1
|
Majumdar R, Bandyopadhyay A, Maitra U. Mammalian translation initiation factor eIF1 functions with eIF1A and eIF3 in the formation of a stable 40 S preinitiation complex. J Biol Chem 2003; 278:6580-7. [PMID: 12493757 DOI: 10.1074/jbc.m210357200] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have examined the role of the mammalian initiation factor eIF1 in the formation of the 40 S preinitiation complex using in vitro binding of initiator Met-tRNA (as Met-tRNA(i).eIF2.GTP ternary complex) to 40 S ribosomal subunits in the absence of mRNA. We observed that, although both eIF1A and eIF3 are essential to generate a stable 40 S preinitiation complex, quantitative binding of the ternary complex to 40 S subunits also required eIF1. The 40 S preinitiation complex contained, in addition to eIF3, both eIF1 and eIF1A in a 1:1 stoichiometry with respect to the bound Met-tRNA(i). These three initiation factors also bind to free 40 S subunits, and the resulting complex can act as an acceptor of the ternary complex to form the 40 S preinitiation complex (40 S.eIF3.eIF1.eIF1A.Met-tRNA(i).eIF2.GTP). The stable association of eIF1 with 40 S subunits required the presence of eIF3. In contrast, the binding of eIF1A to free 40 S ribosomes as well as to the 40 S preinitiation complex was stabilized by the presence of both eIF1 and eIF3. These studies suggest that it is possible for eIF1 and eIF1A to bind the 40 S preinitiation complex prior to mRNA binding.
Collapse
Affiliation(s)
- Romit Majumdar
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine of Yeshiva University, Jack and Pearl Resnick Campus, Bronx, New York 10461, USA
| | | | | |
Collapse
|
2
|
Lee GE, Church GA, Wilson DW. A subpopulation of tegument protein vhs localizes to detergent-insoluble lipid rafts in herpes simplex virus-infected cells. J Virol 2003; 77:2038-45. [PMID: 12525638 PMCID: PMC140989 DOI: 10.1128/jvi.77.3.2038-2045.2003] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Virion host shutoff (vhs) is a 58-kDa protein encoded by the UL41 gene of herpes simplex virus (HSV). vhs resides within the tegument of HSV, enters the cell cytoplasm at infection, and destabilizes host cell and viral mRNA. Late in infection, vhs must be assembled into the tegument of progeny virions, a poorly understood process. Using an anti-vhs antiserum and Western blotting of total cell or cytoplasmic extracts, we found that vhs is largely insoluble in HSV-infected cells, even in the presence of high levels of salt and the detergent Triton X-100. Furthermore, a subpopulation of vhs appears to be associated with detergent-insoluble lipid rafts and this raft population is enriched in a cytoplasmic fraction which contains assembling and mature HSV particles. Our data raise the possibility that HSV tegument polypeptides associate with membrane rafts, in common with the matrix proteins of a number of other viruses.
Collapse
Affiliation(s)
- Grace E Lee
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | |
Collapse
|
3
|
Das S, Maitra U. Functional significance and mechanism of eIF5-promoted GTP hydrolysis in eukaryotic translation initiation. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2002; 70:207-31. [PMID: 11642363 DOI: 10.1016/s0079-6603(01)70018-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Eukaryotic translation initiation factor 5 (eIF5), a monomeric protein of about 49 kDa in mammals and 46 kDa in the yeast Saccharomyces cerevisiae, in conjunction with GTP and other initiation factors plays an essential role in initiation of protein synthesis in eukaryotic cells. Following formation of the 40S initiation complex (40S . eIF3 . mRNA . Met-tRNAf . eIF2 . GTP) at the AUG codon of an mRNA, eIF5 interacts with the 40S initiation complex to promote the hydrolysis of bound GTP. Hydrolysis of GTP causes the release of bound initiation factors from the 40S subunit, an event that is essential for the subsequent joining of the 60S ribosomal subunit to the 40S complex to form the functional 80S initiation complex. Detailed characterization of the eIF5-promoted GTP hydrolysis reaction shows that eIF5 functions as a GTPase-activating protein (GAP) in translation initiation. First, eIF5 promotes hydrolysis of GTP only when the nucleotide is bound to eIF2 in the 40S initiation complex. eIF5, by itself, does not hydrolyze either free GTP or GTP bound to the Met-tRNAf . eIF2 . GTP ternary complex in the absence of 40S ribosomal subunits. Second, as with typical GAPs, eIF5 forms a complex with eIF2, the GTP-binding protein. This interaction, which occurs between the lysine-rich N-terminal region of the beta subunit of eIF2 and the glutamic acid-rich C-terminal region of eIF5, is essential for eIF5 function both in vitro and in vivo in yeast cells. Finally, like typical GAPs, eIF5 also contains an arginine-finger motif consisting of an invariant arginine residue at its N-terminus that is also essential for its function. This invariant arginine residue is presumably involved in the stabilization of the transition state of the GTP hydrolysis reaction catalyzed by initiation factor eIF2.
Collapse
Affiliation(s)
- S Das
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | |
Collapse
|
4
|
Das S, Ghosh R, Maitra U. Eukaryotic translation initiation factor 5 functions as a GTPase-activating protein. J Biol Chem 2001; 276:6720-6. [PMID: 11092890 DOI: 10.1074/jbc.m008863200] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Eukaryotic translation initiation factor 5 (eIF5) forms a complex with eIF2 by interacting with the beta subunit of eIF2. This interaction is essential for eIF5-promoted hydrolysis of GTP bound to the 40 S initiation complex. In this work, we show that, in addition to the eIF2 beta-binding region at the C terminus of eIF5, the N-terminal region of eIF5 is also required for eIF5-dependent GTP hydrolysis. Like other GTPase-activating proteins, eIF5 contains an invariant arginine residue (Arg-15) at its N terminus that is essential for its function. Mutation of this arginine residue to alanine or even to conservative lysine caused a severe defect in the ability of eIF5 to promote GTP hydrolysis from the 40 S initiation complex, although the ability of these mutant proteins to bind to eIF2 beta remained unchanged. These mutants were also defective in overall protein synthesis as well as in their ability to support cell growth of a Delta TIF5 yeast strain. Additionally, alanine substitution mutagenesis of eIF5 defined Lys-33 and Lys-55 as also critical for eIF5 function in vitro and in vivo. The implications of these results in relation to other well characterized GAPs are discussed and provide additional evidence that eIF5 functions as a GTPase-activating protein.
Collapse
Affiliation(s)
- S Das
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine of Yeshiva University, Bronx, New York 10461, USA
| | | | | |
Collapse
|
5
|
Das S, Maitra U. Mutational analysis of mammalian translation initiation factor 5 (eIF5): role of interaction between the beta subunit of eIF2 and eIF5 in eIF5 function in vitro and in vivo. Mol Cell Biol 2000; 20:3942-50. [PMID: 10805737 PMCID: PMC85746 DOI: 10.1128/mcb.20.11.3942-3950.2000] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Eukaryotic translation initiation factor 5 (eIF5) interacts with the 40S initiation complex (40S-eIF3-AUG-Met-tRNA(f)-eIF2-GTP) to promote the hydrolysis of ribosome-bound GTP. eIF5 also forms a complex with eIF2 by interacting with the beta subunit of eIF2. In this work, we have used a mutational approach to investigate the importance of eIF5-eIF2beta interaction in eIF5 function. Binding analyses with recombinant rat eIF5 deletion mutants identified the C terminus of eIF5 as the eIF2beta-binding region. Alanine substitution mutagenesis at sites within this region defined several conserved glutamic acid residues in a bipartite motif as critical for eIF5 function. The E346A,E347A and E384A,E385A double-point mutations each caused a severe defect in the binding of eIF5 to eIF2beta but not to eIF3-Nip1p, while a eIF5 hexamutant (E345A,E346A, E347A,E384A,E385A,E386A) showed negligible binding to eIF2beta. These mutants were also severely defective in eIF5-dependent GTP hydrolysis, in 80S initiation complex formation, and in the ability to stimulate translation of mRNAs in an eIF5-dependent yeast cell-free translation system. Furthermore, unlike wild-type rat eIF5, which can functionally substitute for yeast eIF5 in complementing in vivo a genetic disruption of the chromosomal copy of the TIF5 gene, the eIF5 double-point mutants allowed only slow growth of this DeltaTIF5 yeast strain, while the eIF5 hexamutant was unable to support cell growth and viability of this strain. These findings suggest that eIF5-eIF2beta interaction plays an essential role in eIF5 function in eukaryotic cells.
Collapse
Affiliation(s)
- S Das
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine of Yeshiva University, Bronx, New York 10461, USA
| | | |
Collapse
|
6
|
Abstract
Protein kinase CK2 is a ubiquitous and pleiotropic seryl/threonyl protein kinase which is highly conserved in evolution indicating a vital cellular role for this kinase. The holoenzyme is generally composed of two catalytic (alpha and/or alpha') and two regulatory (beta) subunits, but the free alpha/alpha' subunits are catalytically active by themselves and can be present in cells under some circumstances. Special attention has been devoted to phosphorylation status and structure of these enzymic molecules, however, their regulation and roles remain intriguing. Until recently, CK2 was believed to represent a kinase especially required for cell cycle progression in non-neural cells. At present, with respect to recent findings, four essential features suggest potentially important roles for this enzyme in specific neural functions: (1) CK2 is much more abundant in brain than in any other tissue; (2) there appear to be a myriad of substrates for CK2 in both synaptic and nuclear compartments that have clear implications in development, neuritogenesis, synaptic transmission, synaptic plasticity, information storage and survival; (3) CK2 seems to be associated with mechanisms underlying long-term potentiation in hippocampus; and (4) neurotrophins stimulate activity of CK2 in hippocampus. In addition, some data are suggestive that CK2 might play a role in processes underlying progressive disorders due to Alzheimer's disease, ischemia, chronic alcohol exposure or immunodeficiency virus HIV. The present review focuses mainly on the latest data concerning the regulatory mechanisms and the possible neurophysiological functions of this enzyme.
Collapse
Affiliation(s)
- P R Blanquet
- Unité de Recherche de Physiopharmacologie du Système Nerveux, U-161 INSERM, Paris, France.
| |
Collapse
|
7
|
Linder P, Vornlocher HP, Hershey JW, McCarthy JE. A systematic nomenclature for new translation initiation factor genes from S. pombe and other fungi. Yeast 1999; 15:865-72. [PMID: 10407266 DOI: 10.1002/(sici)1097-0061(199907)15:10a<865::aid-yea426>3.0.co;2-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Eukaryotic translation initiation factors and their corresponding genes have been characterized using biochemical and genetic methods from a variety of different organisms. The designations of the factors relate to their apparent roles in the biochemical process. Many gene names indicate genetic interactions with other genes or the functional attributes used to identify them. On the other hand, progress in systematic sequencing of the genomes of organisms like Saccharomyces cerevisiae and Schizosaccharomyces pombe has revealed many genes homologous to known translation initiation factor genes. The genes defined by the systematic sequencing approach are assigned numerical designations completely unrelated to their biological function. So far there have been publications on only three genes encoding translation initiation factors from Schizosaccharomyces pombe. We therefore see this an an ideal opportunity to propose a systematic and logical nomenclature for genes encoding translation initiation factor genes that can be applied to all further genes of this type that are characterized in this fission yeast.
Collapse
Affiliation(s)
- P Linder
- Département de Biochimie Médicale, Centre Médical Universitaire, 1, rue Michel Servet 1211 Genève 4, Switzerland
| | | | | | | |
Collapse
|
8
|
Si K, Maitra U. The Saccharomyces cerevisiae homologue of mammalian translation initiation factor 6 does not function as a translation initiation factor. Mol Cell Biol 1999; 19:1416-26. [PMID: 9891075 PMCID: PMC116070 DOI: 10.1128/mcb.19.2.1416] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/1998] [Accepted: 10/27/1998] [Indexed: 11/20/2022] Open
Abstract
Eukaryotic translation initiation factor 6 (eIF6) binds to the 60S ribosomal subunit and prevents its association with the 40S ribosomal subunit. The Saccharomyces cerevisiae gene that encodes the 245-amino-acid eIF6 (calculated Mr 25,550), designated TIF6, has been cloned and expressed in Escherichia coli. The purified recombinant protein prevents association between 40S and 60S ribosomal subunits to form 80S ribosomes. TIF6 is a single-copy gene that maps on chromosome XVI and is essential for cell growth. eIF6 expressed in yeast cells associates with free 60S ribosomal subunits but not with 80S monosomes or polysomal ribosomes, indicating that it is not a ribosomal protein. Depletion of eIF6 from yeast cells resulted in a decrease in the rate of protein synthesis, accumulation of half-mer polyribosomes, reduced levels of 60S ribosomal subunits resulting in the stoichiometric imbalance in the 40S/60S subunit ratio, and ultimately cessation of cell growth. Furthermore, lysates of yeast cells depleted of eIF6 remained active in translation of mRNAs in vitro. These results indicate that eIF6 does not act as a true translation initiation factor. Rather, the protein may be involved in the biogenesis and/or stability of 60S ribosomal subunits.
Collapse
Affiliation(s)
- K Si
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine of Yeshiva University, Bronx, New York 10461, USA
| | | |
Collapse
|
9
|
Si K, Chaudhuri J, Chevesich J, Maitra U. Molecular cloning and functional expression of a human cDNA encoding translation initiation factor 6. Proc Natl Acad Sci U S A 1997; 94:14285-90. [PMID: 9405604 PMCID: PMC24943 DOI: 10.1073/pnas.94.26.14285] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Eukaryotic translation initiation factor 6 (eIF6) binds to the 60S ribosomal subunit and prevents its association with the 40S ribosomal subunit. In this paper, we devised a procedure for purifying eIF6 from rabbit reticulocyte lysates and immunochemically characterized the protein by using antibodies isolated from egg yolks of laying hens immunized with rabbit eIF6. By using these monospecific antibodies, a 1.096-kb human cDNA that encodes an eIF6 of 245 amino acids (calculated Mr 26,558) has been cloned and expressed in Escherichia coli. The purified recombinant human protein exhibits biochemical properties that are similar to eIF6 isolated from mammalian cell extracts. Database searches identified amino acid sequences from Saccharomyces cerevisiae, Drosophila, and the nematode Caenorhabditis elegans with significant identity to the deduced amino acid sequence of human eIF6, suggesting the presence of homologues of human eIF6 in these organisms.
Collapse
Affiliation(s)
- K Si
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine of Yeshiva University, Jack and Pearl Resnick Campus, Bronx, NY 10461, USA
| | | | | | | |
Collapse
|
10
|
Das S, Maiti T, Das K, Maitra U. Specific interaction of eukaryotic translation initiation factor 5 (eIF5) with the beta-subunit of eIF2. J Biol Chem 1997; 272:31712-8. [PMID: 9395514 DOI: 10.1074/jbc.272.50.31712] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Eukaryotic translation initiation factor 5 (eIF5) interacts with the 40 S initiation complex (40 S.mRNA. eIF3.Met-tRNAf.eIF2.GTP) and mediates hydrolysis of the bound GTP. To characterize the molecular interactions involved in eIF5 function, we have used 32P-labeled recombinant rat eIF5 as a probe in filter overlay assay to identify eIF5-interacting proteins in crude initiation factor preparations. We observed that eIF5 specifically interacted with the beta subunit of initiation factor eIF2. No other initiation factors including the gamma subunit of eIF2 tested positive in this assay. Furthermore, both yeast and mammalian eIF5 bind to the beta subunit of either mammalian or yeast eIF2. Binding analysis with human eIF2beta deletion mutants expressed in Escherichia coli identified a 22-amino acid domain, between amino acids 68 and 89, as the primary eIF5-binding region of eIF2beta. These results along with our earlier observations that (a) eIF5 neither binds nor hydrolyzes free GTP or GTP bound as Met-tRNAf.eIF2.GTP ternary complex, and (b) eIF5 forms a specific complex with eIF2 suggests that the specific interaction between eIF5 and the beta subunit of eIF2 may be critical for the hydrolysis of GTP during translation initiation.
Collapse
Affiliation(s)
- S Das
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine of Yeshiva University, Bronx, New York 10461, USA
| | | | | | | |
Collapse
|
11
|
Chaudhuri J, Chakrabarti A, Maitra U. Biochemical characterization of mammalian translation initiation factor 3 (eIF3). Molecular cloning reveals that p110 subunit is the mammalian homologue of Saccharomyces cerevisiae protein Prt1. J Biol Chem 1997; 272:30975-83. [PMID: 9388245 DOI: 10.1074/jbc.272.49.30975] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Eukaryotic translation initiation factor 3 (eIF3), which plays an essential role in initiation of protein synthesis, was purified from rabbit reticulocyte lysates using an assay that specifically measures its ability to stimulate the binding of Met-tRNAf (as a Met-tRNAf.eIF2.GTP ternary complex) to 40 S ribosomal subunits. Purified eIF3 consisted of six major polypeptides of molecular masses 110, 67, 42, 40, 36, and 35 kDa but lacked the 170-kDa polypeptide reported to be a constituent of other eIF3 preparations. Characterization of purified eIF3 lacking the 170-kDa polypeptide showed that the eIF3-mediated 40 S initiation complex formed in the presence of AUG codon efficiently joined 60 S ribosomal subunits in an eIF5-dependent reaction to form a functional 80 S initiation complex. eIF3, which was originally bound to the 40 S initiation complex, was released from the 40 S subunit during the subunit joining reaction. Additionally, chicken antibodies raised against rabbit reticulocyte eIF3 were used to immunochemically characterize eIF3 subunits and to isolate a 3.1-kilobase pair human cDNA that encodes the p110 subunit of mammalian eIF3. The derived amino acid sequence (calculated Mr 95,214) shows that the p110 subunit is the mammalian homologue of Saccharomyces cerevisiae protein Prt1p, a subunit of yeast eIF3.
Collapse
Affiliation(s)
- J Chaudhuri
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Yeshiva University, Bronx, New York 10461, USA
| | | | | |
Collapse
|
12
|
Maiti T, Maitra U. Characterization of translation initiation factor 5 (eIF5) from Saccharomyces cerevisiae. Functional homology with mammalian eIF5 and the effect of depletion of eIF5 on protein synthesis in vivo and in vitro. J Biol Chem 1997; 272:18333-40. [PMID: 9218474 DOI: 10.1074/jbc.272.29.18333] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Eukaryotic translation initiation factor 5 (eIF5) interacts in vitro with the 40 S initiation complex (40 S.AUG.Met-tRNAf.eIF2.GTP) to mediate the hydrolysis of ribosome-bound GTP. In Saccharomyces cerevisiae, eIF5 is encoded by a single copy essential gene, TIF5, that encodes a protein of 45,346 daltons. To understand the function of eIF5 in vivo, we constructed a conditional mutant yeast strain in which a functional but a rapidly degradable form of eIF5 fusion protein was synthesized from the repressible GAL promoter. Depletion of eIF5 from this mutant yeast strain resulted in inhibition of both cell growth and the rate of in vivo protein synthesis. Analysis of the polysome profiles of eIF5-depleted cells showed greatly diminished polysomes with simultaneous increase in free ribosomes. Furthermore, lysates of cells depleted of eIF5 were dependent on exogenously added yeast eIF5 for efficient translation of mRNAs in vitro. This is the first demonstration that the TIF5 gene encodes a protein involved in initiation of translation in eukaryotic cells. Additionally, we show that rat eIF5 can functionally substitute yeast eIF5 in translation of mRNAs in vitro as well as in complementing in vivo a genetic disruption in the chromosomal copy of TIF5.
Collapse
Affiliation(s)
- T Maiti
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine of Yeshiva University, Jack and Pearl Resnick Campus, Bronx, New York 10461, USA
| | | |
Collapse
|
13
|
Chaudhuri J, Si K, Maitra U. Function of eukaryotic translation initiation factor 1A (eIF1A) (formerly called eIF-4C) in initiation of protein synthesis. J Biol Chem 1997; 272:7883-91. [PMID: 9065455 DOI: 10.1074/jbc.272.12.7883] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
We have used an efficient in vitro translation initiation system to show that the mammalian 17-kDa eukaryotic initiation factor, eIF1A (formerly designated eIF-4C), is essential for transfer of the initiator Met-tRNAf (as Met-tRNAf.eIF2.GTP ternary complex) to 40 S ribosomal subunits in the absence of mRNA to form the 40 S preinitiation complex (40 S.Met-tRNAf.eIF2.GTP). Furthermore, eIF1A acted catalytically in this reaction to mediate highly efficient transfer of the Met-tRNAf.eIF2.GTP ternary complex to 40 S ribosomal subunits. The 40 S complex formed was free of eIF1A indicating that its role in 40 S preinitiation complex formation is not to stabilize the binding of Met-tRNAf to 40 S ribosomes. Additionally, the eIF1A-mediated 40 S initiation complex formed in the presence of AUG codon efficiently joined 60 S ribosomal subunits in an eIF5-dependent reaction to form a functional 80 S initiation complex. In contrast to other reports, we found that eIF1A plays no role either in the subunit joining reaction or in the generation of ribosomal subunits from 80 S ribosomes. Our results indicate that the major function of eIF1A is to mediate the transfer of Met-tRNAf to 40 S ribosomal subunits to form the 40 S preinitiation complex.
Collapse
Affiliation(s)
- J Chaudhuri
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine of Yeshiva University, Bronx, New York 10461, USA
| | | | | |
Collapse
|
14
|
Si K, Das K, Maitra U. Characterization of multiple mRNAs that encode mammalian translation initiation factor 5 (eIF-5). J Biol Chem 1996; 271:16934-8. [PMID: 8663286 DOI: 10.1074/jbc.271.28.16934] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Eukaryotic translation initiation factor 5 (eIF-5) interacts with the 40 S initiation complex (40S.mRNA.MettRNAf.eIF-2.GTP) to promote the hydrolysis of bound GTP with the concomitant joining of the 60 S ribosomal subunit to the 40 S initiation complex to form a functional 80 S initiation complex. In this paper, the multiple mRNAs that encode mammalian eIF-5 have been characterized. In rat tissues, three major eIF-5 mRNAs of 3.5, 2.8, and 2.2 kilobases in length are detected. All major eIF-5 mRNAs are initiated from a single transcription initiation site, contain identical 5'-untranslated and coding regions, but differ from one another only in the length of their 3'-untranslated regions. The different lengths of the 3'-untranslated region of eIF-5 mRNAs are generated by the use of alternative polyadenylation signals. Additionally, we demonstrate tissue-specific variations in eIF-5 mRNA expression as well as preference for polyadenylation sites. These results should lead to increased understanding of the regulation of eIF-5 gene expression.
Collapse
Affiliation(s)
- K Si
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine of Yeshiva University, Jack and Pearl Resnick Campus, Bronx, New York 10461, USA
| | | | | |
Collapse
|
15
|
Song Q, Combest WL, Gilbert LI. Spermine and polylysine enhanced phosphorylation of calmodulin and tubulin in an insect endocrine gland. Mol Cell Endocrinol 1994; 99:1-10. [PMID: 8187951 DOI: 10.1016/0303-7207(94)90139-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Spermine-stimulated and heparin-inhibited phosphorylation of both exogenous casein and endogenous protein substrates of the prothoracic gland were measured in prothoracic gland cytosolic fractions from fifth instar larvae and early pupae of the tobacco hornworm, Manduca sexta. The results reveal a striking increase in casein kinase II (CKII) activity, i.e. approximately 3-fold above basal level in the presence of 5 mM spermine, with the highest activity exhibited by gland fractions from day 0-2 larvae, newly pupated animals and day 1 pupae. These results were verified by the results from Western blot analysis using a CKII alpha-subunit specific antibody and a 10 a.a. synthetic peptide that is a specific substrate for CKII. Several endogenous proteins were found to be substrates for CKII when assayed in the presence of spermine or polylysine. A 19 kDa peptide was shown to be calmodulin (CaM) by using the purified Manduca brain CaM as an indicator, and was only phosphorylated in the presence of polylysine. A 52 kDa protein was identified as tubulin by immunoprecipitation with a tubulin-specific monoclonal antibody, and was shown to be phosphorylated in the presence of spermine and polylysine. The possible roles of phosphocalmodulin and phosphotubulin are discussed in the context of prothoracic gland function.
Collapse
Affiliation(s)
- Q Song
- Department of Biology, University of North Carolina, Chapel Hill 27599-3280
| | | | | |
Collapse
|
16
|
Chevesich J, Chaudhuri J, Maitra U. Characterization of mammalian translation initiation factor 5 (eIF-5). Demonstration that eIF-5 is a phosphoprotein and is present in cells as a single molecular form of apparent M(r) 58,000. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(20)80775-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
17
|
Chakravarti D, Maiti T, Maitra U. Isolation and immunochemical characterization of eukaryotic translation initiation factor 5 from Saccharomyces cerevisiae. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)53383-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
18
|
Chakrabarti A, Maitra U. Release and recycling of eukaryotic initiation factor 2 in the formation of an 80 S ribosomal polypeptide chain initiation complex. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)42368-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
19
|
Angiolillo A, Panara F, Piccinini G, Gianfranceschi GL. Isolation and partial characterization of a protein kinase NII from wheat germ chromatin. Mol Biol Rep 1991; 15:39-43. [PMID: 1875918 DOI: 10.1007/bf00369899] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A protein kinase, type NII, has been purified from wheat germ chromatin. The enzyme, which uses both ATP and GTP as phosphoryl donors, catalyzes the phosphorylation of casein, phosvitin and E. coli RNA polymerase, but not of histone proteins. Polypeptide bands at 46 kDa, 37 kDa and 25 kDa were estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Autophosphorylation of the 25 kDa subunit was observed following incubation of the purified kinase with (gamma-32P)ATP and (gamma-32P)GTP.
Collapse
Affiliation(s)
- A Angiolillo
- Instituto di Biologia Cellulare, Universita' di Perugia, Italia
| | | | | | | |
Collapse
|
20
|
Pinna LA. Casein kinase 2: an 'eminence grise' in cellular regulation? BIOCHIMICA ET BIOPHYSICA ACTA 1990; 1054:267-84. [PMID: 2207178 DOI: 10.1016/0167-4889(90)90098-x] [Citation(s) in RCA: 698] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- L A Pinna
- Dipartimento di Chimica Biologica, Università di Padova, Italy
| |
Collapse
|