1
|
Bottje WG, Lassiter K, Piekarski-Welsher A, Dridi S, Reverter A, Hudson NJ, Kong BW. Proteogenomics Reveals Enriched Ribosome Assembly and Protein Translation in Pectoralis major of High Feed Efficiency Pedigree Broiler Males. Front Physiol 2017; 8:306. [PMID: 28559853 PMCID: PMC5432614 DOI: 10.3389/fphys.2017.00306] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 04/27/2017] [Indexed: 12/15/2022] Open
Abstract
Background: In production animal agriculture, the cost of feed represents 60–70% of the total cost of raising an animal to market weight. Thus, development of viable biomarkers for feed efficiency (FE, g gain/g feed) to assist in genetic selection of breeding stock remains an important goal in commercial breeding programs. Methods: Global gene (cDNA microarray, RNAseq) and protein expression (shotgun proteomics) analyses have been conducted on breast muscle samples obtained from pedigree broiler males (PedM) exhibiting high and low FE phenotypes. Using the entire datasets (i.e., no cutoffs for significance or fold difference in expression) the number of genes or proteins that were expressed numerically higher or lower in the high FE compared to the low FE phenotype for key terms or functions, e.g., ribosomal, mitochondrial ribosomal, tRNA, RNA binding motif, RNA polymerase, small nuclear ribonucleoprotein, and protein tyrosine phosphatase, were determined. Bionomial distribution analysis (exact) was then conducted on these datasets to determine significance between numerically up or down expression. Results: Processes associated with mitochondrial proteome expression (e.g., mitochondrial ribosomal proteins, mitochondrial transcription, mitochondrial tRNA, and translation) were enriched in breast muscle from the high FE compared to the low FE pedigree male broiler phenotype. Furthermore, the high FE phenotype exhibited enrichment of ribosome assembly (e.g., RNA polymerase, mitochondrial and cytosolic ribosomes, small, and heterogeneous nuclear ribonucleoproteins), as well as nuclear transport and protein translation processes compared to the low FE phenotype. Quality control processes (proteosomes and autophagy) were also enriched in the high FE phenotype. In contrast, the low FE phenotype exhibited enrichment of cytoskeletal proteins, protein tyrosine phosphatases, and tyrosine kinases compared to the high FE phenotype. These results suggest that processes of mitochondrial and cytosolic ribosomal construction, activity, and protein translation would be enhanced in high FE breast muscle, and that phosphorylation of tyrosine moieties of proteins could be prolonged in the high compared to low FE phenotype. The results indicate the presence of a proteogenomic architecture that could enhance ribosome construction, protein translation, and quality control processes and contribute to the phenotypic expression of feed efficiency in this PedM broiler model.
Collapse
Affiliation(s)
- Walter G Bottje
- Department of Poultry Science, Center of Excellence for Poultry Science, University of ArkansasFayetteville, AR, USA
| | - Kentu Lassiter
- Department of Poultry Science, Center of Excellence for Poultry Science, University of ArkansasFayetteville, AR, USA
| | - Alissa Piekarski-Welsher
- Department of Poultry Science, Center of Excellence for Poultry Science, University of ArkansasFayetteville, AR, USA
| | - Sami Dridi
- Department of Poultry Science, Center of Excellence for Poultry Science, University of ArkansasFayetteville, AR, USA
| | - Antonio Reverter
- Computational and Systems Biology, Agriculture and Food (CSIRO)St. Lucia, QLD, Australia
| | - Nicholas J Hudson
- Animal Science, School of Agriculture and Food Science, University of QueenslandGatton, QLD, Australia
| | - Byung-Whi Kong
- Department of Poultry Science, Center of Excellence for Poultry Science, University of ArkansasFayetteville, AR, USA
| |
Collapse
|
2
|
Nemcova L, Jansova D, Vodickova-Kepkova K, Vodicka P, Jeseta M, Machatkova M, Kanka J. Detection of genes associated with developmental competence of bovine oocytes. Anim Reprod Sci 2016; 166:58-71. [PMID: 26811294 DOI: 10.1016/j.anireprosci.2016.01.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 12/10/2015] [Accepted: 01/04/2016] [Indexed: 01/22/2023]
Abstract
The developmental competence of oocytes is acquired progressively during folliculogenesis and is linked to follicular size. It has been documented that oocytes originating from larger follicles exhibit a greater ability to develop to the blastocyst stage. The differences in cytoplasmic factors such as mRNA transcripts could explain the differences in oocyte developmental potential. We used bovine oligonucleotide microarrays to characterize differences between the gene expression profiles of germinal vesicle stage (GV) oocytes with greater developmental competence from medium follicles (MF) and those with less developmental competence from small follicles (SF). After normalizing the microarray data, our analysis found differences in the level of 60 transcripts (≥1.4 fold), corresponding to 49 upregulated and 11 downregulated transcripts in MF oocytes compared to SF oocytes. The gene expression data were classified according to gene ontology, the majority of the genes were associated with the regulation of transcription, translation, the cell cycle, and mitochondrial activity. A subset of 16 selected genes was validated for GV oocytes by quantitative real-time RT-PCR; significant differences (P˂0.01) were found in the level of TAF1A, MTRF1L, ATP5C1, UBL5 and MAP3K13 between the MF and SF oocytes. After maturation the transcript level remained stable for ATP5F1, BRD7, and UBL5 in both oocyte categories. The transcript level of another 13 genes substantially dropped in the MF and/or SF oocytes. It can be concluded that the developmental competence of bovine oocytes and embryos may be a quantitative trait dependent on small changes in the transcription profiles of many genes.
Collapse
Affiliation(s)
- Lucie Nemcova
- Laboratory of Developmental Biology, Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, Libechov, Czech Republic.
| | - Denisa Jansova
- Laboratory of Developmental Biology, Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, Libechov, Czech Republic
| | - Katerina Vodickova-Kepkova
- Laboratory of Developmental Biology, Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, Libechov, Czech Republic
| | - Petr Vodicka
- Laboratory of Developmental Biology, Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, Libechov, Czech Republic; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Michal Jeseta
- Department of Genetics and Reproduction, Veterinary Research Institute, Brno, Czech Republic
| | - Marie Machatkova
- Department of Genetics and Reproduction, Veterinary Research Institute, Brno, Czech Republic
| | - Jiri Kanka
- Laboratory of Developmental Biology, Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, Libechov, Czech Republic
| |
Collapse
|
3
|
Chida J, Araki H, Maeda Y. Specific growth suppression of human cancer cells by targeted delivery of Dictyostelium mitochondrial ribosomal protein S4. Cancer Cell Int 2014; 14:56. [PMID: 24976792 PMCID: PMC4074393 DOI: 10.1186/1475-2867-14-56] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2014] [Accepted: 06/09/2014] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND In general, growth and differentiation are mutually exclusive but are cooperatively regulated throughout development. Thus, the process of a cell's switching from growth to differentiation is of great importance not only for the development of organisms but also for malignant transformation, in which this process is reversed. We have previously demonstrated using a Dictyostelium model system that the Dictyostelium mitochondrial ribosomal protein S4 (Dd-mrp4) gene expression is essential for the initiation of cell differentiation: Dd-mrp4-null cells fail to initiate differentiation, while the initial step of cell differentiation and the subsequent morphogenesis are markedly enhanced in mrp4 (OE) cells overexpressing the Dd-mrp4 in the extramitochondrial cytoplasm. This raised a possibility that the ectopically enforced expression of the Dd-mrp4 in human cells might inhibit their growth, particularly of malignant tumor cells, by inducing cell differentiation. METHODS FOUR KINDS OF HUMAN TUMOR CELL LINES WERE TRANSFECTED BY THREE KIND OF VECTOR CONSTRUCTS (THE EMPTY VECTOR: pcDNA3.1 (Mock); pcDNA3.1-rps4 bearing Dictyostelium cytoplasmic ribosomal protein S4; pcDNA3.1-mrp4 bearing Dictyostelium mitochondrial ribosomal protein S4). As controls, four kinds of human primary cultured cells were similarly transfected by the above vector constructs. After transfection, growth kinetics of cells was analyzed using cell viability assay, and also the TUNEL method was used for evaluation of apoptotic cells. RESULTS Ectopically expressed Dd-mrp4 suppressed cell proliferation through inducing apoptotic cell death specifically in the human lung adenocarcinoma (A549), epithelial cervical cancer (HeLa), hepatocellular carcinoma (HepG2) and colonic carcinoma (Caco-2), but not in primary cultured normal cells, such as human brain microvascular endothelial cells (HBMECs); human umbilical vein endothelial cells (HUVECs) and human normal hepatocytes (hHeps™), with one exception (human cardiac fibloblasts (HCF)). CONCLUSION The present finding that the ectopically enforced expression of Dd-mrp4 in human several tumor cell lines specifically suppresses their proliferation suggests strongly that the Dd-mrp4 gene derived from Dictyostelium mitochondria may provide a new promising therapeutic strategy for disrupting cell viability pathways in human cancers.
Collapse
Affiliation(s)
- Junji Chida
- Division of Molecular Neurobiology, Institute for Enzyme Research, The University of Tokushima, Kuramoto-cho, Tokushima 770-8503, Japan
| | - Hikaru Araki
- Division of Enzyme Chemistry, Institute for Enzyme Research, The University of Tokushima, Kuramoto-cho, Tokushima 770-8503, Japan
| | - Yasuo Maeda
- Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aoba, Sendai 980-8578, Japan
| |
Collapse
|
4
|
Richman TR, Davies SMK, Shearwood AMJ, Ermer JA, Scott LH, Hibbs ME, Rackham O, Filipovska A. A bifunctional protein regulates mitochondrial protein synthesis. Nucleic Acids Res 2014; 42:5483-94. [PMID: 24598254 PMCID: PMC4027184 DOI: 10.1093/nar/gku179] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Mitochondrial gene expression is predominantly regulated at the post-transcriptional level and mitochondrial ribonucleic acid (RNA)-binding proteins play a key role in RNA metabolism and protein synthesis. The AU-binding homolog of enoyl-coenzyme A (CoA) hydratase (AUH) is a bifunctional protein with RNA-binding activity and a role in leucine catabolism. AUH has a mitochondrial targeting sequence, however, its role in mitochondrial function has not been investigated. Here, we found that AUH localizes to the inner mitochondrial membrane and matrix where it associates with mitochondrial ribosomes and regulates protein synthesis. Decrease or overexpression of the AUH protein in cells causes defects in mitochondrial translation that lead to changes in mitochondrial morphology, decreased mitochondrial RNA stability, biogenesis and respiratory function. Because of its role in leucine metabolism, we investigated the importance of the catalytic activity of AUH and found that it affects the regulation of mitochondrial translation and biogenesis in response to leucine.
Collapse
Affiliation(s)
- Tara R Richman
- Harry Perkins Institute of Medical Research and Centre for Medical Research, The University of Western Australia, Nedlands, Western Australia 6009, Australia
| | - Stefan M K Davies
- Harry Perkins Institute of Medical Research and Centre for Medical Research, The University of Western Australia, Nedlands, Western Australia 6009, Australia
| | - Anne-Marie J Shearwood
- Harry Perkins Institute of Medical Research and Centre for Medical Research, The University of Western Australia, Nedlands, Western Australia 6009, Australia
| | - Judith A Ermer
- Harry Perkins Institute of Medical Research and Centre for Medical Research, The University of Western Australia, Nedlands, Western Australia 6009, Australia
| | - Louis H Scott
- Harry Perkins Institute of Medical Research and Centre for Medical Research, The University of Western Australia, Nedlands, Western Australia 6009, Australia
| | - Moira E Hibbs
- Harry Perkins Institute of Medical Research and Centre for Medical Research, The University of Western Australia, Nedlands, Western Australia 6009, Australia
| | - Oliver Rackham
- Harry Perkins Institute of Medical Research and Centre for Medical Research, The University of Western Australia, Nedlands, Western Australia 6009, Australia School of Chemistry and Biochemistry, The University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Aleksandra Filipovska
- Harry Perkins Institute of Medical Research and Centre for Medical Research, The University of Western Australia, Nedlands, Western Australia 6009, Australia School of Chemistry and Biochemistry, The University of Western Australia, Crawley, Western Australia 6009, Australia
| |
Collapse
|
5
|
Bull VH, Rajalingam K, Thiede B. Sorafenib-induced mitochondrial complex I inactivation and cell death in human neuroblastoma cells. J Proteome Res 2012; 11:1609-20. [PMID: 22268697 DOI: 10.1021/pr200790e] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Sorafenib is a multikinase inhibitor that is approved for use against renal cell and hepatocellular carcinoma. We found that sorafenib potently induced cell death in human neuroblastoma cells. To understand the molecular basis of sorafenib-mediated cell death in human SH-SY5Y cells, we performed a temporal quantitative proteome analysis. The results showed significant quantitative changes of 193 unique proteins. Bioinformatics-assisted pathway analysis of the regulated proteins revealed that mitochondrial proteins, especially components of the electron transport chain and the mitochondrial ribosomes, were significantly affected upon exposure to sorafenib. The observed down-regulation of the respiratory chain complex I (NADH dehydrogenase) was accompanied with loss of mitochondrial transmembrane potential (Δψm) and complete impairment of complex I enzyme activity. The destabilization of complex I subunits was consistent, rapid, and independent of caspase activation as well as Bcl-2 overexpression. This study provides an overview of the molecular machinery driving sorafenib-mediated cell death in neuroblastoma cells and suggests that sorafenib could be a potential therapeutic drug for the treatment of neuroblastoma.
Collapse
Affiliation(s)
- Vibeke Hervik Bull
- The Biotechnology Centre of Oslo, University of Oslo , P.O. Box 1125 Blindern, 0317 Oslo, Norway
| | | | | |
Collapse
|
6
|
MRPS18-2 protein immortalizes primary rat embryonic fibroblasts and endows them with stem cell-like properties. Proc Natl Acad Sci U S A 2009; 106:19866-71. [PMID: 19903879 DOI: 10.1073/pnas.0911545106] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
We report that the overexpression of mitochondrial ribosomal protein MRPS18-2 (S18-2) can immortalize primary rat embryonic fibroblasts (REFs). The immortalized cells (18IM) lose contact inhibition, form foci, and are capable of anchorage-independent growth. Concurrently, mesodermal markers, such as vimentin, smooth muscle actin, and Fut4, disappear completely. 18IM cells express embryonic stem cell markers, such as SSEA-1, Sox2, and Oct3/4. In confluent cultures, a portion of cells also express ectoderm- and endoderm-specific pan-keratin, ectoderm-specific beta-III-tubulin, mesoderm-specific MHC class II, and become stainable for fat with Oil red O. None of these changes was detected in c-myc+Ha-ras (MR)-transformed cells. In immunodeficient mice, 18IM cells formed small transiently growing tumors that have down-regulated SSEA-1 and showed pan-keratin staining. We conclude that S18-2 can immortalize REFs and induces them to express stem cell traits.
Collapse
|
7
|
Marín-García J. Thyroid hormone and myocardial mitochondrial biogenesis. Vascul Pharmacol 2009; 52:120-30. [PMID: 19857604 DOI: 10.1016/j.vph.2009.10.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2009] [Accepted: 10/18/2009] [Indexed: 10/20/2022]
Abstract
Mitochondria have been central in the development of some of the most important ideas in modern biology. Since the discovery that mitochondria have its own DNA and specific mutations and deletions were found in association with neuromuscular and heart diseases, as well as in aging, an extraordinary number of publications have followed, and the term mitochondrial medicine was coined. Recently, it has been found that thyroid hormone (TH) stimulates cardiac mitochondrial biogenesis increasing myocardial mitochondrial mass, mitochondrial respiration, oxidative phosphorylation (OXPHOS), enzyme activities, mitochondrial protein synthesis (by stimulation in a T3-dependent manner), cytochrome, phospholipid and mtDNA content. Also, TH therapy may modulate cardiac mitochondrial protein-import apparatus. To identify the sequence of events, molecules and signaling pathways that is activated by TH affecting mitochondrial structure, biogenesis and function further research is warranted.
Collapse
Affiliation(s)
- José Marín-García
- The Molecular Cardiology and Neuromuscular Institute, 75 Raritan Avenue, Highland Park, NJ 08904, USA.
| |
Collapse
|
8
|
Abstract
Mitochondrial ribosomes comprise the most diverse group of ribosomes known. The mammalian mitochondrial ribosomes (55S) differ unexpectedly from bacterial (70S) and cytoplasmic ribosomes (80S), as well as other kinds of mitochondrial ribosomes. The bovine mitochondrial ribosome has been developed as a model system for the study of human mitochondrial ribosomes to address several questions related to the structure, function, biosynthesis and evolution of these interesting ribosomes. Bovine mitochondrial ribosomal proteins (MRPs) from each subunit have been identified and characterized with respect to individuality and electrophoretic properties, amino acid sequence, topographic disposition, RNA binding properties, evolutionary relationships and reaction with affinity probes of ribosomal functional domains. Several distinctive properties of these ribosomes are being elucidated, including their antibiotic susceptibility and composition. Mammalian mitochondrial ribosomes lack several of the major RNA stem structures of bacterial ribosomes but they contain a correspondingly higher protein content (as many as 80 proteins), suggesting a model where proteins have replaced RNA structural elements during the evolution of these ribosomes. Despite their lower RNA content they are physically larger than bacterial ribosomes, because of the 'extra' proteins they contain. The extra proteins in mitochondrial ribosomes are 'new' in the sense that they are not homologous to proteins in bacterial or cytoplasmic ribosomes. Some of the new proteins appear to be bifunctional. All of the mammalian MRPs are encoded in nuclear genes (a separate set from those encoding cytoplasmic ribosomal proteins) which are evolving more rapidly than those encoding cytoplasmic ribosomal proteins. The MRPs are imported into mitochondria where they assemble coordinately with mitochondrially transcribed rRNAs into ribosomes that are responsible for translating the 13 mRNAs for essential proteins of the oxidative phosphorylation system. Interest is growing in the structure, organization, chromosomal location and expression of genes for human MRPs. Proteins which are essential for mitoribosome function are candidates for involvement in human genetic disease.
Collapse
Affiliation(s)
- Thomas W O'Brien
- Department of Biochemistry and Molecular Biology, Health Science Center, University of Florida, Gainesville, FL 32610-0245, USA.
| |
Collapse
|
9
|
Abstract
The bovine mitochondrial system is being developed as a model system for studies on mammalian mitochondrial ribosomes. Information is emerging on the structural organization and RNA binding properties of proteins in these mitochondrial ribosomes. Unexpectedly, these ribosomes appear to interact directly with GTP, via a high affinity binding site on the small subunit. Despite major differences in their RNA content and physical properties, mammalian mitochondrial and cytoplasmic ribosomes contain about the same number of proteins. The proteins in each kind of ribosome have a similar size distribution, and both sets are entirely coded by nuclear genes, raising the possibility that these different ribosomes may contain the same set of proteins. Comparison of bovine mitochondrial and cytoplasmic r-proteins by co-electrophoresis in two-dimensional gels reveals that most of the cytoplasmic ribosomal proteins are more basic than the mitochondrial ribosomal proteins, and that none are co-migratory with mitochondrial ribosomal proteins, suggesting that the proteins in the two ribosomes are different. To exclude the possibility that the electrophoretic differences result only from post-translational modification of otherwise identical proteins, antibodies against several proteins from the large subunit of bovine mitochondrial ribosomes were tested against cytoplasmic ribosomes by solid phase radioimmunoassay and against cytoplasmic ribosomal proteins on Western blots. The lack of cross-reaction of these antibodies with cytoplasmic r-proteins suggests that mitochondrial ribosomal proteins have different primary structures and thus are most likely encoded by a separate set of nuclear genes.
Collapse
Affiliation(s)
- S F Pietromonaco
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville 32610
| | | | | |
Collapse
|
10
|
Biogenesis of Mammalian Mitochondria. ACTA ACUST UNITED AC 1987. [DOI: 10.1016/b978-0-12-152515-6.50012-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
11
|
Pietromonaco SF, Hessler RA, O'Brien TW. Evolution of proteins in mammalian cytoplasmic and mitochondrial ribosomes. J Mol Evol 1986; 24:110-7. [PMID: 3104609 DOI: 10.1007/bf02099958] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The proteins of cytoplasmic and mitochondrial ribosomes from the cow and the rat were analyzed by co-electrophoresis in two dimensional polyacrylamide gels to determine their relative evolutionary rates. In a pairwise comparison of individual ribosomal proteins (r-proteins) from the cow and the rat, over 85% of the cytoplasmic r-proteins have conserved electrophoretic properties in this system, while only 15% of the proteins of mitochondrial ribosomes from these animals fell into this category. These values predict that mammalian mitochondrial r-proteins are evolving about 13 times more rapidly than cytoplasmic r-proteins. Based on actual evolutionary rates for representative cytoplasmic r-proteins, this mitochondrial r-protein evolutionary rate corresponds to an amino acid substitution rate of 40 X 10(-10) per site per year, placing mitochondrial r-proteins in the category of rapidly evolving proteins. The mitochondrial r-proteins are apparently evolving at a rate comparable to that of the mitochondrial rRNA, suggesting that functional constraints act more or less equally on both kinds of molecules in the ribosome. It is significant that mammalian mitochondrial r-proteins are evolving more rapidly than cytoplasmic r-proteins in the same cell, since both sets of r-proteins are encoded by nuclear genes. Such a difference in evolutionary rates implies that the functional constraints operating on ribosomes are somewhat relaxed for mitochondrial ribosomes.
Collapse
|