1
|
Kulma A, Villadsen D, Campbell DG, Meek SEM, Harthill JE, Nielsen TH, MacKintosh C. Phosphorylation and 14-3-3 binding of Arabidopsis 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2004; 37:654-67. [PMID: 14871307 DOI: 10.1111/j.1365-313x.2003.01992.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Fructose 2,6-bisphosphate (fru-2,6-P2) is a signalling metabolite that regulates photosynthetic carbon partitioning in plants. The content of fru-2,6-P2 in Arabidopsis leaves varied in response to photosynthetic activity with an abrupt decrease at the start of the photoperiod, gradual increase through the day, and modest decrease at the start of the dark period. In Arabidopsis suspension cells, fru-2,6-P2 content increased in response to an unknown signal upon transfer to fresh culture medium. This increase was blocked by either 2-deoxyglucose or the protein phosphatase inhibitor, calyculin A, and the effects of calyculin A were counteracted by the general protein kinase inhibitor K252a. The changes in fru-2,6-P2 at the start of dark period in leaves and in the cell experiments generally paralleled changes in nitrate reductase (NR) activity. NR is inhibited by protein phosphorylation and binding to 14-3-3 proteins, raising the question of whether fructose-6-phosphate,2-kinase/fructose-2,6-bisphosphatase protein from Arabidopsis thaliana (AtF2KP), which both generates and hydrolyses fru-2,6-P2, is also regulated by phosphorylation and 14-3-3s. Consistent with this hypothesis, AtF2KP and NR from Arabidopsis cell extracts bound to a 14-3-3 column, and were eluted specifically by a synthetic 14-3-3-binding phosphopeptide (ARAApSAPA). 14-3-3s co-precipitated with recombinant glutathione S-transferase (GST)-AtF2KP that had been incubated with Arabidopsis cell extracts in the presence of Mg-ATP. 14-3-3s bound directly to GST-AtF2KP that had been phosphorylated on Ser220 (SLSASGpSFR) and Ser303 (RLVKSLpSASSF) by recombinant Arabidopsis calcium-dependent protein kinase isoform 3 (CPK3), or on Ser303 by rat liver mammalian AMP-activated protein kinase (AMPK; homologue of plant SNF-1 related protein kinases (SnRKs)) or an Arabidopsis cell extract. We have failed to find any direct effect of 14-3-3s on the F2KP activity in vitro to date. Nevertheless, our findings indicate the possibility that 14-3-3 binding to SnRK1-phosphorylated sites on NR and F2KP may regulate both nitrate assimilation and sucrose/starch partitioning in leaves.
Collapse
Affiliation(s)
- Anna Kulma
- MRC Protein Phosphorylation Unit, School of Life Sciences, MSI/WTB Complex, University of Dundee, Dundee DD1 5EH, Scotland, UK
| | | | | | | | | | | | | |
Collapse
|
2
|
Markham JE, Kruger NJ. Kinetic properties of bifunctional 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase from spinach leaves. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:1267-77. [PMID: 11856361 DOI: 10.1046/j.1432-1033.2002.02771.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A cDNA encoding 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase was isolated from a Spinacia oleracea leaf library and used to express a recombinant enzyme in Escherichia coli and Spodoptera frugiperda cells. The insoluble protein expressed in E. coli was purified and used to raise antibodies. Western blot analysis of a protein extract from spinach leaf showed a single band of 90.8 kDa. Soluble protein was purified to homogeneity from S. frugiperda cells infected with recombinant baculovirus harboring the isolated cDNA. The soluble protein had a molecular mass of 320 kDa, estimated by gel filtration chromatography, and a subunit size of 90.8 kDa. The purified protein had activity of both 6-phosphofructo-2-kinase specific activity 10.4-15.9 nmol min(-1) x mg protein (-1) and fructose-2,6-bisphosphatase (specific activity 1.65-1.75 nmol x mol(-1) mg protein(-1). The 6-phosphofructo-2-kinase activity was activated by inorganic phosphate, and inhibited by 3-carbon phosphorylated metabolites and pyrophosphate. In the presence of phosphate, 3-phosphoglycerate was a mixed inhibitor with respect to both fructose 6-phosphate and ATP. Fructose-2,6-bisphosphatase activity was sensitive to product inhibition; inhibition by inorganic phosphate was uncompetitive, whereas inhibition by fructose 6-phosphate was mixed. These kinetic properties support the view that the level of fructose 2,6-bisphosphate in leaves is determined by the relative concentrations of hexose phosphates, three-carbon phosphate esters and inorganic phosphate in the cytosol through reciprocal modulation of 6-phosphofructo-2-kinase and fructose-2,6-bisphosphatase activities of the bifunctional enzyme.
Collapse
Affiliation(s)
- Jonathan E Markham
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| | | |
Collapse
|
3
|
Draborg H, Villadsen D, Nielsen TH. Transgenic Arabidopsis plants with decreased activity of fructose-6-phosphate,2-kinase/fructose-2,6-bisphosphatase have altered carbon partitioning. PLANT PHYSIOLOGY 2001; 126:750-8. [PMID: 11402203 PMCID: PMC111165 DOI: 10.1104/pp.126.2.750] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2000] [Revised: 11/19/2000] [Accepted: 01/05/2001] [Indexed: 05/18/2023]
Abstract
The role of fructose-2,6-bisphosphate (Fru-2,6-P(2)) as a regulatory metabolite in photosynthetic carbohydrate metabolism was studied in transgenic Arabidopsis plants with reduced activity of Fru-6-phosphate,2-kinase/Fru-2,6-bisphosphatase. A positive correlation was observed between the Fru-6-phosphate,2-kinase activity and the level of Fru-2,6-P(2) in the leaves. The partitioning of carbon was studied by (14)CO(2) labeling of photosynthetic products. Plant lines with Fru-2,6-P(2) levels down to 5% of the levels observed in wild-type (WT) plants had significantly altered partitioning of carbon between sucrose (Suc) versus starch. The ratio of (14)C incorporated into Suc and starch increased 2- to 3-fold in the plants with low levels of Fru-2,6-P(2) compared with WT. Transgenic plant lines with intermediate levels of Fru-2,6-P(2) compared with WT had a Suc-to-starch labeling ratio similar to the WT. Levels of sugars, starch, and phosphorylated intermediates in leaves were followed during the diurnal cycle. Plants with low levels of Fru-2,6-P(2) in leaves had high levels of Suc, glucose, and Fru and low levels of triose phosphates and glucose-1-P during the light period compared with WT. During the dark period these differences were eliminated. Our data provide direct evidence that Fru-2,6-P(2) affects photosynthetic carbon partitioning in Arabidopsis. Opposed to this, Fru-2,6-P(2) does not contribute significantly to regulation of metabolite levels in darkness.
Collapse
Affiliation(s)
- H Draborg
- Plant Biochemistry Laboratory, Department of Plant Biology, The Royal Veterinary and Agricultural University, 40 Thorvaldsensvej, DK-1871 Frederiksberg C, Copenhagen, Denmark
| | | | | |
Collapse
|
4
|
Villadsen D, Rung JH, Draborg H, Nielsen TH. Structure and heterologous expression of a gene encoding fructose-6-phosphate,2-kinase/fructose-2,6-bisphosphatase from Arabidopsis thaliana. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1492:406-13. [PMID: 10899575 DOI: 10.1016/s0167-4781(00)00134-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
A full-length cDNA clone encoding fructose-6-phosphate, 2-kinase/fructose-2,6-bisphosphatase from Arabidopsis thaliana (AtF2KP) was isolated. The encoded protein is composed of two different regions: (i) a 400 amino acid COOH-terminal region, covering the catalytic region of the protein which is homologous to enzymes from other eukaryotes. This region is highly conserved among plant species (88% identity to spinach F2KP). (ii) A 345 amino acid plant-specific NH(2)-terminal region, with 59% identity to spinach F2KP, which is composed of homologous motifs and intermittent variable sequences. Western blots show that F2KP from several plant species migrates in sodium dodecyl sulphate-polyacrylamide gel electrophoresis as a similar sized (93 kDa) protein. AtF2KP was expressed in Escherichia coli as a full length and a truncated (without the NH(2)-terminal region) fusion protein. Both forms had kinase as well as phosphatase activity, but presence of the NH(2)-terminal region influenced the ratio between the two activities. It is suggested that the NH(2)-terminal region represents a regulatory region, which defines specific properties of the plant enzymes. A genomic clone for the corresponding gene, AtF2KP, was isolated. The clone (9519 bp) included 23 exons, 22 introns and the promoter sequence. Southern blot analysis showed only one copy of the gene in the A. thaliana genome.
Collapse
Affiliation(s)
- D Villadsen
- Plant Biochemistry Laboratory, Department of Plant Biology, Royal Veterinary and Agricultural University, 40 Thorvaldsensvej, DK-1871 C, Frederiksberg, Denmark
| | | | | | | |
Collapse
|
5
|
Kretschmer M, Langer C, Prinz W. Mutation of monofunctional 6-phosphofructo-2-kinase in yeast to bifunctional 6-phosphofructo-2-kinase/fructose 2,6-bisphosphatase. Biochemistry 1993; 32:11143-8. [PMID: 8218176 DOI: 10.1021/bi00092a025] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
We have shown previously that 6-phosphofructo-2-kinase in yeast has negligible fructose-2,6-bisphosphatase activity even though resembling in part of its C-terminal sequence the phosphatase domain of the bifunctional liver enzyme. Here we show that exchanging Ser-404 to His-404 in the yeast peptide creates a bifunctional enzyme with a fructose-2,6-bisphosphatase activity involving a phosphoprotein intermediate. Like mammalian bifunctional enzymes, the His-404 mutant protein is readily phosphorylated by fructose 2,6-P2 with a half-saturation of 0.4 microM, the same Km value as for its fructose-2,6-bisphosphatase activity. Protein phosphorylation by the C-subunit of cAMP-dependent protein kinase, presumably at a C-terminal consensus site, increases the Km value to 1.5 microM. The newly created fructose-2,6-bisphosphatase is inhibited competitively by its product fructose 6-P with a K(i) of 0.6 mM. No effect of the His-404 mutation was found on 6-phosphofructo-2-kinase activity, in line with the mutant yeast enzyme having independent kinase and phosphatase domains, like its mammalian wild-type counterparts. The results would fit with the evolution of the PFK26 gene having involved fusion between kinase and phosphatase genes--as proposed for the mammalian enzyme--but with accompanying or later silencing of the fructose-2,6-bisphosphatase activity.
Collapse
Affiliation(s)
- M Kretschmer
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115
| | | | | |
Collapse
|
6
|
Soulié JM, Rivière M, Baldet P, Ricard J. Kinetics of the conformational transition of the spinach chloroplast fructose-1,6-bisphosphatase induced by fructose 2,6-bisphosphate. EUROPEAN JOURNAL OF BIOCHEMISTRY 1991; 195:671-8. [PMID: 1847866 DOI: 10.1111/j.1432-1033.1991.tb15752.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The activation of oxidized chloroplast fructose-1,6-bisphosphatase by fructose 2,6-bisphosphate and magnesium previously described at pH 7.5 [Soulié et al. (1988) Eur. J. Biochem. 176, 111-117] has now been studied at pH 8, the pH which prevails under light conditions in the chloroplast stroma. The process obeys a hysteretic mechanism but the rate of activation is considerably increased with half-times down to 50 s and the apparent dissociation constant of fructose 2,6-bisphosphate from the enzyme is lowered from 1 mM at pH 7.5 to 3.3 microM at pH 8. The process is strictly metal-dependent with a half-saturation concentration of 2.54 mM for magnesium. The conformational transition postulated in our hysteretic model has been investigated through both the spectrophometric and chemical modification approaches. The activation of the enzyme by fructose 2,6-bisphosphate in the presence of magnesium results in a slow modification of the ultraviolet absorption spectrum of the enzyme with an overall increase of 3% at 290 nm. The same treatment leads to the protection of two free sulfhydryls and an increased reactivity of one sulfhydryl group/enzyme monomer to modification by 5,5'-dithiobis(2-nitrobenzoic acid). The titration of the exposed cysteinyl residue prevents the relaxation of enzyme species induced by fructose 2,6-bisphosphate to the native form. The activation of chloroplast fructose-1,6-bisphosphatase by fructose 2,6-bisphosphate is discussed both with respect to the understanding of the overall regulation properties of the enzyme and to a possible physiological significance of this process.
Collapse
Affiliation(s)
- J M Soulié
- Centre de Biochimie et de Biologie Moléculaire, C.N.R.S., Marseille, France
| | | | | | | |
Collapse
|
7
|
Morigasaki S, Takata K, Sanada Y, Wada K, Yee BC, Shin S, Buchanan BB. Novel forms of ferredoxin and ferredoxin-NADP reductase from spinach roots. Arch Biochem Biophys 1990; 283:75-80. [PMID: 2241175 DOI: 10.1016/0003-9861(90)90614-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Ferredoxin and the enzyme catalyzing its reduction by NADPH, ferredoxin-NADP reductase (ferredoxin-NADP+ oxidoreductase or FNR), were found to be present in roots of spinach (Spinacia oleracea). Localization experiments with endosperm of germinating castor beans (Ricinus communis), a classical nonphotosynthetic tissue for cell fractionation studies, confirmed that ferredoxin and FNR are localized in the plastid fraction. Both proteins were purified from spinach roots and found to resemble their leaf counterparts in activity, spectral properties, and complex formation, but to differ in amino acid composition and amino terminal sequence. The results indicate that the primary structures of the FNR and ferredoxin of spinach roots differ from that of the corresponding leaf proteins. Together with earlier findings, the present results provide evidence that nonphotosynthetic plastids, including those of roots, are capable of reducing ferredoxin with heterotrophically generated NADPH.
Collapse
Affiliation(s)
- S Morigasaki
- Department of Biology, Faculty of Science, Kanazawa University, Ishikawa, Japan
| | | | | | | | | | | | | |
Collapse
|
8
|
|
9
|
Ekkehard H, Stitt M. Perturbation of photosynthesis in spinach leaf discs by low concentrations of methyl viologen : Influence of increased thylakoid energisation on ATP synthesis, electron transport, energy dissipation, light-activation of the calvin-cycle enzymes, and control of starch and sucrose synthesis. PLANTA 1989; 179:51-60. [PMID: 24201421 DOI: 10.1007/bf00395770] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/1988] [Accepted: 02/14/1989] [Indexed: 06/02/2023]
Abstract
Spinach leaf discs were floated on methyl-viologen solutions (5-200 nmol·l(-1)) and the effect on photosynthetic metabolism was then investigated under conditions of saturating CO2. Methyl viologen led to increased non-photochemical quenching, and the ATP/ADP ratio increased from <2 to >10. Comparison of the apparent quantum yield and non-photochemical quenching indicated that these concentrations of methyl viologen were only catalysing a marginal electron flux, and that the decrease in quantum yield was mainly the result of ΔpH-triggered energy dissipation. Similar changes were also obtained after supplying tentoxin to inhibit the chloroplast ATP synthase and increase the energisation of the thylakoids. The photosystem-II acceptor, QA, was monitored by photochemical fluorescence quenching, and became more reduced. In contrast, the activation of NADP-malate dehydrogenase decreased, showing that the acceptor side of photosystem I becomes more oxidised. Similar changes were observed after supplying tentoxin. It is concluded that increased thylakoid energisation can lead to a substantial restriction of linear electron transport. Analysis of metabolite levels showed that glycerate-3-phosphate reduction was imporved, but that there was a large accumulation of triose phosphates and fructose-1,6-bisphosphate. This is the consequence of an inhibition of the regeneration of ribulose-1,5-bisphosphate, caused by inactivation of the stromal fructose-1,6-bisphosphatase and, to a lesser extent, phosphoribulokinase. Methyl viologen also led to inactivation of sucrose-phosphate synthase, and abolished the response of fructose-2,6-bisphosphate to rising rates of photosynthesis. This provides evidence for a primary role of glycerate-3-phosphate in controlling the activity of fructose-6-phosphate, 2-kinase and, thence, the fructose-2,6-bisphosphate concentration as the rate of photosynthesis increases. It is concluded that the very moderate ATP/ADP ratios found in chloroplasts are the results of constraints on the operation of ATP synthase. They can be increased if the thylakoid energisation is increased. However, the increased energisation acts directly or indirectly to disrupt many other aspects of photosynthetic metabolism including linear electron transport, activation of the Calvin cycle, and the control of sucrose and starch synthesis.
Collapse
Affiliation(s)
- H Ekkehard
- Lehrstuhl für Pflanzenphysiologie, Universität Bayreuth, D-8580, Bayreuth, Federal Republic of Germany
| | | |
Collapse
|