1
|
O’Brown ZK, Greer EL. N6-methyladenine: A Rare and Dynamic DNA Mark. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1389:177-210. [DOI: 10.1007/978-3-031-11454-0_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
2
|
O'Brown ZK, Greer EL. N6-Methyladenine: A Conserved and Dynamic DNA Mark. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 945:213-246. [PMID: 27826841 DOI: 10.1007/978-3-319-43624-1_10] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Chromatin, consisting of deoxyribonucleic acid (DNA) wrapped around histone proteins, facilitates DNA compaction and allows identical DNA codes to confer many different cellular phenotypes. This biological versatility is accomplished in large part by posttranslational modifications to histones and chemical modifications to DNA. These modifications direct the cellular machinery to expand or compact specific chromatin regions and mark regions of the DNA as important for cellular functions. While each of the four bases that make up DNA can be modified (Iyer et al. 2011), this chapter will focus on methylation of the sixth position on adenines (6mA), as this modification has been poorly characterized in recently evolved eukaryotes, but shows promise as a new conserved layer of epigenetic regulation. 6mA was previously thought to be restricted to unicellular organisms, but recent work has revealed its presence in metazoa. Here, we will briefly describe the history of 6mA, examine its evolutionary conservation, and evaluate the current methods for detecting 6mA. We will discuss the enzymes that bind and regulate this mark and finally examine known and potential functions of 6mA in eukaryotes.
Collapse
Affiliation(s)
- Zach Klapholz O'Brown
- Division of Newborn Medicine, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA.,Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
| | - Eric Lieberman Greer
- Division of Newborn Medicine, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA. .,Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
3
|
Abstract
The DNA of Escherichia coli contains 19,120 6-methyladenines and 12,045 5-methylcytosines in addition to the four regular bases, and these are formed by the postreplicative action of three DNA methyltransferases. The majority of the methylated bases are formed by the Dam and Dcm methyltransferases encoded by the dam (DNA adenine methyltransferase) and dcm (DNA cytosine methyltransferase) genes. Although not essential, Dam methylation is important for strand discrimination during the repair of replication errors, controlling the frequency of initiation of chromosome replication at oriC, and the regulation of transcription initiation at promoters containing GATC sequences. In contrast, there is no known function for Dcm methylation, although Dcm recognition sites constitute sequence motifs for Very Short Patch repair of T/G base mismatches. In certain bacteria (e.g., Vibrio cholerae, Caulobacter crescentus) adenine methylation is essential, and, in C. crescentus, it is important for temporal gene expression, which, in turn, is required for coordinating chromosome initiation, replication, and division. In practical terms, Dam and Dcm methylation can inhibit restriction enzyme cleavage, decrease transformation frequency in certain bacteria, and decrease the stability of short direct repeats and are necessary for site-directed mutagenesis and to probe eukaryotic structure and function.
Collapse
|
4
|
Abstract
The DNA of Escherichia coli contains 19,120 6-methyladenines and 12,045 5-methylcytosines in addition to the four regular bases, and these are formed by the postreplicative action of three DNA methyltransferases. The majority of the methylated bases are formed by the Dam and Dcmmethyltransferases encoded by the dam (DNA adenine methyltransferase) and dcm (DNA cytosine methyltransferase) genes. Although not essential, Dam methylation is important for strand discrimination during repair of replication errors, controlling the frequency of initiation of chromosome replication at oriC, and regulation of transcription initiation at promoters containing GATC sequences. In contrast, there is no known function for Dcm methylation, although Dcm recognition sites constitute sequence motifs for Very Short Patch repair of T/G base mismatches. In certain bacteria (e.g., Vibrio cholera and Caulobactercrescentus) adenine methylation is essential, and in C.crescentus it is important for temporal gene expression which, in turn, is required for coordination of chromosome initiation, replication, and division. In practical terms, Dam and Dcm methylation can inhibit restriction enzyme cleavage,decrease transformation frequency in certain bacteria,and decrease the stability of short direct repeats andare necessary for site-directed mutagenesis and to probe eukaryotic structure and function.
Collapse
|
5
|
Rein T, DePamphilis ML, Zorbas H. Identifying 5-methylcytosine and related modifications in DNA genomes. Nucleic Acids Res 1998; 26:2255-64. [PMID: 9580672 PMCID: PMC147551 DOI: 10.1093/nar/26.10.2255] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Intense interest in the biological roles of DNA methylation, particularly in eukaryotes, has produced at least eight different methods for identifying 5-methylcytosine and related modifications in DNA genomes. However, the utility of each method depends not only on its simplicity but on its specificity, resolution, sensitivity and potential artifacts. Since these parameters affect the interpretation of data, they should be considered in any application. Therefore, we have outlined the principles and applications of each method, quantitatively evaluated their specificity,resolution and sensitivity, identified potential artifacts and suggested solutions, and discussed a paradox in the distribution of m5C in mammalian genomes that illustrates how methodological limitations can affect interpretation of data. Hopefully, the information and analysis provided here will guide new investigators entering this exciting field.
Collapse
Affiliation(s)
- T Rein
- National Institute of Child Health and Human Development, Building 6, Room 416, National Institutes of Health, Bethesda, MD 20892-2753, USA
| | | | | |
Collapse
|
6
|
Abstract
The construction of a variety of strains deficient in the methylation of adenine and cytosine residues in DNA by the methyltransferases (MTases) Dam and Dcm has allowed the study of the role of these enzymes in the biology of Escherichia coli. Dam methylation has been shown to play a role in coordinating DNA replication initiation, DNA mismatch repair and the regulation of expression of some genes. The regulation of expression of dam has been found to be complex and influenced by five promoters. A role for Dcm methylation in the cell remains elusive and dcm- cells have no obvious phenotype. dam- and dcm- strains have a range of uses in molecular biology and bacterial genetics, including preparation of DNA for restriction by some restriction endonucleases, for transformation into other bacterial species, nucleotide sequencing and site-directed mutagenesis. A variety of assays are available for rapid detection of both the Dam and Dcm phenotypes. A number of restriction systems in E. coli have been described which recognise foreign DNA methylation, but ignore Dam and Dcm methylation. Here, we describe the most commonly used mutant alleles of dam and dcm and the characteristics of a variety of the strains that carry these genes. A description of several plasmids that carry dam gene constructs is also included.
Collapse
Affiliation(s)
- B R Palmer
- Department of Plant and Microbial Sciences, University of Canterbury, Christchurch, New Zealand
| | | |
Collapse
|
7
|
Wagar EA, Safarians S, Pang M. Analysis of genomic DNA fromChlamydia trachomatisfor Dam and Dcm methylation. FEMS Microbiol Lett 1992. [DOI: 10.1111/j.1574-6968.1992.tb05507.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
8
|
Brissette JL, Weiner L, Ripmaster TL, Model P. Characterization and sequence of the Escherichia coli stress-induced psp operon. J Mol Biol 1991; 220:35-48. [PMID: 1712397 DOI: 10.1016/0022-2836(91)90379-k] [Citation(s) in RCA: 115] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We describe a new Escherichia coli operon, the phage shock protein (psp) operon, which is induced in response to heat, ethanol, osmotic shock and infection by filamentous bacteriophages. The operon includes at least four genes: pspA, B, C and E. PspA associates with the inner membrane and has the heptad repeats characteristic of proteins that can form coiled coils. The operon encodes a factor that activates psp expression, and deletion analyses indicate that this protein is PspC; PspC is predicted to possess a leucine zipper, a motif present in many eukaryotic transcription factors. The pspE gene is expressed in response to stress as part of the operon, but is also transcribed from its own promoter under normal conditions. In vitro studies suggest that PspA and C are modified in vivo. Expression of the psp genes does not require the heat shock sigma factor, sigma32. The increased duration of psp induction in a sigma32 mutant suggests that a product (or products) of the heat shock response down-regulates expression of the operon.
Collapse
|
9
|
Russell DW, Horiuchi K. The mutH gene regulates the replication and methylation of the pMB1 origin. J Bacteriol 1991; 173:3209-14. [PMID: 2022619 PMCID: PMC207916 DOI: 10.1128/jb.173.10.3209-3214.1991] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
DNA methylation is known to regulate several prokaryotic replication origins. In particular, the Escherichia coli chromosomal origin oriC and the pMB1 plasmid origin (which is homologous to the ColE1 origin) replicate poorly when hemimethylated at dam (GATC) sites. Because the mismatch repair protein MutH is known to recognize hemimethylated dam sites, its role in the replication of these origins was investigated. The results presented here show that the mutH gene product is partially responsible for the poor replication of the pMB1 origin when hemimethylated but has no effect on the replication of oriC. Methylation levels at individual dam sites suggest that the MutH protein binds to an inverted repeat in the pMB1 replication primer promoter. These findings suggest a mechanism for the coordinated control of DNA repair and replication.
Collapse
Affiliation(s)
- D W Russell
- Laboratory of Genetics, Rockefeller University, New York, New York 10021
| | | |
Collapse
|
10
|
Landoulsi A, Malki A, Kern R, Kohiyama M, Hughes P. The E. coli cell surface specifically prevents the initiation of DNA replication at oriC on hemimethylated DNA templates. Cell 1990; 63:1053-60. [PMID: 2257623 DOI: 10.1016/0092-8674(90)90508-c] [Citation(s) in RCA: 62] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A particular outer membrane fraction previously defined as possessing specific affinity for the hemimethylated form of the origin of replication of the E. coli chromosome (oriC) is shown to inhibit the initiation of DNA synthesis at this site on hemimethylated DNA templates in vitro. The replication of fully methylated or unmethylated DNA templates is not affected. Also, no inhibition is observed if initiation takes place at random sites on the hemimethylated template. The key inactivation step appears to be membrane inhibition of DnaA initiator protein binding to oriC. Remethylation of the membrane-bound hemimethylated DNA results in reactivation. Our results demonstrate direct involvement of the membrane in the control of DNA replication. We propose that association/dissociation of the origin from the cell membrane is one of the control elements governing interinitiation times in E. coli.
Collapse
Affiliation(s)
- A Landoulsi
- Institut Jacques Monod, Université Paris VII, France
| | | | | | | | | |
Collapse
|
11
|
Abstract
An adequate model for the initiation of chromosome replication in Escherichia coli should explain why the introduction of multiple copies of the chromosomal origin of replication, oriC, does not perturb cells seriously and why such multiple origins are replicated synchronously; it should explain why the key initiator protein, DnaA, is activated in vitro by binding specifically to acidic phospholipids and why the Dam methyltransferase is essential for the correct timing of initiation; it should explain why phospholipid synthesis and fluidity are necessary for initiation. In the detachment model, presented here, cyclical changes in the phospholipid composition of the cytoplasmic membrane activate initiator proteins such as DnaA protein and cause origins to detach; this detachment allows torsional stresses to open 13mer sequences in oriC; DnaA assists in the serial opening of these sequences and guides the entry of the helicase to form a pre-priming complex and trigger initiation; the greater affinity of hemi-methylated origin for membrane is re-interpreted as a mechanism for preventing re-initiation.
Collapse
Affiliation(s)
- V Norris
- Department of Genetics, University of Leicester, U.K
| |
Collapse
|