulated by Gαi1 and Gαi-linked G protein-coupled receptors. J Biol Chem 2012; 288:3620-31. [PMID: 23250758 DOI: 10.1074/jbc.m112.440057] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Regulator of G protein signaling 14 (RGS14) is a multifunctional scaffolding protein that integrates heterotrimeric G protein and H-Ras signaling pathways. RGS14 possesses an RGS domain that binds active Gα(i/o)-GTP subunits to promote GTP hydrolysis and a G protein regulatory (GPR) motif that selectively binds inactive Gα(i1/3)-GDP subunits to form a stable heterodimer at cellular membranes. RGS14 also contains two tandem Ras/Rap binding domains (RBDs) that bind H-Ras. Here we show that RGS14 preferentially binds activated H-Ras-GTP in live cells to enhance H-Ras cellular actions and that this interaction is regulated by inactive Gα(i1)-GDP and G protein-coupled receptors (GPCRs). Using bioluminescence resonance energy transfer (BRET) in live cells, we show that RGS14-Luciferase and active H-Ras(G/V)-Venus exhibit a robust BRET signal at the plasma membrane that is markedly enhanced in the presence of inactive Gα(i1)-GDP but not active Gα(i1)-GTP. Active H-Ras(G/V) interacts with a native RGS14·Gα(i1) complex in brain lysates, and co-expression of RGS14 and Gα(i1) in PC12 cells greatly enhances H-Ras(G/V) stimulatory effects on neurite outgrowth. Stimulation of the Gα(i)-linked α(2A)-adrenergic receptor induces a conformational change in the Gα(i1)·RGS14·H-Ras(G/V) complex that may allow subsequent regulation of the complex by other binding partners. Together, these findings indicate that inactive Gα(i1)-GDP enhances the affinity of RGS14 for H-Ras-GTP in live cells, resulting in a ternary signaling complex that is further regulated by GPCRs.
Collapse
Affiliation(s)
- Christopher P Vellano
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | | | |
Collapse
|
4
|
Roles of Ras1 membrane localization during Candida albicans hyphal growth and farnesol response. EUKARYOTIC CELL 2011; 10:1473-84. [PMID: 21908593 DOI: 10.1128/ec.05153-11] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Many Ras GTPases localize to membranes via C-terminal farnesylation and palmitoylation, and localization regulates function. In Candida albicans, a fungal pathogen of humans, Ras1 links environmental cues to morphogenesis. Here, we report the localization and membrane dynamics of Ras1, and we characterize the roles of conserved C-terminal cysteine residues, C287 and C288, which are predicted sites of palmitoylation and farnesylation, respectively. GFP-Ras1 is localized uniformly to plasma membranes in both yeast and hyphae, yet Ras1 plasma membrane mobility was reduced in hyphae compared to that in yeast. Ras1-C288S was mislocalized to the cytoplasm and could not support hyphal development. Ras1-C287S was present primarily on endomembranes, and strains expressing ras1-C287S were delayed or defective in hyphal induction depending on the medium used. Cells bearing constitutively activated Ras1-C287S or Ras1-C288S, due to a G13V substitution, showed increased filamentation, suggesting that lipid modifications are differentially important for Ras1 activation and effector interactions. The C. albicans autoregulatory molecule, farnesol, inhibits Ras1 signaling through adenylate cyclase and bears structural similarities to the farnesyl molecule that modifies Ras1. At lower concentrations of farnesol, hyphal growth was inhibited but Ras1 plasma membrane association was not altered; higher concentrations of farnesol led to mislocalization of Ras1 and another G protein, Rac1. Furthermore, farnesol inhibited hyphal growth mediated by cytosolic Ras1-C288SG13V, suggesting that farnesol does not act through mechanisms that depend on Ras1 farnesylation. Our findings imply that Ras1 is farnesylated and palmitoylated, and that the Ras1 stimulation of adenylate cyclase-dependent phenotypes can occur in the absence of these lipid modifications.
Collapse
|
5
|
Griggs AM, Hahne K, Hrycyna CA. Functional oligomerization of the Saccharomyces cerevisiae isoprenylcysteine carboxyl methyltransferase, Ste14p. J Biol Chem 2010; 285:13380-7. [PMID: 20202940 DOI: 10.1074/jbc.m109.061366] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The isoprenylcysteine carboxyl methyltransferase (Icmt) from Saccharomyces cerevisiae, also designated Ste14p, is a 26-kDa integral membrane protein that contains six transmembrane spanning segments. This protein is localized to the endoplasmic reticulum membrane where it performs the methylation step of the CAAX post-translational processing pathway. Sequence analysis reveals a putative GXXXG dimerization motif located in transmembrane 1 of Ste14p, but it is not known whether Ste14p forms or functions as a dimer or higher order oligomer. We determined that Ste14p predominantly formed a homodimer in the presence of the cross-linking agent, bis-sulfosuccinimidyl suberate. Wild-type untagged Ste14p also co-immunoprecipitated and co-purified with N-terminal-tagged His(10)-myc(3)-Ste14p (His-Ste14p). Furthermore, enzymatically inactive His-Ste14p variants L81F and E213Q both exerted a dominant-negative effect on methyltransferase activity when co-expressed and co-purified with untagged wild-type Ste14p. Together, these data, although indirect, suggest that Ste14p forms and functions as a homodimer or perhaps a higher oligomeric species.
Collapse
Affiliation(s)
- Amy M Griggs
- Department of Chemistry and the Purdue Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907, USA
| | | | | |
Collapse
|
6
|
Subcellular localization directs signaling specificity of the Cryptococcus neoformans Ras1 protein. EUKARYOTIC CELL 2008; 8:181-9. [PMID: 19098128 DOI: 10.1128/ec.00351-08] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
In the human fungal pathogen Cryptococcus neoformans, Ras signaling mediates sexual differentiation, morphogenesis, and pathogenesis. By studying Ras prenylation and palmitoylation in this organism, we have found that the subcellular localization of this protein dictates its downstream signaling specificity. Inhibiting C. neoformans Ras1 prenylation results in the defective general membrane targeting of this protein and the loss of all Ras function. In contrast, palmitoylation mediates localization of Ras1 to the plasma membrane and is required for normal morphogenesis and survival at high temperatures. However, palmitoylation and plasma membrane localization are not required for Ras-dependent sexual differentiation. Likely as a result of its effect on thermotolerance, Ras1 palmitoylation is also required for the pathogenesis of C. neoformans. These data support an emerging paradigm of compartmentalized Ras signaling. However, our studies also demonstrate fundamental differences between the Ras pathways in different organisms that emphasize the functional flexibility of conserved signaling cascades.
Collapse
|
7
|
Wang G, Deschenes RJ. Plasma membrane localization of Ras requires class C Vps proteins and functional mitochondria in Saccharomyces cerevisiae. Mol Cell Biol 2006; 26:3243-55. [PMID: 16581797 PMCID: PMC1446948 DOI: 10.1128/mcb.26.8.3243-3255.2006] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ras proteins are synthesized as cytosolic precursors, but then undergo posttranslational lipid addition, membrane association, and subcellular targeting to the plasma membrane. Although the enzymes responsible for farnesyl and palmitoyl lipid addition have been described, the mechanism by which these modifications contribute to the subcellular localization of Ras is not known. Following addition of the farnesyl group, Ras associates with the endoplasmic reticulum (ER), where palmitoylation occurs in Saccharomyces cerevisiae. The subsequent translocation of Ras from the ER to the plasma membrane does not require the classical secretory pathway or a functional Golgi apparatus. Vesicular and nonvesicular transport pathways for Ras proteins have been proposed, but the pathway is not known. Here we describe a genetic screen designed to identify mutants defective in Ras trafficking in S. cerevisiae. The screen implicates, for the first time, the class C VPS complex in Ras trafficking. Vps proteins are best characterized for their role in endosome and vacuole membrane fusion. However, the role of the class C Vps complex in Ras trafficking is distinct from its role in endosome and vacuole vesicle fusion, as a mitochondrial involvement was uncovered. Disruption of class C VPS genes results in mitochondrial defects and an accumulation of Ras proteins on mitochondrial membranes. Ras also fractionates with mitochondria in wild-type cells, where it is detected on the outer mitochondrial membrane by virtue of its sensitivity to protease treatment. These results point to a previously uncharacterized role of mitochondria in the subcellular trafficking of Ras proteins.
Collapse
Affiliation(s)
- Geng Wang
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | | |
Collapse
|
8
|
Kim H, Nelson MA. Molecular and functional analyses of poi-2, a novel gene highly expressed in sexual and perithecial tissues of Neurospora crassa. EUKARYOTIC CELL 2005; 4:900-10. [PMID: 15879524 PMCID: PMC1140099 DOI: 10.1128/ec.4.5.900-910.2005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The poi-2 gene is highly and specifically expressed in starved and sexual tissues of the filamentous fungus Neurospora crassa. It encodes a 27-kDa protein, as shown by in vitro transcription and translation. The POI2 protein contains a hydrophobic signal sequence at the amino terminus followed by novel 16 tandem repeats of 13 to 14 amino acid residues; all repeats are separated by Kex2 processing sites. Repeat-induced point mutation (RIP)-mediated gene disruption was used to generate poi-2 mutants, and the mutated sequences showed either one of two distinct patterns: typical RIPs (GC-to-AT transitions) or insertion-deletion (indel) mutations. Although the poi-2 strains contained numerous mutations, all retained intact open reading frames (ORFs) of various lengths. They showed greatly reduced vegetative growth and protoperithecial formation and low viability of their sexual progeny. All poi-2 mutants had similar defects in male fertility and the mating response, but the nature of female fertility defects varied and corresponded to the length of the residual poi-2 ORF. Mutants with ORFs of approximately normal length occasionally completed sexual development and produced viable ascospores, while a mutant with a severely truncated ORF was female sterile due to its inability to form protoperithecia. Thus, poi-2 is essential for differentiation of female reproductive structures and perithecial development as well as for normal vegetative growth. The POI2 protein is involved in the mating response, probably as a component in the pathway rather than as a pheromone.
Collapse
Affiliation(s)
- Hyojeong Kim
- Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | | |
Collapse
|
9
|
Dong X, Mitchell DA, Lobo S, Zhao L, Bartels DJ, Deschenes RJ. Palmitoylation and plasma membrane localization of Ras2p by a nonclassical trafficking pathway in Saccharomyces cerevisiae. Mol Cell Biol 2003; 23:6574-84. [PMID: 12944483 PMCID: PMC193718 DOI: 10.1128/mcb.23.18.6574-6584.2003] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Subcellular localization of Ras proteins to the plasma membrane is accomplished in part by covalent attachment of a farnesyl moiety to the conserved CaaX box cysteine. Farnesylation targets Ras to the endoplasmic reticulum (ER), where additional processing steps occur, resulting in translocation of Ras to the plasma membrane. The mechanism(s) by which this occurs is not well understood. In this report, we show that plasma membrane localization of Ras2p in Saccharomyces cerevisiae does not require the classical secretory pathway or a functional Golgi apparatus. However, when the classical secretory pathway is disrupted, plasma membrane localization requires Erf2p, a protein that resides in the ER membrane and is required for efficient palmitoylation of Ras2p. Deletion of ERF2 results in a Ras2p steady-state localization defect that is more severe when combined with sec-ts mutants or brefeldin A treatment. The Erf2p-dependent localization of Ras2p correlates with the palmitoylation of Cys-318. An Erf2p-Erf4p complex has recently been shown to be an ER-associated palmitoyltransferase that can palmitoylate Cys-318 of Ras2p (S. Lobo, W. K. Greentree, M. E. Linder, and R. J. Deschenes, J. Biol. Chem. 277:41268-41273, 2002). Erf2-dependent palmitoylation as well as localization of Ras2p requires a region of the hypervariable domain adjacent to the CaaX box. These results provide evidence for the existence of a palmitoylation-dependent, nonclassical endomembrane trafficking system for the plasma membrane localization of Ras proteins.
Collapse
Affiliation(s)
- Xiangwen Dong
- Department of Biochemistry. Genetics Program, University of Iowa, Iowa City, IA 52242, USA
| | | | | | | | | | | |
Collapse
|
10
|
7 Postisoprenylation protein processing: CXXX (CaaX) endoproteases and isoprenylcysteine carboxyl methyltransferase. PROTEIN LIPIDATION 2001. [DOI: 10.1016/s1874-6047(01)80020-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
11
|
Baron R, Fourcade E, Lajoie-Mazenc I, Allal C, Couderc B, Barbaras R, Favre G, Faye JC, Pradines A. RhoB prenylation is driven by the three carboxyl-terminal amino acids of the protein: evidenced in vivo by an anti-farnesyl cysteine antibody. Proc Natl Acad Sci U S A 2000; 97:11626-31. [PMID: 11027361 PMCID: PMC17251 DOI: 10.1073/pnas.97.21.11626] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Protein isoprenylation is a lipid posttranslational modification required for the function of many proteins that share a carboxyl-terminal CAAX motif. The X residue determines which isoprenoid will be added to the cysteine. When X is a methionine or serine, the farnesyl-transferase transfers a farnesyl, and when X is a leucine or isoleucine, the geranygeranyl-transferase I, a geranylgeranyl group. But despite its CKVL motif, RhoB was reported to be both geranylgeranylated and farnesylated. Thus, the determinants of RhoB prenylation appear more complex than initially thought. To determine the role of RhoB CAAX motif, we designed RhoB mutants with modified CAAX sequence expressed in baculovirus-infected insect cells. We demonstrated that RhoB was prenylated as a function of the three terminal amino acids, i.e., RhoB bearing the CAIM motif of lamin B or CLLL motif of Rap1A was farnesylated or geranylgeranylated, respectively. Next, we produced a specific polyclonal antibody against farnesyl cysteine methyl ester allowing prenylation analysis avoiding the metabolic labeling restrictions. We confirmed that the unique modification of the RhoB CAAX box was sufficient to direct the RhoB distinct prenylation in mammalian cells and, inversely, that a RhoA-CKVL chimera could be alternatively prenylated. Moreover, the immunoprecipitation of endogenous RhoB from cells with the anti-farnesyl cysteine antibody suggested that wild-type RhoB is farnesylated in vivo. Taken together, our results demonstrated that the three last carboxyl amino acids are the main determinants for RhoB prenylation and described an anti-farnesyl cysteine antibody as a useful tool for understanding the cellular control of protein farnesylation.
Collapse
Affiliation(s)
- R Baron
- Endocrinologie et Communications Cellulaires Institut National de la Santé et de la Recherche Médicale Unité 397, Toulouse, France
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Kosted PJ, Gerhardt SA, Anderson CM, Stierle A, Sherwood JE. Structural requirements for activity of the pheromones of Ustilago hordei. Fungal Genet Biol 2000; 29:107-17. [PMID: 10919379 DOI: 10.1006/fgbi.2000.1191] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ustilago hordei, the cause of barley-covered smut, initiates mating with pheromones. Gene sequence analysis suggested that these pheromones, Uhmfa1 and Uhmfa2, would be farnesylated peptides. Although isolation of mating-type-specific activity was rarely possible, chromatographic separations of culture supernatants yielded fractions that stimulated or inhibited mating. Based on predicted amino acid sequences and mass spectra of stimulating fractions, a series of pheromone analogs were synthesized and their activities were determined. Underivatized Uhmfa1 (PGKSGSGLGYSTC) or Uhmfa2 (EGKGEPAPYC) peptides were inactive, while peptides that were farnesylated and/or methyl esterified specifically induced conjugation tubes by cells of the opposite mating type. Uhmfa1 truncated from the amino terminus beyond the lysine lost activity, while truncated Uhmfa2 remained partially active. In mating bioassays, a pheromone concentration-dependent default mating response was observed. In competition studies, shorter Uhmfa1 peptides lacking pheromone activity inhibited activity of full-length peptides most effectively when both had the same functional groups.
Collapse
Affiliation(s)
- P J Kosted
- Department of Plant Sciences, Montana State University, Bozeman 59717-3150, USA
| | | | | | | | | |
Collapse
|
13
|
Bartels DJ, Mitchell DA, Dong X, Deschenes RJ. Erf2, a novel gene product that affects the localization and palmitoylation of Ras2 in Saccharomyces cerevisiae. Mol Cell Biol 1999; 19:6775-87. [PMID: 10490616 PMCID: PMC84674 DOI: 10.1128/mcb.19.10.6775] [Citation(s) in RCA: 148] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Plasma membrane localization of Ras requires posttranslational addition of farnesyl and palmitoyl lipid moieties to a C-terminal CaaX motif (C is cysteine, a is any aliphatic residue, X is the carboxy terminal residue). To better understand the relationship between posttranslational processing and the subcellular localization of Ras, a yeast genetic screen was undertaken based on the loss of function of a palmitoylation-dependent RAS2 allele. Mutations were identified in an uncharacterized open reading frame (YLR246w) that we have designated ERF2 and a previously described suppressor of hyperactive Ras, SHR5. ERF2 encodes a 41-kDa protein with four predicted transmembrane (TM) segments and a motif consisting of the amino acids Asp-His-His-Cys (DHHC) within a cysteine-rich domain (CRD), called DHHC-CRD. Mutations within the DHHC-CRD abolish Erf2 function. Subcellular fractionation and immunolocalization experiments reveal that Erf2 tagged with a triply iterated hemagglutinin epitope is an integral membrane protein that colocalizes with the yeast endoplasmic reticulum marker Kar2. Strains lacking ERF2 are viable, but they have a synthetic growth defect in the absence of RAS2 and partially suppress the heat shock sensitivity resulting from expression of the hyperactive RAS2(V19) allele. Ras2 proteins expressed in an erf2Delta strain have a reduced level of palmitoylation and are partially mislocalized to the vacuole. Based on these observations, we propose that Erf2 is a component of a previously uncharacterized Ras subcellular localization pathway. Putative members of an Erf2 family of proteins have been uncovered in yeast, plant, worm, insect, and mammalian genome databases, suggesting that Erf2 plays a role in Ras localization in all eucaryotes.
Collapse
Affiliation(s)
- D J Bartels
- Department of Biochemistry, University of Iowa, Iowa City, Iowa 52242, USA
| | | | | | | |
Collapse
|
14
|
|
15
|
Abstract
This work describes the phosphorylation of Saccharomyces cerevisiae Ras proteins and explores the physiological role of the phosphorylation of Ras2 protein. Proteins expressed from activated alleles of RAS were less stable and less phosphorylated than proteins from cells expressing wild-type alleles of RAS. This difference in phosphorylation level did not result from increased signaling through the Ras-cAMP pathway or reflect the primarily GTP-bound nature of activated forms of Ras protein per se. In addition, phosphorylation of Ras protein was not dependent on proper localization of the Ras2 protein to the plasma membrane nor on the interaction of Ras2p with its exchange factor, Cdc25p. The preferred phosphorylation site on Ras2 protein was identified as serine 214. This site, when mutated to alanine, led to promiscuous phosphorylation of Ras2 protein on nearby serine residues. A decrease in phosphorylation may lead to a decrease in signaling through the Ras-cAMP pathway.
Collapse
Affiliation(s)
- J L Whistler
- Division of Genetics, Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA
| | | |
Collapse
|
16
|
Boivin D, Lin W, Béliveau R. Essential arginine residues in isoprenylcysteine protein carboxyl methyltransferase. Biochem Cell Biol 1997. [DOI: 10.1139/o97-005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
17
|
Njoroge FG, Doll RJ, Vibulbhan B, Alvarez CS, Bishop WR, Petrin J, Kirschmeier P, Carruthers NI, Wong JK, Albanese MM, Piwinski JJ, Catino J, Girijavallabhan V, Ganguly AK. Discovery of novel nonpeptide tricyclic inhibitors of Ras farnesyl protein transferase. Bioorg Med Chem 1997; 5:101-13. [PMID: 9043662 DOI: 10.1016/s0968-0896(96)00206-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A comprehensive structure-activity relationship (SAR) study of novel tricyclic amides has been undertaken. The discovery of compounds that are potent FPT inhibitors in the nanomolar range has been achieved. These compounds are nonpeptidic and do not contain sulfhydryl groups. They selectively inhibit farnesyl protein transferase (FPT) and not geranylgeranyl protein transferase-1 (GGPT-1). They also inhibit H-Ras processing in Cos monkey kidney cells.
Collapse
Affiliation(s)
- F G Njoroge
- Schering-Plough Research Institute, Department of Chemistry, Kenilworth, NI 07033, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Njoroge F, Vibulbhan B, Alvarez CS, Bishop W, Petrin J, Doll RJ, Girijavallabhan V, Ganguly AK. Novel tricyclic aminoacetyl and sulfonamide inhibitors of Ras farnesyl protein transferase. Bioorg Med Chem Lett 1996. [DOI: 10.1016/s0960-894x(96)00558-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
19
|
Caldwell GA, Naider F, Becker JM. Fungal lipopeptide mating pheromones: a model system for the study of protein prenylation. Microbiol Rev 1995; 59:406-22. [PMID: 7565412 PMCID: PMC239367 DOI: 10.1128/mr.59.3.406-422.1995] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
In a variety of fungal species, mating between haploid cells is initiated by the action of peptide pheromones. The identification and characterization of several fungal pheromones has revealed that they have common structural features classifying them as lipopeptides. In the course of biosynthesis, these pheromones undergo a series of posttranslational processing events prior to export. One common modification is the attachment of an isoprenoid group to the C terminus of the pheromone precursor. Genetic and biochemical investigations of this biosynthetic pathway have led to the elucidation of genes and enzymes which are responsible for isoprenylation of other polypeptides including the nuclear lamins, several vesicular transport proteins, and the oncogene product Ras. The alpha-factor of Saccharomyces cerevisiae serves as a model for studying the biosynthesis, export, and bioactivity of lipopeptide pheromones. In addition to being isoprenylated with a farnesyl group, the alpha-factor is secreted by a novel peptide export pathway utilizing a yeast homolog of the mammalian multidrug resistance P-glycoprotein. The identification of putative lipopeptide-encoding loci within other fungi, including the human immunodeficiency virus-associated opportunistic pathogen Cryptococcus neoformans and the plant pathogen Ustilago maydis, has stimulated much interest in understanding possible roles for pheromones in fungal proliferation and pathogenicity. Knowledge of variations within the processing, export, and receptor-mediated signal transduction pathways associated with different fungal lipopeptide pheromones will continue to provide insights into similar mechanisms which exist in higher eukaryotes.
Collapse
Affiliation(s)
- G A Caldwell
- Department of Microbiology, University of Tennessee, Knoxville 37996-0845, USA
| | | | | |
Collapse
|
20
|
Manne V, Ricca CS, Brown JG, Tuomari AV, Yan N, Patel D, Schmidt R, Lynch MJ, Ciosek CP, Carboni JM, Robinson S, Gordon EM, Barbacid M, Seizinger BR, Biller SA. Ras farnesylation as a target for novel antitumor agents: Potent and selective farnesyl diphosphate analog inhibitors of farnesyltransferase. Drug Dev Res 1995. [DOI: 10.1002/ddr.430340205] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
21
|
Abstract
We have described several quantitative and qualitative assays that have been utilized to learn the basic properties of RACE and amphibian and mammalian counterparts. Owing to powerful genetic tractability, high specific activity, and an apparently well-conserved substrate specificity, yeast is an attractive organism in which to study RACE. Efforts are currently in progress to characterize the functional role of the endoproteolytic processing step of many essential proteins.
Collapse
Affiliation(s)
- M N Ashby
- Department of Molecular and Cell Biology, University of California, Berkeley 94720, USA
| | | |
Collapse
|
22
|
Affiliation(s)
- L Chen
- Onyx Pharmaceuticals, Richmond, California 94806, USA
| | | |
Collapse
|
23
|
Mitchell D, Farh L, Marshall T, Deschenes R. A polybasic domain allows nonprenylated Ras proteins to function in Saccharomyces cerevisiae. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)31838-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
24
|
Boivin D, Potier M, Béliveau R. Functional size of C-terminal protein carboxyl methyltransferase from kidney basolateral plasma membranes. BIOCHIMICA ET BIOPHYSICA ACTA 1994; 1207:114-9. [PMID: 8043600 DOI: 10.1016/0167-4838(94)90059-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The functional sizes of the C-terminal isoprenylcysteine protein carboxyl methyltransferase (PCMT) from kidney cortex basolateral plasma membranes and yeast membranes have been estimated by the radiation inactivation and fragmentation method. Attempts to solubilize the methyltransferase with detergents were unsuccessful as they resulted in the irreversible denaturation of its enzymatic activity. The radiation inactivation sizes of the methyltransferases were 98 and 24 kDa for kidney and yeast, respectively. Kinetic experiments showed that irradiation affects the Vmax of the reaction but not the apparent Km for either S-adenosyl-L-methionine and N-acetyl farnesylcysteine. The functional size reported here for the kidney membrane is about 4-times larger than the size predicted for the Saccharomyces cerevisiae C-terminal PCMT deduced from the nucleotide sequence of its gene (28 kDa). These results suggest that mammalian methyltransferase has a functional size different from that of the yeast; tetramerization of monomers is one possible hypothesis for this difference.
Collapse
Affiliation(s)
- D Boivin
- Laboratoire de Membranologie, Université du Québec à Montréal, Canada
| | | | | |
Collapse
|
25
|
Omori K, Kitagawa K, Omori K, Yasukura T, Uriu T, Morita M, Inagaki C. A cytosolic peptide potentiates the GTP effect on beta-adrenergic response of adenylate cyclase. THE AMERICAN JOURNAL OF PHYSIOLOGY 1994; 266:C498-507. [PMID: 7908170 DOI: 10.1152/ajpcell.1994.266.2.c498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A cytosolic peptide-GTP complex that stimulates l-isoproterenol-responsive adenylate cyclase activity was identified in the rat liver. The peptide component was purified and characterized with regard to its interaction with GTP. The peptide was isolated as a complex form with GTP on a Sephadex G-25 column in 1 mM NaHCO3, and was purified as a dissociated form, with relative molecular weight (M(r)) approximately 3,000 and GTP-binding ability, in 200 mM ammonium acetate. The purified peptide alone displayed little stimulatory effect on adenylate cyclase activity, but its reassociated form with GTP clearly enhanced the effect of GTP on the enzyme activity. The isoproterenol competition curve using l-[3H]dihydroalprenolol as an antagonist ligand shifted to lower affinity by the addition of the peptide reassociated with GTP (16.5-fold shift), whereas the same concentration of GTP (1 microM) or the peptide alone had little or no effect (1.5- or 0.9-fold shift, respectively). Furthermore, the peptide enhanced the GTP effect in response to l-isoproterenol but not to glucagon, prostaglandin E1, or fluoride. These results suggest that the cytosolic peptide potentiates the effect of GTP on the agonist-beta-adrenergic receptor-stimulatory guanine nucleotide-binding regulatory component of the adenylate cyclase ternary complex.
Collapse
Affiliation(s)
- K Omori
- Department of Pharmacology, Kansai Medical University, Osaka, Japan
| | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
Modification of proteins at C-terminal cysteine residue(s) by the isoprenoids farnesyl (C15) and geranylgeranyl (C20) is essential for the biological function of a number of eukaryotic proteins including fungal mating factors and the small, GTP-binding proteins of the Ras superfamily. Three distinct enzymes, conserved between yeast and mammals, have been identified that prenylate proteins: farnesyl protein transferase, geranylgeranyl protein transferase type I and geranylgeranyl protein transferase type II. Each prenyl protein transferase has its own protein substrate specificity. Much has been learned about the biology, genetics and biochemistry of protein prenylation and prenyl protein transferases through studies of eukaryotic microorganisms, particularly Saccharomyces cerevisiae. The functional importance of protein prenylation was first demonstrated with fungal mating factors. The initial genetic analysis of prenyl protein transferases was in S. cerevisiae with the isolation and subsequent characterization of mutations in the RAM1, RAM2, CDC43 and BET2 genes, each of which encodes a prenyl protein transferase subunit. We review here these and other studies on protein prenylation in eukaryotic microbes and how they relate to and have contributed to our knowledge about protein prenylation in all eukaryotic cells.
Collapse
Affiliation(s)
- C A Omer
- Department of Cancer Research, Merck Research Laboratories, West Point, Pennsylvania 19486
| | | |
Collapse
|
27
|
Hrycyna CA, Clarke S. Modification of eukaryotic signaling proteins by C-terminal methylation reactions. Pharmacol Ther 1993; 59:281-300. [PMID: 8309992 DOI: 10.1016/0163-7258(93)90071-k] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Eukaryotic polypeptides that are initially synthesized with the C-terminal sequence -Cys-Xaa-Xaa-Xaa, including a variety of signal-transducing proteins, such as small G-proteins, large G-proteins and cGMP phosphodiesterases, can be targeted for a series of sequential post-translational modifications. This processing pathway includes the isoprenylation of the cysteine residue with a farnesyl or geranylgeranyl moiety, followed by proteolysis of the three terminal residues and alpha-carboxyl methyl esterification of the cysteine residue. The potential reversibility of the last step suggests that it may be involved in modulating the function of these proteins. Firstly, methylation may play a role in the activation of cellular peptides or proteins. Secondly, this modification may aid in the membrane attachment of cytosolic precursor proteins. Thirdly, methylation may protect the polypeptide from C-terminal proteolytic degradation once the three terminal amino acid residues are removed. Finally, reversible methylation may directly regulate the function of its target proteins. Therapeutically, inhibitors of C-terminal isoprenylcysteine methylation or demethylation reactions may prove to be useful pharmacological tools as anti-cancer and anti-inflammatory agents.
Collapse
Affiliation(s)
- C A Hrycyna
- Department of Chemistry and Biochemistry, University of California, Los Angeles 90024-1569
| | | |
Collapse
|
28
|
Kujubu DA, Stimmel JB, Law RE, Herschman HR, Clarke S. Early responses of PC-12 cells to NGF and EGF: effect of K252a and 5'-methylthioadenosine on gene expression and membrane protein methylation. J Neurosci Res 1993; 36:58-65. [PMID: 8230321 DOI: 10.1002/jnr.490360107] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Although epidermal growth factor (EGF) and nerve growth factor (NGF) have markedly different biological effects on PC-12 cells, many of the signaling events following ligand binding are similar. Both EGF and NGF result in the induction of the primary response gene egr-1/TIS8 and increased methylation of a variety of membrane-associated proteins as early as 5 min after EGF or NGF treatment using a methylation assay that detects methyl esters as well as methylated arginine residues. At 20 min after stimulation with these factors, the stimulation of methylation by NGF is greater than that of EGF, especially in the polypeptides of 36-42 and 20-22 kDa. To help dissect the pathways involved in these cellular responses, the protein kinase inhibitor K252a and the methyltransferase inhibitor 5'-methylthioadenosine (MTA) were used. Both K252a and MTA inhibit NGF-, but not EGF-mediated, primary response gene expression. In contrast, MTA, but not K252a, can block NGF-induced membrane associated protein methylation. These data suggest a role for differential protein methylation reactions in EGF and NGF signal transduction.
Collapse
Affiliation(s)
- D A Kujubu
- Department of Medicine, University of California, Los Angeles
| | | | | | | | | |
Collapse
|
29
|
Ashby MN, Errada PR, Boyartchuk VL, Rine J. Isolation and DNA sequence of the STE14 gene encoding farnesyl cysteine: carboxyl methyltransferase. Yeast 1993; 9:907-13. [PMID: 8212897 DOI: 10.1002/yea.320090810] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
We isolated a mutant defective in C-terminal farnesyl cysteine:carboxyl methyltransferase activity from a screen for mutations causing a-specific sterility. A genomic fragment was cloned from a yeast multi-copy library that restored mating. Both the cloned gene and the sterile mutation were allelic to the STE14 gene. A ste14-complementing 2.17 kb BamHI fragment subclone was sequenced and found to encode a 239 amino acid protein with a molecular weight of 27,887 Daltons. The hydrophobicity profile of the methyltransferase reveals the presence of at least five potential transmembrane domains. In comparisons of the C-terminal methyltransferase amino acid sequence with those in the PIR and Swiss protein databases, no significantly similar sequences were found nor were conserved regions from other methyltransferases present.
Collapse
Affiliation(s)
- M N Ashby
- Department of Molecular and Cell Biology, University of California, Berkeley 94720
| | | | | | | |
Collapse
|
30
|
Xie H, Clarke S. Methyl esterification of C-terminal leucine residues in cytosolic 36-kDa polypeptides of bovine brain. A novel eucaryotic protein carboxyl methylation reaction. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(19)38660-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
31
|
Gingras D, Béliveau R. Guanine nucleotides stimulate carboxyl methylation of kidney cytosolic proteins. BIOCHIMICA ET BIOPHYSICA ACTA 1992; 1136:150-4. [PMID: 1504099 DOI: 10.1016/0167-4889(92)90250-f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We studied the effect of guanine nucleotides on the carboxyl methylation catalyzed by class II protein carboxylmethyltransferases (PCMT). Addition of guanosine 5'-O-(gamma-thio)triphosphate (GTP gamma S) promoted a time- and concentration-dependent enhancement of protein methylation in the cytosolic fraction isolated from kidney cortex. GTP gamma S affected the kinetics of the methylation reaction, as reflected by alterations of both apparent Km and Vmax of the methyltransferase. This effect was specific for guanine nucleotides and was completely abolished by addition of S-adenosyl-L-homocysteine, a well-known inhibitor of methyltransferase-catalyzed reactions. No GTP gamma S stimulation of methylation was found in cytosolic extracts from any of the other tissues studied, including brain, testis, spleen, and liver, nor in brush-border membranes isolated from the kidney cortex. The methylated proteins were highly sensitive to moderately alkaline conditions, suggesting that the methyl esters were formed on L-isoaspartyl residues and thus methylated by a class II PCMT. These results suggest that class-II-associated protein methylation activity from the soluble fraction of the kidney can be regulated by guanine nucleotides.
Collapse
Affiliation(s)
- D Gingras
- Département de chimie-biochimie, Université du Québec à Montréal, Canada
| | | |
Collapse
|
32
|
Characterization of a rat liver protein carboxyl methyltransferase involved in the maturation of proteins with the -CXXX C-terminal sequence motif. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)42212-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
33
|
Sobotka-Briner C, Chelsky D. COOH-terminal methylation of lamin B and inhibition of methylation by farnesylated peptides corresponding to lamin B and other CAAX motif proteins. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)49813-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
34
|
Takai Y, Kaibuchi K, Kikuchi A, Kawata M. Small GTP-binding proteins. INTERNATIONAL REVIEW OF CYTOLOGY 1992; 133:187-230. [PMID: 1577587 DOI: 10.1016/s0074-7696(08)61861-6] [Citation(s) in RCA: 275] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Y Takai
- Department of Biochemistry, Kobe University School of Medicine, Japan
| | | | | | | |
Collapse
|
35
|
Kumar KN, Tilakaratne N, Johnson PS, Allen AE, Michaelis EK. Cloning of cDNA for the glutamate-binding subunit of an NMDA receptor complex. Nature 1991; 354:70-3. [PMID: 1719427 DOI: 10.1038/354070a0] [Citation(s) in RCA: 133] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The amino acids L-glutamic and L-aspartic acids form the most widespread excitatory transmitter network in mammalian brain. The excitation produced by L-glutamic acid is important in the early development of the nervous system, synaptic plasticity and memory formation, seizures and neuronal degeneration. The receptors activated by L-glutamic acid are a target for therapeutic intervention in neurodegenerative diseases, brain ischaemia and epilepsy. There are two types of receptors for the excitatory amino acids, those that lead to the opening of cation-selective channels and those that activate phospholipase C (ref. 11). The receptors activating ion channels are NMDA (N-methyl-D-aspartate) and kainate/AMPA (alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate)-sensitive receptors. The complementary DNAs for the kainate/AMPA receptor and for the metabotropic receptor have been cloned. We report here on the isolation and characterization of a protein complex of four major proteins that represents an intact complex of the NMDA receptor ion channel and on the cloning of the cDNA for one of the subunits of this receptor complex, the glutamate-binding protein.
Collapse
Affiliation(s)
- K N Kumar
- Department of Pharmacology and Toxicology, University of Kansas, Lawrence 66047
| | | | | | | | | |
Collapse
|
36
|
Solomon R, Ben Baruch G, Menczer J, Kloog Y. Downregulation of specific protein carboxylmethyltransferase immunoreactivity in human endometrial carcinoma. Cancer 1991; 68:1742-6. [PMID: 1913517 DOI: 10.1002/1097-0142(19911015)68:8<1742::aid-cncr2820680816>3.0.co;2-r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Protein carboxylmethyltransferases (PCMT), enzymes that methylate free carboxyl groups of proteins, are involved in functional modification of various proteins including those of age-damaged proteins and the oncogenic ras proteins. Several species of PCMT are associated with these modifications. By using western blot analysis and specific antibodies raised against one type of PCMT, a 30-kilodalton (KD) cytosolic enzyme from Torpedo electric organ was identified in human erythrocytes and endometrium. The high specificity of the antibodies made it possible to compare levels of immunoreactive 30-KD PCMT protein in normal human endometria and endometrial carcinomas. Assays done on samples from 23 patients indicated the average levels of immunoreactive 30-KD PCMT in endometrial carcinomas was one fifth that of normal endometrium. The sensitivity of the assay was 83%, and its specificity was 90%. These results suggest that levels and activity of the 30-KD PCMT may be downregulated to maintain the phenotypic expression of the endometrial carcinoma. These assays may be used to assist in the detection of endometrial carcinomas.
Collapse
Affiliation(s)
- R Solomon
- Department of Biochemistry, George S. Wise Faculty of Life Sciences, Tel Aviv University, Israel
| | | | | | | |
Collapse
|
37
|
Fujiyama A, Tsunasawa S, Tamanoi F, Sakiyama F. S-farnesylation and methyl esterification of C-terminal domain of yeast RAS2 protein prior to fatty acid acylation. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)55216-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
38
|
Haklai R, Kloog Y. Relationship among methylation, isoprenylation, and GTP binding in 21- to 23-kDa proteins of neuroblastoma. Cell Mol Neurobiol 1991; 11:415-33. [PMID: 1751964 DOI: 10.1007/bf00711422] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
1. Dimethylsulfoxide-induced differentiated neuroblastoma express high levels of membrane 21 to 23-kDa carboxyl methylated proteins. Relationships among methylation, isoprenylation, and GTP binding in these proteins were investigated. Protein carboxyl methylation, protein isoprenylation, and [alpha-32P]GTP binding were determined in the electrophoretically separated proteins of cells labeled with the methylation precursor [methyl-3H]methionine or with an isoprenoid precursor [3H]mevalonate. 2. A broad band of GTP-binding proteins, which overlaps with the methylated 21 to 23-kDa proteins, was detected in [alpha-32P]GTP blot overlay assays. This band of proteins was separated in two-dimensional gels into nine methylated proteins, of which four bound GTP. 3. The carboxyl-methylated 21 to 23-kDa proteins incorporated [3H]mevalonate metabolites with characteristics of protein isoprenylation. The label was not removed by organic solvents or destroyed by hydroxylamine. Incorporation of radioactivity from [3H]mevalonate was enhanced when endogenous levels of mevalonate were reduced by lovastatin, an inhibitor of mevalonate synthesis. Lovastatin blocked methylation of the 21 to 23-kDa proteins as well (greater than 70%). 4. Methylthioadenosine, a methylation inhibitor, inhibited methylation of these proteins (greater than 80%) but did not affect their labeling by [3H]mevalonate. The results suggest that methylation of the 21 to 23-kDa proteins depends on, and is subsequent to, isoprenylation. The sequence of events may be similar to that known in ras proteins, i.e., carboxyl methylation of a C-terminal cysteine that is isoprenylated. 5. Lovastatin reduced the level of small GTP-binding proteins in the membranes and increased GTP binding in the cytosol. Methylthioadensoine blocked methylation without affecting GTP binding. 6. Thus, isoprenylation appears to precede methylation and to be important for membrane association, while methylation is not required for GTP binding or membrane association. The role of methylation remains to be determined but might be related to specific interactions of the small GTP-binding proteins with other proteins.
Collapse
Affiliation(s)
- R Haklai
- Department of Biochemistry, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Israel
| | | |
Collapse
|
39
|
Katayama M, Kawata M, Yoshida Y, Horiuchi H, Yamamoto T, Matsuura Y, Takai Y. The posttranslationally modified C-terminal structure of bovine aortic smooth muscle rhoA p21. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)98947-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
40
|
Huzoor-Akbar, Winegar DA, Lapetina EG. Carboxyl methylation of platelet rap1 proteins is stimulated by guanosine 5'-(3-O-thio)triphosphate. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(20)64334-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
41
|
Ohguro H, Fukada Y, Akino T. Structure and function of gamma-subunit of photoreceptor G-protein (transducin). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. B, COMPARATIVE BIOCHEMISTRY 1991; 100:433-8. [PMID: 1814671 DOI: 10.1016/0305-0491(91)90201-n] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
1. The gamma-subunit of the vertebrate photoreceptor GTP-binding protein (transducin) is S-farnesylated at the C-terminal cysteine residue, with a part of the residue being methyl-esterified at the alpha-carboxyl group. 2. Functionally, the modified cysteine residue is implicated in efficient coupling of the alpha- and beta gamma-subunits, and indispensible for expressing GTP-binding activity. 3. Similar modifications, isoprenylation and methyl-esterification of the C-terminal cysteine residue have been found in a variety of proteins involved in signal transduction and growth regulation processes. However, it seems likely that the physiological roles of the modifications are different for the various proteins.
Collapse
Affiliation(s)
- H Ohguro
- Department of Ophthalmology, Sapporo Medical College, Japan
| | | | | |
Collapse
|
42
|
Saccharomyces cerevisiae STE14 gene is required for COOH-terminal methylation of a-factor mating pheromone. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(17)30464-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
43
|
|
44
|
Maltese WA, Sheridan KM. Isoprenoid modification of G25K (Gp), a low molecular mass GTP-binding protein distinct from p21ras. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(18)38246-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
45
|
Haklai R, Kloog Y. Methylation of 21-23 kD membrane proteins by a membrane-associated protein carboxyl methyltransferase in neuroblastoma cells. Increased methylation in differentiated cells. Biochem Pharmacol 1990; 40:1365-72. [PMID: 2403390 DOI: 10.1016/0006-2952(90)90405-a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Membranes of neuroblastoma N1E-115 cells contain a specific protein carboxyl methyltransferase that methylates a 70 kD protein and a group of 21-23 kD proteins which are tightly bound to the membranes. The enzyme catalyzes the transfer of [methyl-3H] groups from [methyl-3H]S-adenosyl-L-methionine (Km = 0.22 microM) to these proteins to form base-labile carboxymethylesters. These protein methylesters are relatively stable compared to other protein methylesters, as shown by the ability of the 21-23 kD methylated proteins to retain their [methyl-3H] groups at pH values of 7 to 8.5 for at least 12 hr at room temperature. The extent of methylation of the 21-23 kD proteins, but not that of the 70 kD protein, was increased in membranes of cells induced to differentiate by 2% dimethyl sulfoxide (from a basal level of 0.1-0.2 to 0.9-1.2 pmol [methyl-3H] groups incorporated per mg membrane protein). This increase appeared after a lag period of 3 days of growth in the presence of the dimethyl sulfoxide and developed in parallel with the appearance of neurite-like processes in the cells. Kinetic experiments suggest that the amounts of 21-23 kD proteins available for methylation in the membranes of the undifferentiated and of the differentiated cells are limited. This and the previously observed low turnover of methylated 21-23 kD proteins in the intact cells suggest that the differentiated cells express and methylate more 21-23 kD proteins than the undifferentiated cells. These methylated proteins may be involved in differentiation or other functions of the differentiated cell membranes.
Collapse
Affiliation(s)
- R Haklai
- Department of Biochemistry, George S. Wise Faculty of Life Sciences, Tel Aviv University, Israel
| | | |
Collapse
|
46
|
Schafer WR, Trueblood CE, Yang CC, Mayer MP, Rosenberg S, Poulter CD, Kim SH, Rine J. Enzymatic coupling of cholesterol intermediates to a mating pheromone precursor and to the ras protein. Science 1990; 249:1133-9. [PMID: 2204115 DOI: 10.1126/science.2204115] [Citation(s) in RCA: 147] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The post-translational processing of the yeast a-mating pheromone precursor, Ras proteins, nuclear lamins, and some subunits of trimeric G proteins requires a set of complex modifications at their carboxyl termini. This processing includes three steps: prenylation of a cysteine residue, proteolytic processing, and carboxymethylation. In the yeast Saccharomyces cerevisiae, the product of the DPR1-RAM1 gene participates in this type of processing. Through the use of an in vitro assay with peptide substrates modeled after a presumptive a-mating pheromone precursor, it was discovered that mutations in DPR1-RAM1 cause a defect in the prenylation reaction. It was further shown that DPR1-RAM1 encodes an essential and limiting component of a protein prenyltransferase. These studies also implied a fixed order of the three processing steps shared by prenylated proteins: prenylation, proteolysis, then carboxymethylation. Because the yeast protein prenyltransferase could also prenylate human H-ras p21 precursor, the human DPR1-RAM1 analogue may be a useful target for anticancer chemotherapy.
Collapse
Affiliation(s)
- W R Schafer
- Department of Molecular and Cell Biology, University of California, Berkeley 94720
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Stephenson RC, Clarke S. Identification of a C-terminal protein carboxyl methyltransferase in rat liver membranes utilizing a synthetic farnesyl cysteine-containing peptide substrate. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(17)46215-6] [Citation(s) in RCA: 103] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
48
|
Schaber M, O'Hara M, Garsky V, Mosser S, Bergstrom J, Moores S, Marshall M, Friedman P, Dixon R, Gibbs J. Polyisoprenylation of Ras in vitro by a farnesyl-protein transferase. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(18)77164-0] [Citation(s) in RCA: 104] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
49
|
Backlund P, Simonds W, Spiegel A. Carboxyl methylation and COOH-terminal processing of the brain G-protein gamma-subunit. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(18)55435-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
50
|
Fukada Y, Takao T, Ohguro H, Yoshizawa T, Akino T, Shimonishi Y. Farnesylated gamma-subunit of photoreceptor G protein indispensable for GTP-binding. Nature 1990; 346:658-60. [PMID: 2385292 DOI: 10.1038/346658a0] [Citation(s) in RCA: 343] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Transducin, composed of subunits T alpha, T beta and T gamma, is a member of a heterotrimeric G-protein family, and transduces the light signal in visual cells. We have recently found that bovine T beta gamma can be separated into two components. T beta gamma-1 and T beta gamma-2, each of which has its own gamma-subunit, T gamma-1 and T gamma-2, respectively. T beta gamma-2 enhances the binding of GTP to T alpha in the presence of metarhodopsin II by about 30-fold compared with T beta gamma-1. Here we show that a farnesyl moiety is attached to a sulphur atom of the C-terminal cysteine of T gamma-2 (active form), a part of which is additionally methyl-esterified at the alpha-carboxyl group. In T gamma-1 (inactive form), however, such modifications are missing. Thus, the farnesyl moiety attached to the gamma-subunit is indispensable for the GTP-binding activity of transducin. This suggests that a similar modification may occur in the gamma-subunits of other heterotrimeric G proteins involved in biological signal transduction processes.
Collapse
Affiliation(s)
- Y Fukada
- Department of Biophysics, Faculty of Science, Kyoto University, Japan
| | | | | | | | | | | |
Collapse
|