1
|
Jain A, Jain T, Mishra GK, Chandrakar K, Mukherjee K, Tiwari SP. Molecular characterization, putative structure and function, and expression profile of OAS1 gene in the endometrium of goats (Capra hircus). Reprod Biol 2023; 23:100760. [PMID: 37023663 DOI: 10.1016/j.repbio.2023.100760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 02/18/2023] [Accepted: 03/16/2023] [Indexed: 04/07/2023]
Abstract
An interferon-inducible gene, 2'-5'-oligoadenylate synthetase-1 (OAS1), plays an essential role in uterine receptivity and conceptus development by controlling cell growth and differentiation in addition to anti-viral activities. As OAS1 gene has not yet been studied in caprine (cp), so present study was designed with the aim to amplify, sequence, characterize and in-silico analyze the coding sequence of the cpOAS1. Further, expression profile of cpOAS1 was performed by quantitative real-time PCR and western blot in the endometrium of pregnant and cyclic does. An 890 bp fragment of the cpOAS1 was amplified and sequenced. Nucleotide and deduced amino acid sequences revealed 99.6-72.3% identities with that of ruminants and non-ruminants. A constructed phylogenetic tree revealed that Ovis aries and Capra hircus differ from large ungulates. Various post-translational modifications (PTMs), 21 phosphorylation, two sumoylation, eight cysteines and 14 immunogenic sites were found in the cpOAS1. The domain, OAS1_C, is found in the cpOAS1 which carries anti-viral enzymatic activity, cell growth, and differentiation. Among the interacted proteins with cpOAS1, Mx1 and ISG17 well-known proteins are found that have anti-viral activity and play an important role during early pregnancy in ruminants. CpOAS1 protein (42/46 kDa and/or 69/71 kDa) was detected in the endometrium of pregnant and cyclic does. Both cpOAS1 mRNA and protein were expressed maximally (P<0.05) in the endometrium during pregnancy as compared to cyclic does. In conclusion, the cpOAS1 sequence is almost similar in structure and probably in function also to other species along with its higher expression during early pregnancy.
Collapse
Affiliation(s)
- Asit Jain
- Molecular Genetics Laboratory, Department of Animal Genetics and Breeding, College of Veterinary Science and Animal Husbandry, Dau Shri Vasudev Chandrakar Kamdhenu Vishwavidyalaya (DSVCKV), Anjora, Durg, Chhattisgarh, India.
| | - Tripti Jain
- Molecular Genetics Laboratory, Department of Animal Genetics and Breeding, College of Veterinary Science and Animal Husbandry, Dau Shri Vasudev Chandrakar Kamdhenu Vishwavidyalaya (DSVCKV), Anjora, Durg, Chhattisgarh, India
| | - Girish Kumar Mishra
- Molecular Genetics Laboratory, Department of Animal Genetics and Breeding, College of Veterinary Science and Animal Husbandry, Dau Shri Vasudev Chandrakar Kamdhenu Vishwavidyalaya (DSVCKV), Anjora, Durg, Chhattisgarh, India
| | - Khushboo Chandrakar
- Molecular Genetics Laboratory, Department of Animal Genetics and Breeding, College of Veterinary Science and Animal Husbandry, Dau Shri Vasudev Chandrakar Kamdhenu Vishwavidyalaya (DSVCKV), Anjora, Durg, Chhattisgarh, India
| | - Kishore Mukherjee
- Molecular Genetics Laboratory, Department of Animal Genetics and Breeding, College of Veterinary Science and Animal Husbandry, Dau Shri Vasudev Chandrakar Kamdhenu Vishwavidyalaya (DSVCKV), Anjora, Durg, Chhattisgarh, India
| | - Sita Prasad Tiwari
- Molecular Genetics Laboratory, Department of Animal Genetics and Breeding, College of Veterinary Science and Animal Husbandry, Dau Shri Vasudev Chandrakar Kamdhenu Vishwavidyalaya (DSVCKV), Anjora, Durg, Chhattisgarh, India
| |
Collapse
|
2
|
Boshra H. An Overview of the Infectious Cycle of Bunyaviruses. Viruses 2022; 14:2139. [PMID: 36298693 PMCID: PMC9610998 DOI: 10.3390/v14102139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/19/2022] [Accepted: 09/26/2022] [Indexed: 11/17/2022] Open
Abstract
Bunyaviruses represent the largest group of RNA viruses and are the causative agent of a variety of febrile and hemorrhagic illnesses. Originally characterized as a single serotype in Africa, the number of described bunyaviruses now exceeds over 500, with its presence detected around the world. These predominantly tri-segmented, single-stranded RNA viruses are transmitted primarily through arthropod and rodent vectors and can infect a wide variety of animals and plants. Although encoding for a small number of proteins, these viruses can inflict potentially fatal disease outcomes and have even developed strategies to suppress the innate antiviral immune mechanisms of the infected host. This short review will attempt to provide an overall description of the order Bunyavirales, describing the mechanisms behind their infection, replication, and their evasion of the host immune response. Furthermore, the historical context of these viruses will be presented, starting from their original discovery almost 80 years ago to the most recent research pertaining to viral replication and host immune response.
Collapse
Affiliation(s)
- Hani Boshra
- Global Urgent and Advanced Research and Development (GUARD), 911 Rue Principale, Batiscan, QC G0X 1A0, Canada
| |
Collapse
|
3
|
Asthana V, Stern BS, Tang Y, Bugga P, Li A, Ferguson A, Asthana A, Bao G, Drezek RA. Development of a Novel Class of Self-Assembling dsRNA Cancer Therapeutics: A Proof-of-Concept Investigation. MOLECULAR THERAPY-ONCOLYTICS 2020; 18:419-431. [PMID: 32913891 PMCID: PMC7452102 DOI: 10.1016/j.omto.2020.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 07/28/2020] [Indexed: 10/26/2022]
Abstract
Cancer has proven to be an extremely difficult challenge to treat. Several fundamental issues currently underlie cancer treatment, including differentiating self from nonself, functional coupling of the recognition and therapeutic components of various therapies, and the propensity of cancerous cells to develop resistance to common treatment modalities via evolutionary pressure. Given these limitations, there is an increasing need to develop an all-encompassing therapeutic that can uniquely target malignant cells, decouple recognition from treatment, and overcome evolutionarily driven cancer resistance. We describe herein a new class of programmable self-assembling double-stranded RNA (dsRNA)-based cancer therapeutics that uniquely targets aberrant genetic sequences and in a functionally decoupled manner, undergoes oncogenic RNA-activated displacement (ORAD), initiating a therapeutic cascade that induces apoptosis and immune activation. As a proof of concept, we show that RNA strands targeting the EWS/Fli1 fusion gene in Ewing sarcoma cells that are end blocked with phosphorothioate bonds and additionally sealed with a 2'-deoxyuridine (2'-U)-modified DNA protector can be used to induce specific and potent killing of cells containing the target oncogenic sequence but not wild type.
Collapse
Affiliation(s)
| | - Brett S Stern
- Department of Bioengineering, Rice University, Houston, TX 77030, USA
| | - Yuqi Tang
- Department of Bioengineering, Rice University, Houston, TX 77030, USA
| | - Pallavi Bugga
- Department of Bioengineering, Rice University, Houston, TX 77030, USA
| | - Ang Li
- Department of Bioengineering, Rice University, Houston, TX 77030, USA
| | - Adam Ferguson
- Department of Bioengineering, Rice University, Houston, TX 77030, USA
| | - Anantratn Asthana
- Department of Bioengineering, Rice University, Houston, TX 77030, USA
| | - Gang Bao
- Department of Bioengineering, Rice University, Houston, TX 77030, USA
| | - Rebekah A Drezek
- Department of Bioengineering, Rice University, Houston, TX 77030, USA
| |
Collapse
|
4
|
Koul A, Gemmill D, Lubna N, Meier M, Krahn N, Booy EP, Stetefeld J, Patel TR, McKenna SA. Structural and Hydrodynamic Characterization of Dimeric Human Oligoadenylate Synthetase 2. Biophys J 2020; 118:2726-2740. [PMID: 32413313 PMCID: PMC7264852 DOI: 10.1016/j.bpj.2020.04.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 04/15/2020] [Accepted: 04/24/2020] [Indexed: 12/20/2022] Open
Abstract
Oligoadenylate synthetases (OASs) are a family of interferon-inducible enzymes that require double-stranded RNA (dsRNA) as a cofactor. Upon binding dsRNA, OAS undergoes a conformational change and is activated to polymerize ATP into 2'-5'-oligoadenylate chains. The OAS family consists of several isozymes, with unique domain organizations to potentially interact with dsRNA of variable length, providing diversity in viral RNA recognition. In addition, oligomerization of OAS isozymes, potentially OAS1 and OAS2, is hypothesized to be important for 2'-5'-oligoadenylate chain building. In this study, we present the solution conformation of dimeric human OAS2 using an integrated approach involving small-angle x-ray scattering, analytical ultracentrifugation, and dynamic light scattering techniques. We also demonstrate OAS2 dimerization using immunoprecipitation approaches in human cells. Whereas mutation of a key active-site aspartic acid residue prevents OAS2 activity, a C-terminal mutation previously hypothesized to disrupt OAS self-association had only a minor effect on OAS2 activity. Finally, we also present the solution structure of OAS1 monomer and dimer, comparing their hydrodynamic properties with OAS2. In summary, our work presents the first, to our knowledge, dimeric structural models of OAS2 that enhance our understanding of the oligomerization and catalytic function of OAS enzymes.
Collapse
Affiliation(s)
- Amit Koul
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Darren Gemmill
- Alberta RNA Research and Training Institute, Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Nikhat Lubna
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Markus Meier
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Natalie Krahn
- Department of Molecular Biology and Biochemistry, Yale University, New Haven, Connecticut
| | - Evan P Booy
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Jörg Stetefeld
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Trushar R Patel
- Alberta RNA Research and Training Institute, Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, Alberta, Canada; Department of Microbiology, Immunology and Infectious Disease, Cumming School of Medicine, University of Calgary, Northwest Calgary, Alberta, Canada; Li Ka Shing Institute of Virology and Discovery Lab, University of Alberta, Edmonton, Alberta, Canada.
| | - Sean A McKenna
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada; Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada.
| |
Collapse
|
5
|
Di H, Elbahesh H, Brinton MA. Characteristics of Human OAS1 Isoform Proteins. Viruses 2020; 12:v12020152. [PMID: 32013110 PMCID: PMC7077331 DOI: 10.3390/v12020152] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 01/20/2020] [Accepted: 01/22/2020] [Indexed: 12/23/2022] Open
Abstract
The human OAS1 (hOAS1) gene produces multiple possible isoforms due to alternative splicing events and sequence variation among individuals, some of which affect splicing. The unique C-terminal sequences of the hOAS1 isoforms could differentially affect synthetase activity, protein stability, protein partner interactions and/or cellular localization. Recombinant p41, p42, p44, p46, p48, p49 and p52 hOAS1 isoform proteins expressed in bacteria were each able to synthesize trimer and higher order 2'-5' linked oligoadenylates in vitro in response to poly(I:C). The p42, p44, p46, p48 and p52 isoform proteins were each able to induce RNase-mediated rRNA cleavage in response to poly(I:C) when overexpressed in HEK293 cells. The expressed levels of the p42 and p46 isoform proteins were higher than those of the other isoforms, suggesting increased stability in mammalian cells. In a yeast two-hybrid screen, Fibrillin1 (FBN1) was identified as a binding partner for hOAS1 p42 isoform, and Supervillin (SVIL) as a binding partner for the p44 isoform. The p44-SVIL interaction was supported by co-immunoprecipitation data from mammalian cells. The data suggest that the unique C-terminal regions of hOAS1 isoforms may mediate the recruitment of different partners, alternative functional capacities and/or different cellular localization.
Collapse
Affiliation(s)
- Han Di
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA; (H.D.); (H.E.)
| | - Husni Elbahesh
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA; (H.D.); (H.E.)
- Research Center for Emerging Infections and Zoonosis (RIZ), University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Margo A. Brinton
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA; (H.D.); (H.E.)
- Correspondence:
| |
Collapse
|
6
|
Yang C, Liu F, Chen S, Wang M, Jia R, Zhu D, Liu M, Sun K, Yang Q, Wu Y, Chen X, Cheng A. Identification of 2'-5'-Oligoadenylate Synthetase-Like Gene in Goose: Gene Structure, Expression Patterns, and Antiviral Activity Against Newcastle Disease Virus. J Interferon Cytokine Res 2018; 36:563-72. [PMID: 27576097 DOI: 10.1089/jir.2015.0167] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
2'-5'-oligoadenylate synthetase-like (OASL) is a kind of antiviral protein induced by interferons (IFNs), which plays an important role in the IFNs-mediated antiviral signaling pathway. In this study, we cloned and identified OASL in the Chinese goose for the first time. Goose 2'-5'-oligoadenylate synthetase-like (goOASL), including an ORF of 1527bp, encoding a protein of 508 amino acids. GoOASL protein contains 3 conserved motifs: nucleotidyltransferase (NTase) domain, 2'-5'-oligoadenylate synthetase (OAS) domain, and 2 ubiquitin-like (UBL) repeats. The tissue distribution profile of goOASL in 2-week-old gosling and adult goose were identified by Real-Time quantitative PCR, which revealed that the highest level of goOASL mRNA transcription was detected in the blood of adult goose and gosling. The mRNA transcription level of goOASL was upregulated in all tested tissues of duck Tembusu virus (DTMUV)-infected 3-day-old goslings, compared with control groups. Furthermore, using the stimulus Poly(I: C), ODN2006, R848, and lipopolysaccharide (LPS) as well as the viral pathogens DTMUV, H9N2 avian influenza virus (AIV), and gosling plague virus (GPV) to treat goose peripheral blood mononuclear cells (PBMCs) for 6 h, goOASL transcripts level was significantly upregulated in all treated groups. To further investigate the antiviral activity of goOASL, pcDNA3.1(+)-goOASL-His plasmid was constructed, and goOASL was expressed by the goose embryo fibroblast cells (GEFs) transfected with pcDNA3.1(+)-goOASL-His. Our research data suggested that Newcastle disease virus (NDV) replication (viral copies and viral titer) in GEFs was significantly reduced by the overexpression of goOASL protein. These data were meaningful for the antiviral immunity research of goose and shed light on the future prevention of NDV in fowl.
Collapse
Affiliation(s)
- Chao Yang
- 1 Institute of Preventive Veterinary Medicine, Sichuan Agricultural University , Chengdu, China
| | - Fei Liu
- 2 Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University , Chengdu, China
| | - Shun Chen
- 1 Institute of Preventive Veterinary Medicine, Sichuan Agricultural University , Chengdu, China .,2 Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University , Chengdu, China .,3 Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University , Chengdu, China
| | - Mingshu Wang
- 1 Institute of Preventive Veterinary Medicine, Sichuan Agricultural University , Chengdu, China .,2 Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University , Chengdu, China .,3 Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University , Chengdu, China
| | - Renyong Jia
- 1 Institute of Preventive Veterinary Medicine, Sichuan Agricultural University , Chengdu, China .,2 Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University , Chengdu, China .,3 Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University , Chengdu, China
| | - Dekang Zhu
- 2 Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University , Chengdu, China .,3 Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University , Chengdu, China
| | - Mafeng Liu
- 1 Institute of Preventive Veterinary Medicine, Sichuan Agricultural University , Chengdu, China
| | - Kunfeng Sun
- 1 Institute of Preventive Veterinary Medicine, Sichuan Agricultural University , Chengdu, China .,2 Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University , Chengdu, China .,3 Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University , Chengdu, China
| | - Qiao Yang
- 1 Institute of Preventive Veterinary Medicine, Sichuan Agricultural University , Chengdu, China .,2 Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University , Chengdu, China .,3 Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University , Chengdu, China
| | - Ying Wu
- 1 Institute of Preventive Veterinary Medicine, Sichuan Agricultural University , Chengdu, China .,2 Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University , Chengdu, China .,3 Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University , Chengdu, China
| | - Xiaoyue Chen
- 2 Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University , Chengdu, China .,3 Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University , Chengdu, China
| | - Anchun Cheng
- 1 Institute of Preventive Veterinary Medicine, Sichuan Agricultural University , Chengdu, China .,2 Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University , Chengdu, China .,3 Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University , Chengdu, China
| |
Collapse
|
7
|
Zhao C, Zheng S, Zhu D, Lian X, Liu W, Hu F, Chen P, Cao R. Identification of a novel porcine OASL variant exhibiting antiviral activity. Virus Res 2017; 244:199-207. [PMID: 29155034 DOI: 10.1016/j.virusres.2017.11.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 11/10/2017] [Accepted: 11/10/2017] [Indexed: 12/17/2022]
Abstract
2', 5'-Oligoadenylate synthetase-lilke (OASL) protein is an atypical oligoadenylate synthetase (OAS) family member, which possesses antiviral activity but lacks 2', 5'-oligoadenylate synthetase activity. Here, a novel variant of porcine OASL (pOASL2) was identified through RT-PCR amplification. This gene is distinguishable from the previously described wild-type porcine OASL (pOASL1). The gene appears to be derived from a truncation of exon 4 plus 8 nucleotides of exon 5 with a premature termination, measuring only 633 bp in length, although its position corresponds to that of pOASL1. Given this novel gene appears to be a variant of pOASL, we assayed for antiviral activity of the protein. We demonstrated that pOASL2 could inhibit Japanese encephalitis virus (JEV) proliferation as well as pOASL1 in a transient overexpression assay of pOASL1 and pOASL2 in PK-15 and Vero cells. In addition to JEV, pOASL1 and pOASL2 also decreased the proliferations of Porcine reproductive and respiratory syndrome virus (PRRSV) and vesicular stomatitis virus (VSV), but did not exhibit antiviral activity against pseudorabies virus (PRV). Structural analysis showed that the pOASL2 gene retained only the first three exons at the 5'-. To investigate the role of the αN4 helix in pOASL in antiviral responses like that in hOASL, we mutated key residues in the anchor domain of the αN4 helix in pOASL2, based on the domain's location in hOASL. However, the antiviral activity of pOASL2 was not affected. Thus, the αN4 helix of pOASL likely does not play a significant role in its antiviral activity. In conclusion, pOASL2 acts as a new splice isoform of pOASL that plays a role in resistance to infection of several kinds of RNA viruses.
Collapse
Affiliation(s)
- Changjing Zhao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University
| | - Sheng Zheng
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University
| | - Dan Zhu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University
| | - Xue Lian
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University
| | - Weiting Liu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University
| | - Feng Hu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University
| | - Puyan Chen
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University
| | - Ruibing Cao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University.
| |
Collapse
|
8
|
Umeda K, Tanaka S, Ihara F, Yamagishi J, Suzuki Y, Nishikawa Y. Transcriptional profiling of Toll-like receptor 2-deficient primary murine brain cells during Toxoplasma gondii infection. PLoS One 2017; 12:e0187703. [PMID: 29136637 PMCID: PMC5685635 DOI: 10.1371/journal.pone.0187703] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 10/24/2017] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Toxoplasma gondii is capable of persisting in the brain, although it is efficiently eliminated by cellular immune responses in most other sites. While Toll-like receptor 2 (TLR2) reportedly plays important roles in protective immunity against the parasite, the relationship between neurological disorders induced by T. gondii infection and TLR2 function in the brain remains controversial with many unknowns. In this study, primary cultured astrocytes, microglia, neurons, and peritoneal macrophages obtained from wild-type and TLR2-deficient mice were exposed to T. gondii tachyzoites. To characterize TLR2-dependent functional pathways activated in response to T. gondii infection, gene expression of different cell types was profiled by RNA sequencing. RESULTS During T. gondii infection, a total of 611, 777, 385, and 1105 genes were upregulated in astrocytes, microglia, neurons, and macrophages, respectively, while 163, 1207, 158, and 1274 genes were downregulated, respectively, in a TLR2-dependent manner. Overrepresented Gene Ontology (GO) terms for TLR2-dependently upregulated genes were associated with immune and stress responses in astrocytes, immune responses and developmental processes in microglia, metabolic processes and immune responses in neurons, and metabolic processes and gene expression in macrophages. Overrepresented GO terms for downregulated genes included ion transport and behavior in astrocytes, cell cycle and cell division in microglia, metabolic processes in neurons, and response to stimulus, signaling and cell motility in macrophages. CONCLUSIONS To our knowledge, this is the first transcriptomic study of TLR2 function across different cell types during T. gondii infection. Results of RNA-sequencing demonstrated roles for TLR2 varied by cell type during T. gondii infection. Our findings facilitate understanding of the detailed relationship between TLR2 and T. gondii infection, and elucidate mechanisms underlying neurological changes during infection.
Collapse
Affiliation(s)
- Kousuke Umeda
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| | - Sachi Tanaka
- Division of Animal Science, Department of Agricultural and Life Sciences, Faculty of Agriculture, Shinshu University, Minamiminowa, Nagano, Japan
| | - Fumiaki Ihara
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| | - Junya Yamagishi
- Research Center for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Yutaka Suzuki
- Graduate School of Frontier Science, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Yoshifumi Nishikawa
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| |
Collapse
|
9
|
Kristiansen H, Gad HH, Eskildsen-Larsen S, Despres P, Hartmann R. The oligoadenylate synthetase family: an ancient protein family with multiple antiviral activities. J Interferon Cytokine Res 2010; 31:41-7. [PMID: 21142819 DOI: 10.1089/jir.2010.0107] [Citation(s) in RCA: 226] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The 2'-5' oligoadenylate synthetases (OAS) are interferon-induced antiviral enzymes that recognize virally produced dsRNA and initiate RNA destabilization through activation of RNase L within infected cells. However, recent evidence points toward several RNase L-independent pathways, through which members of the OAS family can exert antiviral activity. The crystal structure of OAS led to a novel insight into the catalytic mechanism, and revealed a remarkable similarity between OAS, Polyadenosine polymerase, and the class I CCA-adding enzyme from Archeoglobus fulgidus. This, combined with a variety of bioinformatic data, leads to the definition of a superfamily of template independent polymerases and proved that the OAS family are ancient proteins, which probably arose as early as the beginning of metazoan evolution.
Collapse
Affiliation(s)
- Helle Kristiansen
- Centre for Structural Biology, Department of Molecular Biology, Aarhus University, Aarhus, Denmark
| | | | | | | | | |
Collapse
|
10
|
Elbahesh H, Jha BK, Silverman RH, Scherbik SV, Brinton MA. The Flvr-encoded murine oligoadenylate synthetase 1b (Oas1b) suppresses 2-5A synthesis in intact cells. Virology 2010; 409:262-70. [PMID: 21056894 DOI: 10.1016/j.virol.2010.10.016] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Revised: 10/05/2010] [Accepted: 10/12/2010] [Indexed: 10/18/2022]
Abstract
Resistance to flavivirus-induced disease in mice is conferred by the autosomal gene Flv, identified as 2'-5' oligoadenylate synthetase 1b (Oas1b). Resistant mice express a full-length Oas1b protein while susceptible mice express the truncated Oas1btr. In this study, Oas1b was shown to be an inactive synthetase. Although the Oas/RNase L pathway was previously shown to have an antiviral role during flavivirus infections, Oas1b protein inhibited Oas1a in vitro synthetase activity in a dose-dependent manner and reduced 2-5A production in vivo in response to poly(I:C). These findings suggest that negative regulation of 2-5A by inactive Oas1 proteins may fine tune the RNase L response that if not tightly controlled could cause significant damage in cells. The results also indicate that flavivirus resistance conferred by Oas1b is not mediated by 2-5A. Instead, Oas1b inhibits flavivirus replication by an alternative mechanism that overrides the proviral effect of reducing 2-5A accumulation and RNase L activation.
Collapse
Affiliation(s)
- H Elbahesh
- Department of Biology, Georgia State University, Atlanta, GA 30302-4010, USA
| | | | | | | | | |
Collapse
|
11
|
Gibbert K, Dietze KK, Zelinskyy G, Lang KS, Barchet W, Kirschning CJ, Dittmer U. Polyinosinic-polycytidylic acid treatment of Friend retrovirus-infected mice improves functional properties of virus-specific T cells and prevents virus-induced disease. THE JOURNAL OF IMMUNOLOGY 2010; 185:6179-89. [PMID: 20943997 DOI: 10.4049/jimmunol.1000858] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The induction of type I IFN is the most immediate host response to viral infections. Type I IFN has a direct antiviral activity mediated by antiviral enzymes, but it also modulates the function of cells of the adaptive immune system. Many viruses can suppress type I IFN production, and in retroviral infections, the initial type I IFN is weak. Thus, one strategy of immunotherapy in viral infection is the exogenous induction of type I IFN during acute viral infection by TLR ligands. Along these lines, the TLR3/MDA5 ligand polyinosinic-polycytidylic acid [poly(I:C)] has already been used to treat viral infections. However, the immunological mechanisms underlying this successful therapy have not been defined until now. In this study, the Friend retrovirus (FV) mouse model was used to investigate the mode of action of poly(I:C) in antiretroviral immunotherapy. Postexposure, poly(I:C) treatment of FV-infected mice resulted in a significant reduction in viral loads and protection from virus-induced leukemia. This effect was IFN dependent because type I IFN receptor-deficient mice could not be protected by poly(I:C). The poly(I:C)-induced IFN response resulted in the expression of antiviral enzymes, which suppressed FV replication. Also, the virus-specific T cell response was augmented. Interestingly, it did not enhance the number of virus-specific CD4(+) and CD8(+) T cells, but rather the functional properties of these cells, such as cytokine production and cytotoxic activity. The results demonstrate a direct antiviral and immunomodulatory effect of poly(I:C) and, therefore, suggests its potential for clinical treatment of retroviral infections.
Collapse
Affiliation(s)
- Kathrin Gibbert
- Institute for Virology, University Clinics in Essen, University of Duisburg-Essen, Essen, Germany
| | | | | | | | | | | | | |
Collapse
|
12
|
Extracellular 2'-5' oligoadenylate synthetase stimulates RNase L-independent antiviral activity: a novel mechanism of virus-induced innate immunity. J Virol 2010; 84:11898-904. [PMID: 20844035 DOI: 10.1128/jvi.01003-10] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The 2'-5' oligoadenylate synthetase (OAS) proteins are traditionally considered intracellular antiviral proteins. However, several studies demonstrate a correlation between the concentration of freely circulating OAS protein in sera from hepatitis C patients and their clinical prognosis. Here we demonstrate that extracellular OAS1 enters into cells and possesses a strong antiviral activity, both in vitro and in vivo, which is independent of RNase L. The OAS protein directly inhibits viral proliferation and does not require the activation of known antiviral signaling pathways. We propose that OAS produced by cells infected with viruses is released to the extracellular space, where it acts as a paracrine antiviral agent. Thus, the OAS protein represents the first direct antiviral compound released by virus-infected cells.
Collapse
|
13
|
Zhu J, Weiss M, Grubman MJ, de los Santos T. Differential gene expression in bovine cells infected with wild type and leaderless foot-and-mouth disease virus. Virology 2010; 404:32-40. [PMID: 20494391 DOI: 10.1016/j.virol.2010.04.021] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2009] [Revised: 01/18/2010] [Accepted: 04/22/2010] [Indexed: 10/19/2022]
Abstract
The leader proteinase (L(pro)) of foot-and-mouth disease virus (FMDV) plays a critical role in viral pathogenesis. Molecular studies have demonstrated that L(pro) inhibits translation of host capped mRNAs and transcription of some genes involved in the innate immune response. We have used microarray technology to study the gene expression profile of bovine cells infected with wild type (WT) or leaderless FMDV. Thirty nine out of approximately 22,000 bovine genes were selectively up-regulated by 2 fold or more in leaderless versus WT virus infected cells. Most of the up-regulated genes corresponded to IFN-inducible genes, chemokines or transcription factors. Comparison of promoter sequences suggested that host factors NF-kappaB, ISGF3G and IRF1 specifically contributed to the differential expression, being NF-kappaB primarily responsible for the observed changes. Our results suggest that L(pro) plays a central role in the FMDV evasion of the innate immune response by inhibiting NF-kappaB dependent gene expression.
Collapse
Affiliation(s)
- James Zhu
- Plum Island Animal Disease Center, North Atlantic Area, Agricultural Research Service, U.S. Department of Agriculture, Greenport, New York 11944, USA
| | | | | | | |
Collapse
|
14
|
Pepscan mapping of viral hemorrhagic septicemia virus glycoprotein G major lineal determinants implicated in triggering host cell antiviral responses mediated by type I interferon. J Virol 2010; 84:7140-50. [PMID: 20463070 DOI: 10.1128/jvi.00023-10] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Surface glycoproteins of enveloped virus are potent elicitors of type I interferon (IFN)-mediated antiviral responses in a way that may be independent of the well-studied genome-mediated route. However, the viral glycoprotein determinants responsible for initiating the IFN response remain unidentified. In this study, we have used a collection of 60 synthetic 20-mer overlapping peptides (pepscan) spanning the full length of glycoprotein G (gpG) of viral hemorrhagic septicemia virus (VHSV) to investigate what regions of this protein are implicated in triggering the type I IFN-associated immune responses. Briefly, two regions with ability to increase severalfold the basal expression level of the IFN-stimulated mx gene and to restrict the spread of virus among responder cells were mapped to amino acid residues 280 to 310 and 340 to 370 of the gpG protein of VHSV. In addition, the results obtained suggest that an interaction between VHSV gpG and integrins might trigger the host IFN-mediated antiviral response after VHSV infection. Since it is known that type I IFN plays an important role in determining/modulating the protective-antigen-specific immune responses, the identification of viral glycoprotein determinants directly implicated in the type I IFN induction might be of special interest for designing new adjuvants and/or more-efficient and cost-effective viral vaccines as well as for improving our knowledge on how to stimulate the innate immune system.
Collapse
|
15
|
Abstract
Innate immunity is the first line of defense against viral infections. It is based on a mechanism of sensing pathogen-associated molecular patterns through host germline-encoded pattern recognition receptors. dsRNA is arguably the most important viral pathogen-associated molecular pattern due to its expression by almost all viruses at some point during their replicative cycle. Viral dsRNA has been studied for over 55 years, first as a toxin, then as a type I interferon inducer, a viral mimetic and an immunomodulator for therapeutic purposes. This article will focus on dsRNA, its structure, generation (both endogenous and viral), host sensing mechanisms and induction of type I interferons. The possible therapeutic applications of these findings will also be discussed. The goal of this article is to give an overview of these mechanisms, highlighting novel findings, while providing a historical perspective.
Collapse
Affiliation(s)
- Stephanie J DeWitte-Orr
- McMaster University, Department of Pathology & Molecular Medicine, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada
| | | |
Collapse
|
16
|
Szretter KJ, Gangappa S, Belser JA, Zeng H, Chen H, Matsuoka Y, Sambhara S, Swayne DE, Tumpey TM, Katz JM. Early control of H5N1 influenza virus replication by the type I interferon response in mice. J Virol 2009; 83:5825-34. [PMID: 19297490 PMCID: PMC2681972 DOI: 10.1128/jvi.02144-08] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2008] [Accepted: 02/27/2009] [Indexed: 01/16/2023] Open
Abstract
Widespread distribution of highly pathogenic avian H5N1 influenza viruses in domesticated and wild birds continues to pose a threat to public health, as interspecies transmission of virus has resulted in increasing numbers of human disease cases. Although the pathogenic mechanism(s) of H5N1 influenza viruses has not been fully elucidated, it has been suggested that the ability to evade host innate responses, such as the type I interferon response, may contribute to the virulence of these viruses in mammals. We investigated the role that type I interferons (alpha/beta interferon [IFN-alpha/beta]) might play in H5N1 pathogenicity in vivo, by comparing the kinetics and outcomes of H5N1 virus infection in IFN-alpha/beta receptor (IFN-alpha/betaR)-deficient and SvEv129 wild-type mice using two avian influenza A viruses isolated from humans, A/Hong Kong/483/97 (HK/483) and A/Hong Kong/486/97 (HK/486), which exhibit high and low lethality in mice, respectively. IFN-alpha/betaR-deficient mice experienced significantly more weight loss and more rapid time to death than did wild-type mice. HK/486 virus caused a systemic infection similar to that with HK/483 virus in IFN-alpha/betaR-deficient mice, suggesting a role for IFN-alpha/beta in controlling the systemic spread of this H5N1 virus. HK/483 virus replicated more efficiently than HK/486 virus both in vivo and in vitro. However, replication of both viruses was significantly reduced following pretreatment with IFN-alpha/beta. These results suggest a role for the IFN-alpha/beta response in the control of H5N1 virus replication both in vivo and in vitro, and as such it may provide some degree of protection to the host in the early stages of infection.
Collapse
Affiliation(s)
- Kristy J Szretter
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia 303331, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Type I and type II interferons inhibit the translation of murine norovirus proteins. J Virol 2009; 83:5683-92. [PMID: 19297466 DOI: 10.1128/jvi.00231-09] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human noroviruses are responsible for more than 95% of nonbacterial epidemic gastroenteritis worldwide. Both onset and resolution of disease symptoms are rapid, suggesting that components of the innate immune response are critical in norovirus control. While the study of the human noroviruses has been hampered by the lack of small animal and tissue culture systems, our recent discovery of a murine norovirus (MNV) and its in vitro propagation have allowed us to begin addressing norovirus replication strategies and immune responses to norovirus infection. We have previously demonstrated that interferon responses are critical to control MNV-1 infection in vivo and to directly inhibit viral replication in vitro. We now extend these studies to define the molecular basis for interferon-mediated inhibition. Viral replication intermediates were not detected in permissive cells pretreated with type I interferon after either infection or transfection of virion-associated RNA, demonstrating a very early block to virion production that is after virus entry and uncoating. A similar absence of viral replication intermediates was observed in infected primary macrophages and dendritic cells pretreated with type I IFN. This was not due to degradation of incoming genomes in interferon-pretreated cells since similar levels of genomes were present in untreated and pretreated cells through 6 h of infection, and these genomes retained their integrity. Surprisingly, this block to the translation of viral proteins was not dependent on the well-characterized interferon-induced antiviral molecule PKR. Similar results were observed in cells pretreated with type II interferon, except that the inhibition of viral translation was dependent on PKR. Thus, both type I and type II interferon signaling inhibit norovirus translation in permissive myeloid cells, but they display distinct dependence on PKR for this inhibition.
Collapse
|
18
|
Choy EYW, Kok KH, Tsao SW, Jin DY. Utility of Epstein–Barr virus-encoded small RNA promoters for driving the expression of fusion transcripts harboring short hairpin RNAs. Gene Ther 2007; 15:191-202. [DOI: 10.1038/sj.gt.3303055] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
19
|
Schröder HC, Natalio F, Wiens M, Tahir MN, Shukoor MI, Tremel W, Belikov SI, Krasko A, Müller WEG. The 2'-5'-oligoadenylate synthetase in the lowest metazoa: isolation, cloning, expression and functional activity in the sponge Lubomirskia baicalensis. Mol Immunol 2007; 45:945-53. [PMID: 17854897 DOI: 10.1016/j.molimm.2007.07.036] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2007] [Revised: 07/28/2007] [Accepted: 07/31/2007] [Indexed: 11/16/2022]
Abstract
Aquatic animals, especially filter feeders such as sponges [phylum Porifera], are exposed to a higher viral load than terrestrial species. Until now, the antiviral defense system in the evolutionary oldest multicellular organisms, sponges, is not understood. One powerful protection of vertebrates against virus infection is mediated by the interferon (IFN)-inducible 2'-5'-oligoadenylate synthetase [(2-5)A synthetase] system. In the present study we cloned from the freshwater sponge Lubomirskia baicalensis a cDNA encoding a 314 aa long ORF with a calculated size of 35748Da, a putative (2-5)A synthetase, and raised antibodies against the recombinant protein. The native enzyme was identified in a crude extract from L. baicalensis by application of a novel separation procedure based on polymer coated ferromagnetic nanoparticles. The particles were derivatized with a synthetic double-stranded RNA [dsRNA], synthetic poly(I:C), a known allosteric activator of the latent (2-5)A synthetase. These particles were used to separate a single 35kDa protein from a crude extract of L. baicalensis, which cross-reacted with antibodies raised against the sponge enzyme. In situ hybridization studies revealed that highest expression of the gene is seen in cells surrounding the aquiferous canals. Finally primmorphs, an in vitro cell culture system, from L. baicalensis were exposed to poly(I:C); they responded to this dsRNA with an increased expression of the (2-5)A synthetase gene already after a 1-day incubation period. We conclude that sponges contain the (2-5)A synthetase antiviral protection system.
Collapse
Affiliation(s)
- Heinz C Schröder
- Institut für Physiologische Chemie, Abteilung Angewandte Molekularbiologie, Universität, Duesbergweg 6, D-55099 Mainz, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Shukoor MI, Natalio F, Tahir MN, Ksenofontov V, Therese HA, Theato P, Schröder HC, Müller WEG, Tremel W. Superparamagnetic gamma-Fe(2)O(3) nanoparticles with tailored functionality for protein separation. Chem Commun (Camb) 2007:4677-9. [PMID: 17989830 DOI: 10.1039/b707978h] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Polymer coated superparamagnetic gamma-Fe(2)O(3) nanoparticles were derivatized with a synthetic double-stranded RNA [poly(IC)], a known allosteric activator of the latent (2-5)A synthetase, to separate a single 35 kDa protein from a crude extract which cross reacted with antibodies raised against the sponge enzyme.
Collapse
Affiliation(s)
- Mohammed Ibrahim Shukoor
- Institut für Anorganische Chemie und Analytische Chemie, Universität Mainz, Duesbergweg 10-14, D-55099, Mainz, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Hovanessian AG. On the discovery of interferon-inducible, double-stranded RNA activated enzymes: the 2'-5'oligoadenylate synthetases and the protein kinase PKR. Cytokine Growth Factor Rev 2007; 18:351-61. [PMID: 17681872 DOI: 10.1016/j.cytogfr.2007.06.003] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The demonstration that double-stranded (ds) RNA inhibits protein synthesis in cell-free systems prepared from interferon-treated cells, lead to the discovery of the two interferon-induced, dsRNA-dependent enzymes: the serine/threonine protein kinase that is referred to as PKR and the 2',5'-oligoadenylate synthetase (2',5'-OAS), which converts ATP to 2',5'-linked oligoadenylates with the unusual 2'-5' instead of 3'-5' phosphodiesterase bond. We raised monoclonal and polyclonal antibodies against human PKR and the two larger forms of the 2',5'-OAS. Such specific antibodies proved to be indispensable for the detailed characterization of these enzyme and the cloning of cDNAs corresponding to the human PKR and the 69-71 and 100 kDa forms of the 2',5'-OAS. When activated by dsRNA, PKR becomes autophosphorylated and catalyzes phosphorylation of the protein synthesis initiation factor eIF2, whereas the 2'-5'OAS forms 2',5'-oligoadenylates that activate the latent endoribonuclease, the RNAse L. By inhibiting initiation of protein synthesis or by degrading RNA, these enzymes play key roles in two independent pathways that regulate overall protein synthesis and the mechanism of the antiviral action of interferon. In addition, these enzymes are now shown to regulate other cellular events, such as gene induction, normal control of cell growth, differentiation and apoptosis.
Collapse
Affiliation(s)
- Ara G Hovanessian
- UPR 2228 CNRS, UFR Biomédicale - Université René Descartes, 45 rue des Saints Pères, 75270 Paris Cedex 06, France.
| |
Collapse
|
22
|
Hovanessian AG, Justesen J. The human 2'-5'oligoadenylate synthetase family: unique interferon-inducible enzymes catalyzing 2'-5' instead of 3'-5' phosphodiester bond formation. Biochimie 2007; 89:779-88. [PMID: 17408844 DOI: 10.1016/j.biochi.2007.02.003] [Citation(s) in RCA: 137] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2006] [Accepted: 02/06/2007] [Indexed: 01/13/2023]
Abstract
The demonstration by Kerr and colleagues that double-stranded (ds) RNA inhibits drastically protein synthesis in cell-free systems prepared from interferon-treated cells, suggested the existence of an interferon-induced enzyme, which is dependent on dsRNA. Consequently, two distinct dsRNA-dependent enzymes were discovered: a serine/threonine protein kinase that nowadays is referred to as PKR and a 2'-5'oligoadenylate synthetase (2'-5'OAS) that polymerizes ATP to 2'-5'-linked oligomers of adenosine with the general formula pppA(2'p5'A)(n), n>or=1. The product is pppG2'p5'G when GTP is used as a substrate. Three distinct forms of 2'-5'OAS exist in human cells, small, medium, and large, which contain one, two, and three OAS units, respectively, and are encoded by distinct genes clustered on the 2'-5'OAS locus on human chromosome 12. OASL is an OAS like IFN-induced protein encoded by a gene located about 8 Mb telomeric from the 2'-5'OAS locus. OASL is composed of one OAS unit fused at its C-terminus with two ubiquitin-like repeats. The human OASL is devoid of the typical 2'-5'OAS catalytic activity. In addition to these structural differences between the various OAS proteins, the three forms of 2'-5'OAS are characterized by different subcellular locations and enzymatic parameters. These findings illustrate the apparent structural and functional complexity of the human 2'-5'OAS family, and suggest that these proteins may have distinct roles in the cell.
Collapse
Affiliation(s)
- Ara G Hovanessian
- UPR 2228 CNRS, UFR Biomédicale, Université René Descartes, 45 rue des Saints Pères, 75270 Paris Cedex 06, France.
| | | |
Collapse
|
23
|
Zhang HM, Yuan J, Cheung P, Chau D, Wong BW, McManus BM, Yang D. Gamma interferon-inducible protein 10 induces HeLa cell apoptosis through a p53-dependent pathway initiated by suppression of human papillomavirus type 18 E6 and E7 expression. Mol Cell Biol 2005; 25:6247-58. [PMID: 15988033 PMCID: PMC1168823 DOI: 10.1128/mcb.25.14.6247-6258.2005] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Gamma interferon-inducible protein 10 (IP10) is a member of the CXC family of chemokines. By differential mRNA display, we have demonstrated the upregulation of IP10 in coxsackievirus B3 (CVB3)-infected mouse hearts. Functional characterization of the IP10 gene in IP10-transfected Tet-On HeLa cells has found that IP10 induced cell apoptosis and inhibited viral replication. In the characterization of the IP10-induced apoptotic pathway, we found that overexpression of IP10 upregulated p53 and resulted in altered expression of p53-responsive genes such as the p21Cip1, p27kip1, NF-kappaB, Bax, and PUMA genes and the mitochondrial translocation of Bax. However, transduction of the IP10 cells with adenovirus expressing dominant negative p53 not only ablated p53-triggered gene expression but also abolished IP10-induced apoptosis and restored CVB3 replication to the control levels. These data suggest a novel mechanism by which IP10 inhibits viral replication through the induction of host cell death via a p53-mediated apoptotic pathway. We also found that constantly high-level expression of p53 in these tumor cells is attributed to the IP10-induced suppression of human papillomavirus E6 and E7 oncogene expression. Taken together, these data reveal not only a previously unrecognized link between chemokine IP10 and p53 in antiviral defense but also a mechanism by which IP10 inhibits tumor cell growth.
Collapse
Affiliation(s)
- Huifang M Zhang
- Department of Pathology and Laboratory Medicine, University of British Columbia, The James Hogg iCAPTURE Centre, St. Paul's Hospital, 1081 Burrard Street, Vancouver, BC, Canada V6Z 1Y6
| | | | | | | | | | | | | |
Collapse
|
24
|
Hamano E, Hijikata M, Itoyama S, Quy T, Phi NC, Long HT, Ha LD, Ban VV, Matsushita I, Yanai H, Kirikae F, Kirikae T, Kuratsuji T, Sasazuki T, Keicho N. Polymorphisms of interferon-inducible genes OAS-1 and MxA associated with SARS in the Vietnamese population. Biochem Biophys Res Commun 2005; 329:1234-9. [PMID: 15766558 PMCID: PMC7092916 DOI: 10.1016/j.bbrc.2005.02.101] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2005] [Indexed: 01/02/2023]
Abstract
We hypothesized that host antiviral genes induced by type I interferons might affect the natural course of severe acute respiratory syndrome (SARS). We analyzed single nucleotide polymorphisms (SNPs) of 2',5'-oligoadenylate synthetase 1 (OAS-1), myxovirus resistance-A (MxA), and double-stranded RNA-dependent protein kinase in 44 Vietnamese SARS patients with 103 controls. The G-allele of non-synonymous A/G SNP in exon 3 of OAS-1 gene showed association with SARS (p=0.0090). The G-allele in exon 3 of OAS-1 and the one in exon 6 were in strong linkage disequilibrium and both of them were associated with SARS infection. The GG genotype and G-allele of G/T SNP at position -88 in the MxA gene promoter were found more frequently in hypoxemic group than in non-hypoxemic group of SARS (p=0.0195). Our findings suggest that polymorphisms of two IFN-inducible genes OAS-1 and MxA might affect susceptibility to the disease and progression of SARS at each level.
Collapse
Affiliation(s)
- Emi Hamano
- Department of Respiratory Diseases, Research Institute, International Medical Center of Japan, Japan
| | - Minako Hijikata
- Department of Respiratory Diseases, Research Institute, International Medical Center of Japan, Japan
| | - Satoru Itoyama
- Department of Respiratory Diseases, Research Institute, International Medical Center of Japan, Japan
| | | | | | | | - Le Dang Ha
- Institute for Clinical Research in Tropical Medicine, Viet Nam
| | | | - Ikumi Matsushita
- Department of Respiratory Diseases, Research Institute, International Medical Center of Japan, Japan
| | - Hideki Yanai
- The Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Japan
| | - Fumiko Kirikae
- Department of Infectious Diseases, Research Institute, International Medical Center of Japan, Japan
| | - Teruo Kirikae
- Department of Infectious Diseases, Research Institute, International Medical Center of Japan, Japan
| | | | | | - Naoto Keicho
- Department of Respiratory Diseases, Research Institute, International Medical Center of Japan, Japan
- Corresponding author. Fax: +81 3 3207 1038
| |
Collapse
|
25
|
Hartmann R, Justesen J, Sarkar SN, Sen GC, Yee VC. Crystal Structure of the 2′-Specific and Double-Stranded RNA-Activated Interferon-Induced Antiviral Protein 2′-5′-Oligoadenylate Synthetase. Mol Cell 2003; 12:1173-85. [PMID: 14636576 DOI: 10.1016/s1097-2765(03)00433-7] [Citation(s) in RCA: 140] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
2'-5'-oligoadenylate synthetases are interferon-induced, double-stranded RNA-activated antiviral enzymes which are the only proteins known to catalyze 2'-specific nucleotidyl transfer. This crystal structure of a 2'-5'-oligoadenylate synthetase reveals a structural conservation with the 3'-specific poly(A) polymerase that, coupled with structure-guided mutagenesis, supports a conserved catalytic mechanism for the 2'- and 3'-specific nucleotidyl transferases. Comparison with structures of other superfamily members indicates that the donor substrates are bound by conserved active site features while the acceptor substrates are oriented by nonconserved regions. The 2'-5'-oligoadenylate synthetases are activated by viral double-stranded RNA in infected cells and initiate a cellular response by synthesizing 2'-5'-oligoadenylates, which in turn activate RNase L. This crystal structure suggests that activation involves a domain-domain shift and identifies a putative dsRNA activation site that is probed by mutagenesis, thus providing structural insight into cellular recognition of viral double-stranded RNA.
Collapse
Affiliation(s)
- Rune Hartmann
- Department of Molecular Cardiology and Center for Structural Biology, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | | | | | | | | |
Collapse
|
26
|
Müller WEG, Wiens M, Müller IM, Schröder HC. The Chemokine Networks in Sponges: Potential Roles in Morphogenesis, Immunity and Stem Cell Formation. INVERTEBRATE CYTOKINES AND THE PHYLOGENY OF IMMUNITY 2003; 34:103-43. [PMID: 14979666 DOI: 10.1007/978-3-642-18670-7_5] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Porifera (sponges) are now well accepted as the phylum which branched off first from the common ancestor of all metazoans, the Urmetazoa. The transition to the Metazoa became possible because during this phase, cell-cell as well as cell-matrix adhesion molecules evolved which allowed the formation of a colonial stage of animals. The next prerequisite for the evolution to the Urmetazoa was the establishment of an effective immune system which, flanked by apoptosis, allowed the formation of a first level of individuation. In sponges (with the model Suberites domuncula and Geodia cydonium), the main mediators of the immune responses are the chemokines. Since sponges lack a vascular system and consequently blood cells (in the narrow sense), we have used the term chemokines (in a broad sense) to highlight that the complex network of intercellular mediators initiates besides differentiation processes also cell movement. In the present review, the cDNAs encoding the following chemokines were described and the roles of their deduced proteins during self-self and nonself recognition outlined: the allograft inflammatory factor, the glutathione peroxidase, the endothelial-monocyte-activating polypeptide, the pre-B-cell colony-enhancing factor and the myotrophin as well as an enzyme, the (2-5)A synthetase, which is involved in cytokine response in vertebrates. A further step required to reach the evolutionary step of the integrated stage of the Urmetazoa was the acquisition of a stem cell system. In this review, first markers for stem cells (mesenchymal stem cell-like protein) as well as for chemokines involved in the maintenance of stem cells (noggin and glia maturation factor) are described at the molecular level, and a first functional analysis is approached. Taken together, it is outlined that the chemokine network was essential for the establishment of metazoans, which evolved approximately 600 to 800 million years ago.
Collapse
Affiliation(s)
- W E G Müller
- Institut für Physiologische Chemie, Abteilung Angewandte Molekularbiologie, Universität, Duesbergweg 6, 55099 Mainz, Germany
| | | | | | | |
Collapse
|
27
|
Kakuta S, Shibata S, Iwakura Y. Genomic structure of the mouse 2',5'-oligoadenylate synthetase gene family. J Interferon Cytokine Res 2002; 22:981-93. [PMID: 12396720 DOI: 10.1089/10799900260286696] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
2',5'-Oligoadenylate synthetase (2-5OAS) is one of the interferon (IFN)-induced proteins and mediates the antiviral action of IFN. In human, three classes of 2-5OAS genes (OAS1, OAS2, and OAS3) and one OAS-like gene (OASL) are reported. In mice, however, OAS genes corresponding to human OAS2 and OAS3 have not been identified. In this report, we identified six novel OAS family genes in mice by screening mouse genomic library and expressed sequence tag (EST) database. These genes include three homologs of the human OAS1 and each homologous gene of the human OAS2, OAS3, and OASL, respectively. Each gene displays 52%-65% amino acid identity to the corresponding human homologs. Nine 2-5OAS genes, except for two OASL genes, locate within the 210-kb genomic region and form a cluster. Each novel 2-5OAS gene showed a characteristic expression pattern among different tissues, and all of them were induced by polyinosinic-polycytidylic acid. Biochemical analyses using recombinant proteins produced in Escherichia coli showed that all the novel mouse 2-5OAS molecules have double-stranded RNA (dsRNA) binding ability, but they do not have 2-5OAS activity except for the OAS2 and OAS3 mouse homologs. These results show that there are at least 11 OAS genes, which are classified into four groups, in the mouse.
Collapse
Affiliation(s)
- Shigeru Kakuta
- Division of Cell Biology, Center for Experimental Medicine, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | | | | |
Collapse
|
28
|
Abstract
The action of interferons (IFNs) on virus-infected cells and surrounding tissues elicits an antiviral state that is characterized by the expression and antiviral activity of IFN-stimulated genes. In turn, viruses encode mechanisms to counteract the host response and support efficient viral replication, thereby minimizing the therapeutic antiviral power of IFNs. In this review, we discuss the interplay between the IFN system and four medically important and challenging viruses -- influenza, hepatitis C, herpes simplex and vaccinia -- to highlight the diversity of viral strategies. Understanding the complex network of cellular antiviral processes and virus-host interactions should aid in identifying new and common targets for the therapeutic intervention of virus infection. This effort must take advantage of the recent developments in functional genomics, bioinformatics and other emerging technologies.
Collapse
Affiliation(s)
- Michael G Katze
- Department of Microbiology, University of Washington, Seattle, Washington 98195-8070, USA.
| | | | | |
Collapse
|
29
|
Perelygin AA, Scherbik SV, Zhulin IB, Stockman BM, Li Y, Brinton MA. Positional cloning of the murine flavivirus resistance gene. Proc Natl Acad Sci U S A 2002; 99:9322-7. [PMID: 12080145 PMCID: PMC123139 DOI: 10.1073/pnas.142287799] [Citation(s) in RCA: 199] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Inbred mouse strains exhibit significant differences in their susceptibility to viruses in the genus Flavivirus, which includes human pathogens such as yellow fever, Dengue, and West Nile virus. A single gene, designated Flv, confers this differential susceptibility and was mapped previously to a region of mouse chromosome 5. A positional cloning strategy was used to identify 22 genes from the Flv gene interval including 10 members of the 2'-5'-oligoadenylate synthetase gene family. One 2'-5'-oligoadenylate synthetase gene, Oas1b, was identified as Flv by correlation between genotype and phenotype in nine mouse strains. Susceptible mouse strains produce a protein lacking 30% of the C-terminal sequence as compared with the resistant counterpart because of the presence of a premature stop codon. The Oas1b gene differs from all the other murine Oas genes by a unique four-amino acid deletion in the P-loop located within the conserved RNA binding domain. Expression of the resistant allele of Oas1b in susceptible embryo fibroblasts resulted in partial inhibition of the replication of a flavivirus but not of an alpha togavirus.
Collapse
|
30
|
Makar TK, Wilt S, Dong Z, Fishman P, Mouradian MM, Dhib-Jalbut S. IFN-beta gene transfer into the central nervous system using bone marrow cells as a delivery system. J Interferon Cytokine Res 2002; 22:783-91. [PMID: 12184916 DOI: 10.1089/107999002320271378] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
The peripheral delivery of interferon-beta (IFN-beta) for the treatment of central nervous system (CNS) diseases is only partially effective because of the blood-brain barrier (BBB). To circumvent this problem, we evaluated the feasibility of genetically altering bone marrow cells ex vivo and using them as vehicles to transfer the IFN-beta cDNA into the mouse CNS. An IFN-beta retroviral expression vector (pLXSN-IFNbeta) was used to stably transfect PA317 cells. The supernatant from these producer cells, which expressed IFN-beta mRNA and protein, were used to infect bone marrow cells. When transplanted into irradiated mice, IFN-beta-engineered marrow cells accessed the CNS and expressed IFN-beta mRNA and protein. Marrow cells transduced with a control neomycin vector entered the brain and expressed the neomycin but not the IFN-beta gene. In the CNS, IFN-beta delivered by marrow cells induced the mRNA expression of 2',5'-oligoadenylate synthetase (2',5'-OAS), indicating biologic activity. Our findings demonstrating that bone marrow cells can serve as a delivery system for IFN-beta cDNA into the CNS could have implications for the treatment of neurologic disorders, such as multiple sclerosis (MS), viral encephalitis, and brain tumors.
Collapse
Affiliation(s)
- Tapas Kumar Makar
- Department of Neurology, University of Maryland, and Department of Veterans Affairs, Baltimore, MD 21201, USA
| | | | | | | | | | | |
Collapse
|
31
|
Grebenjuk VA, Kuusksalu A, Kelve M, Schütze J, Schröder HC, Müller WEG. Induction of (2'-5')oligoadenylate synthetase in the marine sponges Suberites domuncula and Geodia cydonium by the bacterial endotoxin lipopolysaccharide. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:1382-92. [PMID: 11874452 DOI: 10.1046/j.1432-1033.2002.02781.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Recent studies have shown that the Porifera, with the examples of the demosponges Suberites domuncula and Geodia cydonium, comprise a series of pathways found also in the immune system of Deuterostomia, such as vertebrates, but are absent in Protostomia, with insects or nematodes as examples. One pathway is the (2'-5')oligoadenylate synthetase [(2-5)A synthetase] system. In the present study we show that crude extracts from tissue of S. domuncula collected from the sea display a considerable amount of (2-5)A synthetase activity; 16% of the ATP substrate is converted to the (2-5)A product, while tissue from specimens which were kept for 6 months in an aquarium shows only 1% of conversion. As aquarium animals show a lower bacterial load, those specimens were treated for the experiments with the bacterial endotoxin lipopolysaccharide (LPS); they responded to LPS with a stimulation of the (2-5)A synthetase activity. To monitor if this effect can be obtained also on the in vitro level, primmorphs which comprise proliferating and differentiating cells, were incubated with LPS. Extracts obtained from LPS-treated primmorphs also convert ATP to the (2-5)A products mediated by the synthetase. In parallel to this effect on protein level, LPS causes after an incubation period of 12 h also an increase in the steady-state level of the transcripts encoding the putative (2-5)A synthetase. It is postulated that in sponges the (2-5)A synthetase is involved in antimicrobial defense of the animals.
Collapse
Affiliation(s)
- Vladislav A Grebenjuk
- Institut für Physiologische Chemie, Abteilung für Angewandte Molekularbiologie, Johannes Gutenberg-Universität, Mainz, Germany
| | | | | | | | | | | |
Collapse
|
32
|
Gomos JB, Rowe TM, Sarkar SN, Kessler SP, Sen GC. The proapoptotic 9-2 isozyme of 2-5 (A) synthetase cannot substitute for the sperm functions of the proapoptotic protein, Bax. J Interferon Cytokine Res 2002; 22:199-206. [PMID: 11911802 DOI: 10.1089/107999002753536167] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The 9-2 isozyme of 2-5 (A) synthetase has cellular proapoptotic functions that are mediated not by enzyme activity but by the Bcl-2 homology domain 3 present in its unique carboxyl-terminal region. Another proapoptotic cellular protein is Bax, whose absence in the Bax(-/-) mice causes male sterility due to abnormal sperm differentiation. In this study, we examined whether transgenic 9-2 expression can substitute for the in vivo reproductive function of Bax. To achieve this goal, a sperm-specific promoter was used to drive the expression of 9-2 in the sperm of transgenic mice. By selective cross-breeding, the transgene was transferred to Bax(-/-) mice to generate the experimental mouse line (Bax(-/-), 9-2(+/+)). The male experimental mice were sterile, and their testes maintained the structural abnormality found in Bax(-/-) mice. Thus, the male reproduction functions of Bax could not be replaced by the 9-2 isozyme of 2-5 (A) synthetase.
Collapse
Affiliation(s)
- Janette B Gomos
- The Lerner Research Institute, Department of Molecular Biology, The Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | | | | | | | | |
Collapse
|
33
|
Abstract
Tremendous progress has been made in understanding the molecular basis of the antiviral actions of interferons (IFNs), as well as strategies evolved by viruses to antagonize the actions of IFNs. Furthermore, advances made while elucidating the IFN system have contributed significantly to our understanding in multiple areas of virology and molecular cell biology, ranging from pathways of signal transduction to the biochemical mechanisms of transcriptional and translational control to the molecular basis of viral pathogenesis. IFNs are approved therapeutics and have moved from the basic research laboratory to the clinic. Among the IFN-induced proteins important in the antiviral actions of IFNs are the RNA-dependent protein kinase (PKR), the 2',5'-oligoadenylate synthetase (OAS) and RNase L, and the Mx protein GTPases. Double-stranded RNA plays a central role in modulating protein phosphorylation and RNA degradation catalyzed by the IFN-inducible PKR kinase and the 2'-5'-oligoadenylate-dependent RNase L, respectively, and also in RNA editing by the IFN-inducible RNA-specific adenosine deaminase (ADAR1). IFN also induces a form of inducible nitric oxide synthase (iNOS2) and the major histocompatibility complex class I and II proteins, all of which play important roles in immune response to infections. Several additional genes whose expression profiles are altered in response to IFN treatment and virus infection have been identified by microarray analyses. The availability of cDNA and genomic clones for many of the components of the IFN system, including IFN-alpha, IFN-beta, and IFN-gamma, their receptors, Jak and Stat and IRF signal transduction components, and proteins such as PKR, 2',5'-OAS, Mx, and ADAR, whose expression is regulated by IFNs, has permitted the generation of mutant proteins, cells that overexpress different forms of the proteins, and animals in which their expression has been disrupted by targeted gene disruption. The use of these IFN system reagents, both in cell culture and in whole animals, continues to provide important contributions to our understanding of the virus-host interaction and cellular antiviral response.
Collapse
Affiliation(s)
- C E Samuel
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, California 93106-9610, USA.
| |
Collapse
|
34
|
Ghosh A, Sarkar SN, Rowe TM, Sen GC. A specific isozyme of 2'-5' oligoadenylate synthetase is a dual function proapoptotic protein of the Bcl-2 family. J Biol Chem 2001; 276:25447-55. [PMID: 11323417 DOI: 10.1074/jbc.m100496200] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
2-5(A) synthetases are a family of interferon-induced enzymes that polymerize ATP into 2'-5' linked oligoadenylates that activate RNase L and cause mRNA degradation. Because they all can synthesize 2-5(A), the reason for the existence of so many synthetase isozymes is unclear. Here we report that the 9-2 isozyme of 2-5(A) synthetase has an additional activity: it promotes apoptosis in mammalian cells. The proapoptotic activity of 9-2 was isozyme-specific and enzyme activity-independent. The 9-2-expressing cells exhibited many properties of cells undergoing apoptosis, such as DNA fragmentation, caspase activation, and poly ADP-ribose polymerase and lamin B cleavage. The isozyme-specific carboxyl-terminal tail of the 9-2 protein was shown, by molecular modeling, to contain a Bcl-2 homology 3 (BH3) domain, suggesting that it may be able to interact with members of the Bcl-2 family that contain BH1 and BH2 domains. Co-immunoprecipitate assays and confocal microscopy showed that 9-2 can indeed interact with the anti-apoptotic proteins Bcl-2 and Bclx(L) in vivo and in vitro. Mutations in the BH3 domain that eliminated the 9-2-Bcl-2 amd 9-2-Bclx(L) interactions also eliminated the apoptotic activity of 9-2. Thus, we have identified an interferon-induced dual function protein of the Bcl-2 family that can synthesize 2-5(A) and promote cellular apoptosis independently. Moreover, the cellular abundance of this protein is regulated by alternative splicing; the other isozymes encoded by the same gene are not proapoptotic.
Collapse
Affiliation(s)
- A Ghosh
- Department of Molecular Biology, The Lerner Research Institute, The Cleveland Clinic Foundation, 9500 Euclid Ave., Cleveland, OH 44195, USA
| | | | | | | |
Collapse
|
35
|
Tatsumi R, Hamada K, Sekiya S, Wakamatsu M, Namikawa T, Mizutani M, Sokawa Y. 2',5'-oligoadenylate synthetase gene in chicken: gene structure, distribution of alleles and their expression. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1494:263-8. [PMID: 11121584 DOI: 10.1016/s0167-4781(00)00174-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We have cloned the gene for chicken 2',5'-oligoadenylate synthetase (ChOAS) by the method of polymerase chain reaction with use of ChOAS cDNA sequence. The ChOAS gene is composed of five introns and six exons containing all of the sequence of the ChOAS cDNA from the start to the stop codon. The first five exons of ChOAS gene which encode the OAS catalytic domain have a similar structure to HuOAS1 gene including the exon-intron boundaries. However, the length of introns of ChOAS gene is only 1/7 of those of HuOAS1 gene. The sixth exon of the ChOAS gene encodes the ubiquitin-like (UbL) domain of two consecutive sequence (UbL1 and UbL2) homologous to ubiquitin. ChOAS encoded in a single copy gene has at least two alleles, OAS(*)A and OAS(*)B. The differences between these two alleles are in the sixth exon of the gene; a 96-nucleotide sequence in the UbL1 portion of OAS(*)A is deleted from OAS(*)B. No OAS(*)B gene was detected in nine lines of chickens tested other than Leghorns. Almost the same levels of ChOAS-A and -B proteins induced physiologically in erythrocytes were detected in infant chickens (2-week-old), but in grown-up chickens (6-month-old) the level of erythrocyte OAS-B was markedly reduced in most of B/B chickens. Thus, the UbL domain of ChOAS is responsible for the maintenance of the OAS level in the tissue.
Collapse
Affiliation(s)
- R Tatsumi
- Department of Biotechnology, Kyoto Institute of Technology, Japan
| | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
Interferons are important cytokines which regulate antiviral, cell growth, immune modulatory and anti-tumor functions. These pleiotropic effects of interferons are brought about by a large number of cellular proteins, the interferon-inducible proteins. Investigation of the biochemical and cellular activities of some of these proteins have revealed new pathways of regulation of cellular RNA and protein metabolism, growth and differentiation, apoptosis and signal transduction. In this article we discuss recent findings on the novel activities of a selected number of interferon-induced proteins.
Collapse
Affiliation(s)
- G C Sen
- Department of Molecular Biology/NC20, The Lerner Research Institute, The Cleveland Clinic Foundation, OH 44195, USA
| |
Collapse
|
37
|
Yamamoto Y, Sono D, Sokawa Y. Effects of specific mutations in active site motifs of 2',5'-oligoadenylate synthetase on enzymatic activity. J Interferon Cytokine Res 2000; 20:337-44. [PMID: 10762083 DOI: 10.1089/107999000312496] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
2',5'-Oligoadenylate synthetase (2',5'-OAS) is a double-stranded RNA-dependent nucleotidyl-transferase induced by interferon (IFN). Several 2',5'-OAS cDNA have been cloned from human, pig, rat, mouse, and chicken. A P-loop motif followed by an Asp-containing sequence (referred to as D-box) and a region with a high content of Lys and Arg (KR-rich region) are well conserved in 2',5'-OAS. The sequence 196DFLKQR201 of 40-kDa human 2',5'-OAS, to which 8-azido-ATP binds (N. Kon and R.J. Suhadolnik, J. Biol. Chem. 271, 19983-19990, 1996), is included in the KR-rich region. We introduced several site-directed mutations into these active motifs of 42-kDa murine 2',5'-OAS. Each mutant enzyme studied bound to poly(I):poly(C) to the same extent as wild-type enzyme. Both K67R, a P-loop mutant, and K200R, a KR-rich region mutant, exhibited a reduced but considerable rate of enzymatic activities. The activity of the double mutant K67R/K200R was about 10% of the wild type. On the other hand, the activities of both K67M and K200M were not more than 2% of the wild-type enzyme, and no activity was detected in another P-loop mutant, G62A/G63A. The binding of Mg2+ to a D-box mutant D76N/D78N was markedly reduced, and only a very low level of enzymatic activity was detected in this mutant. These results demonstrate that the P-loop, the D-box that binds Mg2+, and the KR-rich region are important for the enzymatic activities of 2',5'-OAS.
Collapse
Affiliation(s)
- Y Yamamoto
- Department of Biotechnology, Kyoto Institute of Technology, Japan
| | | | | |
Collapse
|
38
|
McAveney KM, Book ML, Ling P, Chebath J, Yu-Lee L. Association of 2',5'-oligoadenylate synthetase with the prolactin (PRL) receptor: alteration in PRL-inducible stat1 (signal transducer and activator of transcription 1) signaling to the IRF-1 (interferon-regulatory factor 1) promoter. Mol Endocrinol 2000; 14:295-306. [PMID: 10674401 DOI: 10.1210/mend.14.2.0421] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The PRL receptor (PRL-R) signals through the Janus tyrosine kinases (JAK) and other non-JAK tyrosine kinases, some of which are preassociated with the PRL-R. To clone PRL-R interacting proteins, the intracellular domain (ICD) of the long form of the PRL-R was used in a yeast two-hybrid screen of a human B cell cDNA library. One PRL-R interacting protein was identified as the 42-kDa form of the enzyme 2',5'-oligoadenylate synthetase (OAS). The in vivo interactions in yeast were further confirmed by an in vitro interaction assay and by coimmunoprecipitation in transfected mammalian cells. Functionally, OAS reduced the basal activity of two types of promoters in transiently transfected COS-1 cells. In the presence of PRL, OAS inhibited PRL induction of the immediate early IRF-1 (interferon-regulatory factor 1) promoter, but not PRL induction of the differentiation-specific beta-casein promoter, suggesting that OAS exerts specific effects on immediate early gene promoters. The inhibitory effects of OAS were accompanied by a reduction in PRL-inducible Stat1 (signal transducer and activator of transcription 1) DNA binding activity at the IRF-1 GAS (interferon-gamma-activated sequence) element. These results demonstrate a novel interaction of OAS with the PRL-R and suggest a role for OAS in modulating Stat1-mediated signaling to an immediate early gene promoter. Although previously characterized as a regulator of ribonuclease (RNase) L antiviral responses, OAS may have additional effects on cytokine receptor signal transduction pathways.
Collapse
Affiliation(s)
- K M McAveney
- Department of Medicine, Baylor College of Medicine, Houston, Texas 77030-3411, USA
| | | | | | | | | |
Collapse
|
39
|
Ghosh A, Sarkar SN, Sen GC. Cell growth regulatory and antiviral effects of the P69 isozyme of 2-5 (A) synthetase. Virology 2000; 266:319-28. [PMID: 10639318 DOI: 10.1006/viro.1999.0085] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Among the many interferon-induced proteins that carry out multiple cellular functions of interferons is the family of enzymes called 2'-5' oligoadenylate synthetases. We examined the anticellular and antiviral activities of a specific member of that family, the P69 isozyme. P69 was expressed in human cells by transfection and shown to be localized primarily in the endoplasmic reticulum. For further studies, permanent cell lines expressing different levels of P69 or an enzymatically inactive mutant were isolated. Constitutive P69 expression caused inhibition of replication of encephalomyocarditis virus but not of vesicular stomatitis virus, Sendai virus, or reovirus. Increasing levels of P69 expression also caused increasing perturbations in cell growth properties. There was increasing accumulations of the P69-expressing cells in the G1 phase of the cell cycle; cell-doubling time was increased by P69 expression; and there were many multinucleated cells in the P69-expressing line, indicating a defect in cytokinesis.
Collapse
Affiliation(s)
- A Ghosh
- Department of Molecular Biology, The Lerner Research Institute, The Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, Ohio, 44195, USA
| | | | | |
Collapse
|
40
|
Wiens M, Kuusksalu A, Kelve M, Müller WE. Origin of the interferon-inducible (2'-5')oligoadenylate synthetases: cloning of the (2'-5')oligoadenylate synthetase from the marine sponge Geodia cydonium. FEBS Lett 1999; 462:12-8. [PMID: 10580083 DOI: 10.1016/s0014-5793(99)01478-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In vertebrates cytokines mediate innate (natural) immunity and protect them against viral infections. The cytokine interferon causes the induction of the (2'-5')oligoadenylate synthetase [(2-5)A synthetase], whose product, (2'-5')oligoadenylate, activates the endoribonuclease L which in turn degrades (viral) RNA. Three isoforms of (2-5)A synthetases exist, form I (40-46 kDa), form II (69 kDa), and form III (100 kDa). Until now (2-5)A synthetases have only been cloned from birds and mammals. Here we describe the cloning of the first putative invertebrate (2-5)A synthetase from the marine sponge Geodia cydonium. The deduced amino acid sequence shows signatures characteristic for (2-5)A synthetases of form I. Phylogenetic analysis of the putative sponge (2-5)A synthetase indicates that it diverged first from a common ancestor of the hitherto known members of (vertebrate) (2-5)A synthetases I, (2-5)A synthetases II and III. Moreover, it is suggested that the (2-5)A synthetases II and III evolved from this common ancestor (very likely) by gene duplication. Together with earlier results on the existence of the (2'-5')oligoadenylates in G. cydonium, the data presented here demonstrate that also invertebrates, here sponges, are provided with the (2-5)A system. At present, it is assumed that this system might be involved in growth control, including control of apoptosis, and acquired its additional function in innate immune response in evolutionarily younger animals, in vertebrates.
Collapse
Affiliation(s)
- M Wiens
- Institut für Physiologische Chemie, Abteilung für Angewandte Molekularbiologie, Universität, Duesbergweg 6, D-55099, Mainz, Germany
| | | | | | | |
Collapse
|
41
|
Sarkar SN, Ghosh A, Wang HW, Sung SS, Sen GC. The nature of the catalytic domain of 2'-5'-oligoadenylate synthetases. J Biol Chem 1999; 274:25535-42. [PMID: 10464285 DOI: 10.1074/jbc.274.36.25535] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
2'-5'-Oligoadenylate (2-5(A)) synthetases are a family of interferon-induced enzymes that are activated by double-stranded RNA. To understand why, unlike other DNA and RNA polymerases, they catalyze 2'-5' instead of 3'-5' phosphodiester bond formation, we used molecular modeling to compare the structure of the catalytic domain of DNA polymerase beta (pol beta) to that of a region of the P69 isozyme of 2-5(A) synthetase. Although the primary sequence identity is low, like pol beta, P69 can assume an alphabetabetaalphabetabetabeta structure in this region. Moreover, mutation of the three Asp residues of P69, which correspond to the three catalytic site Asp residues of pol beta, inactivated the enzyme without affecting its substrate and activator binding capacity, providing further credence to the concept that this region is the catalytic domain of P69. This domain is highly conserved among all 2-5(A) synthetase isozymes. Biochemical and mutational studies demonstrated that dimerization of the P69 protein is required for its enzyme activity. However, a dimer containing a wild type subunit and an inactive catalytic domain mutant subunit was also active. The rate of catalysis of the heterodimer was half of that of the wild type homodimer, although the two proteins bound double-stranded RNA and ATP equally well.
Collapse
Affiliation(s)
- S N Sarkar
- Department of Molecular Biology, Lerner Research Institute, The Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
| | | | | | | | | |
Collapse
|
42
|
Patel RC, Vestal DJ, Xu Z, Bandyopadhyay S, Guo W, Erme SM, Williams BR, Sen GC. DRBP76, a double-stranded RNA-binding nuclear protein, is phosphorylated by the interferon-induced protein kinase, PKR. J Biol Chem 1999; 274:20432-7. [PMID: 10400669 DOI: 10.1074/jbc.274.29.20432] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The interferon-induced double-stranded RNA-activated protein kinase PKR is the prototype of a class of double-stranded (dsRNA)-binding proteins (DRBPs) which share a dsRNA-binding motif conserved from Drosophila to humans. Here we report the purification of DRBP76, a new human member of this class of proteins. Sequence from the amino terminus of DRBP76 matched that of the M phase-specific protein, MPP4. DRBP76 was also cloned by the yeast two-hybrid screening of a cDNA library using a mutant PKR as bait. Analysis of the cDNA sequence revealed that it is the full-length version of MPP4, has a bipartite nuclear localization signal, two motifs that can mediate interactions with both dsRNA and PKR, five epitopes for potential M phase-specific phosphorylation, two potential sites for phosphorylation by cyclin-dependent kinases, a RG2 motif present in many RNA-binding proteins and predicts a protein of 76 kDa. DsRNA and PKR interactions of DRBP76 were confirmed by analysis of in vitro translated and purified native proteins. Cellular expression of an epitope-tagged DRBP76 demonstrated its nuclear localization, and its co-immunoprecipitation with PKR demonstrated that the two proteins interact in vivo. Finally, purified DRBP76 was shown to be a substrate of PKR in vitro, indicating that this protein's cellular activities may be regulated by PKR-mediated phosphorylation.
Collapse
Affiliation(s)
- R C Patel
- Department of Molecular Biology, Lerner Research Institute, The Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Sharp TV, Raine DA, Gewert DR, Joshi B, Jagus R, Clemens MJ. Activation of the interferon-inducible (2'-5') oligoadenylate synthetase by the Epstein-Barr virus RNA, EBER-1. Virology 1999; 257:303-13. [PMID: 10329541 DOI: 10.1006/viro.1999.9689] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The 2'-5' oligoadenylate synthetases and the protein kinase PKR are both interferon-induced, double-stranded RNA-dependent proteins that play important roles in the antiviral effects of the interferons and in cellular growth control. Both enzymes are activated by natural or synthetic dsRNAs and by single-stranded RNAs that possess extensive secondary structure. This report describes the effects of the small Epstein-Barr virus-encoded RNA EBER-1 on the regulation of 2-5(A) synthetase activity. We demonstrate that EBER-1 RNA binds to and activates the human 40-kDa 2-5(A) synthetase in a dose-dependent manner. The efficiency of EBER-1 as an activator of 2-5(A) synthetase is approximately 25% of that of the synthetic double-stranded RNA poly(I)/poly(C), and poly(I)/poly(C) further stimulates enzyme activity even in the presence of a high concentration of EBER-1. Conversely, EBER-1 neither stimulates nor inhibits 2-5(A) synthetase that has been activated by a high concentration of poly(I)/poly(C). Competitive binding assays suggest that the relative affinity of the enzyme for poly(I)/poly(C) is considerably higher than that for EBER-1. Our data indicate that EBER-1, like VAI RNA of adenovirus, TAR RNA of HIV-1, and Rex-RE RNA of HTLV-1, is able to activate the 2-5(A) synthetases. The significance of why several viruses may activate the 2-5(A) synthetase/RNase L-mediated RNA degradation pathway is discussed.
Collapse
Affiliation(s)
- T V Sharp
- Cellular and Molecular Sciences Group, St. George's Hospital Medical School, Cranmer Terrace, London, SW17 0RE, United Kingdom
| | | | | | | | | | | |
Collapse
|
44
|
Marié I, Rebouillat D, Hovanessian AG. The expression of both domains of the 69/71 kDa 2',5' oligoadenylate synthetase generates a catalytically active enzyme and mediates an anti-viral response. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 262:155-65. [PMID: 10231377 DOI: 10.1046/j.1432-1327.1999.00361.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The 2',5' oligoadenylate synthetase (OAS) represents a family of interferon-induced proteins which, when activated by double-stranded (ds) RNA, polymerizes ATP into 2',5'-linked oligomers with the general formula pppA(2'p5'A)n, where n >/= 1. The 69-kDa form of human OAS has two isoforms (p69 and p71) that are identical for their first 683 amino acids and consist of two homologous and adjacent domains, each homologous to the small 40-kDa OAS. Here, we demonstrate that mRNA species specific for the isoforms p69 and p71 are enhanced in interferon-treated cells, with the p69 mRNA being more abundant than that of p71. In transfected cells, both isoforms could be expressed independently to generate enzymes with similar catalytic activity, typical of the natural 69-kDa OAS from interferon-treated cells. On the other hand, deletion mutants expressing either the N- or C-terminal domain common in p69 and p71 were greatly unstable and were found to be devoid of catalytic activity, in spite of the capacity of the C-terminal domain to bind dsRNA. Finally, we show that murine cell lines stably expressing either p69 or p71 isoforms partially resist infection by the encephalomyocarditis virus. These results indicate that both isoforms of the 69-kDa form of 2',5' OAS are expressed in interferon-treated cells, and that each isoform could be implicated in the mechanism of the anti-viral action of interferon.
Collapse
Affiliation(s)
- I Marié
- Unité de Virologie et Immunologie Cellulaire, UA CNRS 1930, Institut Pasteur, Paris, France
| | | | | |
Collapse
|
45
|
Rebouillat D, Hovanessian AG. The human 2',5'-oligoadenylate synthetase family: interferon-induced proteins with unique enzymatic properties. J Interferon Cytokine Res 1999; 19:295-308. [PMID: 10334380 DOI: 10.1089/107999099313992] [Citation(s) in RCA: 179] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
2',5'-Oligoadenylate synthetase (2',5'-OAS) was discovered and characterized as an interferon (IFN)-induced enzyme that in the presence of double-stranded (ds) RNA converts ATP into 2',5'-linked oligomers of adenosine with the general formula pppA(2'p'A)n, n > or = 1. The product is pppG2'p5'G when GTP is used as a substrate. Now, 20 years later, this activity is attributed to several well-characterized, homologous, and IFN-induced proteins in human cells. Three distinct forms of 2',5'-OAS exist, small, medium, and large, which contain 1, 2, and 3 OAS units, respectively, and are encoded by distinct genes clustered on the 2',5'-OAS locus on human chromosome 12. Recently, other IFN-induced proteins homologous to the OAS unit but devoid of the typical 2',5'-OAS catalytic activity have been described. These OAS-related proteins are encoded by a gene located at the proximity of the 2',5'-OAS locus. These findings illustrate the apparent structural and functional complexity of the human 2',5'-OAS family.
Collapse
Affiliation(s)
- D Rebouillat
- Institut Pasteur, Unité de Virologie et Immunologie Cellulaire, URA CNRS 1930, Paris, France
| | | |
Collapse
|
46
|
Sarkar SN, Bandyopadhyay S, Ghosh A, Sen GC. Enzymatic characteristics of recombinant medium isozyme of 2'-5' oligoadenylate synthetase. J Biol Chem 1999; 274:1848-55. [PMID: 9880569 DOI: 10.1074/jbc.274.3.1848] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
P69 is an isozyme of the medium size class of human 2'-5' oligoadenylate synthetases. In this study, recombinant P69 was expressed and used for enzymological and structural investigations. Bacterially expressed P69 was inactive whereas the same protein expressed in insect cells was highly active. Whether this difference could be due to differential post-translational modifications of the protein was investigated. Mutations of appropriate residues showed that myristoylation of the protein was not necessary for enzyme activity. In contrast, inhibition of glycosylation of P69, by tunicamycin treatment of the insect cells, produced an enzymatically inactive protein. Recombinant P69 produced in insect cells was purified by affinity chromatography. It was a dimeric glycoprotein, very stable and completely dependent on double stranded (ds) RNA for activity. The enzyme catalyzed the non-processive synthesis of 2'-5'-linked oligoadenylate products containing up to 30 residues. 2'-O-Methylated dsRNA was incapable of activating P69 and a 25-base pair dsRNA was as effective as larger dsRNA. This expression system will be useful for large scale production of P69 and its mutants for structural studies.
Collapse
Affiliation(s)
- S N Sarkar
- Department of Molecular Biology, The Lerner Research Institute, The Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
| | | | | | | |
Collapse
|
47
|
Floyd-Smith G, Wang Q, Sen GC. Transcriptional induction of the p69 isoform of 2',5'-oligoadenylate synthetase by interferon-beta and interferon-gamma involves three regulatory elements and interferon-stimulated gene factor 3. Exp Cell Res 1999; 246:138-47. [PMID: 9882523 DOI: 10.1006/excr.1998.4296] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The 2',5'-oligoadenylate synthetases are key enzymes that mediate antiviral actions of interferon (IFN). The mRNAs for the intermediate isoforms (p69) of human 2',5'-oligoadenylate synthetase are rapidly induced 10- to 20-fold in HT1080 glioma cells by IFN-beta and induced 3-fold at 24 h by IFN-gamma. Induction is mediated by three regulatory elements, an IFN-stimulated response element and two identical sites resembling interferon response factor binding sites that are located within 300 bp of the transcriptional start site. Maximal induction requires all three elements, yet mutation in the most distal IRF-1-like site diminishes transcription only slightly. Mutation in the ISRE substantially decreases constitutive expression but does not abrogate the response to IFNs. Simultaneous mutation in all three elements abolishes responsiveness to both IFN-beta and IFN-gamma. Both constitutive and IFN-beta-induced expression from the p69 promoter is blocked in mutant cell lines deficient in components of the transcription factor, interferon-stimulated gene factor 3, suggesting that it is the primary factor controlling IFN-beta induced expression of this gene.
Collapse
Affiliation(s)
- G Floyd-Smith
- Department of Biology, Arizona State University, Tempe, Arizona, 85287-1501, USA.
| | | | | |
Collapse
|
48
|
Abstract
Interferons play key roles in mediating antiviral and antigrowth responses and in modulating immune response. The main signaling pathways are rapid and direct. They involve tyrosine phosphorylation and activation of signal transducers and activators of transcription factors by Janus tyrosine kinases at the cell membrane, followed by release of signal transducers and activators of transcription and their migration to the nucleus, where they induce the expression of the many gene products that determine the responses. Ancillary pathways are also activated by the interferons, but their effects on cell physiology are less clear. The Janus kinases and signal transducers and activators of transcription, and many of the interferon-induced proteins, play important alternative roles in cells, raising interesting questions as to how the responses to the interferons intersect with more general aspects of cellular physiology and how the specificity of cytokine responses is maintained.
Collapse
Affiliation(s)
- G R Stark
- Lerner Research Institute, Cleveland Clinic Foundation, Ohio 44195, USA.
| | | | | | | | | |
Collapse
|
49
|
Affiliation(s)
- C E Samuel
- Interdepartmental Graduate Program of Biochemistry and Molecular Biology, University of California at Santa Barbara, Santa Barbara, California, 93106, USA
| |
Collapse
|
50
|
Sarkar SN, Sen GC. Production, purification, and characterization of recombinant 2', 5'-oligoadenylate synthetases. Methods 1998; 15:233-42. [PMID: 9735308 DOI: 10.1006/meth.1998.0627] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
2',5'-Oligoadenylate [2-5(A)] synthetases are a family of interferon-induced enzymes that polymerize ATP into 2'-5'-linked oligoadenylates in the presence of double-stranded RNA (dsRNA), their cofactor. The 2-5(A) molecules, in turn, activate the latent ribonuclease RNase L by promoting its dimerization. The 2-5(A) synthetase pathway has been implicated in interferon's antiviral and anticellular activities. In addition to their interesting cellular properties, these enzymes are also enzymologically interesting because they are the only known template and primer independent nucleotide (DNA or RNA)polymerases that synthesize 2'-5'-linked oligonucleotides. Moreover, their mode of activation by dsRNA remains unknown. In the past, biochemical and structure-function studies have been hampered by the lack of a convenient system for expressing recombinant 2-5(A) synthetases. These proteins are toxic to mammalian cells, probably because of RNase L activation, and proteins produced in bacteria do not have full enzymatic activity. To circumvent these problems, we have developed a baculovirus-insect cell system for high-yield expression of the small and medium isozymes. Here, methods are described for the production, purification, and characterization of the mouse small (9-2) (S. K. Ghosh, J. Kusari, S. K. Bandyopadhyay, H. Samanta, R. Kumar, and G. C. Sen, 1991, J. Biol. Chem. 266, 15293-15299) and human medium (P69) (I. Marie and A. G. Hovanessian, 1992, J. Biol. Chem. 267, 9933-9939) 2-5(A) synthetase isozymes and their mutants using the insect cell system. We also report methods for studying 2-5(A) synthetase-dsRNA interactions and protein-protein interactions among the subunits of the two isozymes.
Collapse
Affiliation(s)
- S N Sarkar
- Department of Molecular Biology, The Lerner Research Institute, The Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, Ohio, 44195, USA
| | | |
Collapse
|