1
|
Cavalier E, Farré-Segura J, Lukas P, Gendebien AS, Peeters S, Massonnet P, Le Goff C, Bouquegneau A, Souberbielle JC, Delatour V, Delanaye P. Unveiling a new era with liquid chromatography coupled with mass spectrometry to enhance parathyroid hormone measurement in patients with chronic kidney disease. Kidney Int 2024; 105:338-346. [PMID: 37918791 DOI: 10.1016/j.kint.2023.09.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/19/2023] [Accepted: 09/25/2023] [Indexed: 11/04/2023]
Abstract
Precise determination of circulating parathyroid hormone (PTH) concentration is crucial to diagnose and manage various disease conditions, including the chronic kidney disease-mineral and bone disorder. However, the lack of standardization in PTH assays is challenging for clinicians, potentially leading to medical errors because the different assays do not provide equivalent results and use different reference ranges. Here, we aimed to evaluate the impact of recalibrating PTH immunoassays by means of a recently developed LC-MS/MS method as the reference. Utilizing a large panel of pooled plasma samples with PTH concentrations determined by the LC-MS/MS method calibrated with the World Health Organization (WHO) 95/646 International Standard, five PTH immunoassays were recalibrated. The robustness of this standardization was evaluated over time using different sets of samples. The recalibration successfully reduced inter-assay variability with harmonization of PTH measurements across different assays. By recalibrating the assays based on the WHO 95/646 International Standard, we demonstrated the feasibility for standardizing PTH measurement results and adopting common reference ranges for PTH assays, facilitating a more consistent interpretation of PTH values. The recalibration process aligns PTH results obtained from various immunoassays with the LC-MS/MS method, providing more consistent and reliable measurements. Thus, establishing true standardization across all PTH assays is crucial to ensure consistent interpretation and clinical decision-making.
Collapse
Affiliation(s)
- Etienne Cavalier
- Department of Clinical Chemistry, University of Liège, CIRM, Centre Hospitalier Universitaire de Liège, Liège, Belgium.
| | - Jordi Farré-Segura
- Department of Clinical Chemistry, University of Liège, CIRM, Centre Hospitalier Universitaire de Liège, Liège, Belgium
| | - Pierre Lukas
- Department of Clinical Chemistry, University of Liège, CIRM, Centre Hospitalier Universitaire de Liège, Liège, Belgium
| | - Anne-Sophie Gendebien
- Department of Clinical Chemistry, University of Liège, CIRM, Centre Hospitalier Universitaire de Liège, Liège, Belgium
| | - Stéphanie Peeters
- Department of Clinical Chemistry, University of Liège, CIRM, Centre Hospitalier Universitaire de Liège, Liège, Belgium
| | - Philippe Massonnet
- Department of Clinical Chemistry, University of Liège, CIRM, Centre Hospitalier Universitaire de Liège, Liège, Belgium
| | - Caroline Le Goff
- Department of Clinical Chemistry, University of Liège, CIRM, Centre Hospitalier Universitaire de Liège, Liège, Belgium
| | - Antoine Bouquegneau
- Department of Nephrology, Dialysis and Transplantation, CHU de Liège, Liège, Belgium
| | | | - Vincent Delatour
- Department of Biomedical and Organic Chemistry, Laboratoire National de Métrologie et d'Essais (LNE), Paris, France
| | - Pierre Delanaye
- Department of Nephrology, Dialysis and Transplantation, CHU de Liège, Liège, Belgium; Department of Nephrology-Dialysis-Apheresis, Hôpital Universitaire Carémeau, Nîmes, France
| |
Collapse
|
2
|
Sachan S, Moya CG, Voigt B, Köhn M, Balbach J. The pro-sequence of parathyroid hormone prevents premature amyloid fibril formation. FEBS Lett 2023; 597:995-1006. [PMID: 36700832 DOI: 10.1002/1873-3468.14587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 01/16/2023] [Indexed: 01/27/2023]
Abstract
The parathyroid hormone (PTH) regulates the calcium and phosphate level in blood after secretion from parathyroid chief cells. The pre- and pro-sequences of precursor preproPTH get cleaved during PTH maturation. In secretory granules, PTH forms functional amyloids. Using thioflavin T fibrillation assays, circular dichroism, NMR spectroscopy, and cellular cAMP activation, we show that the pro-sequence prevents premature fibrillation by impairing primary nucleation because of Coulomb repulsion of positively charged residues. Under seeding or high salt conditions or in the presence of heparin at pH 5.5, proPTH fibril formation is delayed, but the monomer release properties are conserved. ProPTH can still activate in cellulo PTH receptor 1 but with impaired potency. These findings give some perspectives on medical applications of PTH in hormone therapy.
Collapse
Affiliation(s)
- Shubhra Sachan
- Institute of Physics, Biophysics, Martin-Luther-University Halle-Wittenberg, Germany
| | - Celia González Moya
- Institute of Physics, Biophysics, Martin-Luther-University Halle-Wittenberg, Germany
| | - Bruno Voigt
- Institute of Physics, Biophysics, Martin-Luther-University Halle-Wittenberg, Germany
| | - Marcel Köhn
- Medical Faculty, Martin-Luther-University Halle-Wittenberg, Germany
| | - Jochen Balbach
- Institute of Physics, Biophysics, Martin-Luther-University Halle-Wittenberg, Germany
| |
Collapse
|
3
|
Cavalier E. Determination of parathyroid hormone: from radioimmunoassay to LCMS/MS. Clin Chem Lab Med 2023; 61:946-953. [PMID: 36640443 DOI: 10.1515/cclm-2022-0942] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 01/05/2023] [Indexed: 01/15/2023]
Abstract
Parathyroid hormone (PTH) determination is of paramount importance for the exploration of diseases related with calcium metabolism and for the follow-up of patients suffering from bone and mineral disorders associated with chronic kidney diseases (CKD-MBD). Unfortunately, the biologically active form of PTH, i.e. 1-84 PTH, circulates in the blood stream with many fragments and post-translationally modified forms, which decreases the specificity of immunoassays. The assays used to measure PTH, either from 2nd or 3rd generation, are not standardised, which may lead to interpretation errors and clinical consequences. Reference ranges for PTH have neither been always correctly established and the stability of the peptide is also a matter of concern. Fortunately, these last years, newer techniques using mass spectrometry (either high resolution or triple quadripole) coupled with liquid chromatography have been developed, which will help to standardise the different assays. Indeed, PTH assays standardisation is one of the task of the IFCC Committee for Bone Metabolism. Such standardisation will allow a better consistency in the interpretation of the results and will promote studies aiming at the establishment of correct reference ranges.
Collapse
Affiliation(s)
- Etienne Cavalier
- Department of Clinical Chemistry, CHU de Liège, CIRM, University of Liege, Liège, Belgium
| |
Collapse
|
4
|
Lee JH, Lee S. The parathyroid glands and parathyroid hormone: Insights from PTH gene mutations. VITAMINS AND HORMONES 2022; 120:79-108. [PMID: 35953118 DOI: 10.1016/bs.vh.2022.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Nine mutations have been discovered in the parathyroid hormone (PTH) gene since it was initially sequenced in 1983. An autosomal dominant C18R mutation in the signal peptide was first reported in 1990, followed by an exon skipping mutation, leading to loss of exon 2 in 1992; the latter mutation prevents PTH biosynthesis, as exon 2 contains the initiation codon. The S23P and S23X mutations affecting the same residue were reported in 1999 and 2012, respectively, while in 2008, the somatic mutation, R83X, was detected in a parathyroid adenoma tissue sample from a patient with overt hyperparathyroidism. In 2013, the heterozygous p.Met1_Asp6del mutation was discovered incidentally in a case-control study, while another heterozygous mutation, M14K, was detected in the signal peptide 4 years later. In 2015, a homozygous R56C mutation was reported, and was the first hypoparathyroidism-causing mutation identified that affects the mature bioactive portion of PTH; this mutation has significantly contributed to the understanding of the molecular mechanisms involved in signal transduction through the PTH receptor. Recently, a novel homozygous S32P mutation was identified, which is also situated in the bioactive portion of PTH. The discovery of these nine mutations in the PTH gene and determination of the molecular mechanisms underlying their effects has provided deep insights into the synthesis, processing, and secretion of PTH. Future attempts to discover other such mutations will help elucidate as yet unknown functions of PTH, with potential clinical implications.
Collapse
Affiliation(s)
- Joon-Hyop Lee
- Laboratory of Genomics and Translational Medicine, Gachon University College of Medicine, Incheon, Korea; Department of Surgery, Gachon University College of Medicine, Incheon, Korea
| | - Sihoon Lee
- Laboratory of Genomics and Translational Medicine, Gachon University College of Medicine, Incheon, Korea; Department of Internal Medicine, Gachon University College of Medicine, Incheon, Korea.
| |
Collapse
|
5
|
Abstract
Parathyroid hormone (PTH) and PTH-related peptide (PTHrP) regulate extracellular phosphate and calcium homeostasis as well as bone remodeling. PTH is a classic endocrine peptide hormone whose synthesis and negative feedback by multiple factors control release from the parathyroid glands. PTHrP is ubiquitously expressed (pre- and postnatally) and acts in an autocrine/paracrine manner. This review considers the structural pharmacology and actions of PTH and PTHrP, biological consequences of inherited mutations, engineered analogs that illuminate similarities and differences in physiologic actions, and targeted therapeutic opportunities.
Collapse
Affiliation(s)
- Larry J Suva
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas Veterinary Medical Center 4466 Texas A&M University, College Station, TX, United States
| | - Peter A Friedman
- Department of Pharmacology and Chemical Biology, Laboratory for GPCR Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States.
| |
Collapse
|
6
|
Cavalier E, Vasikaran S, Bhattoa HP, Heijboer AC, Makris K, Ulmer CZ. The path to the standardization of PTH: Is this a realistic possibility? a position paper of the IFCC C-BM. Clin Chim Acta 2021; 515:44-51. [PMID: 33412144 PMCID: PMC7920929 DOI: 10.1016/j.cca.2020.12.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/07/2020] [Accepted: 12/18/2020] [Indexed: 11/18/2022]
Abstract
Parathyroid hormone (PTH) determination is of greatest importance for patients suffering from parathyroid gland disorders and for the follow-up of bone turnover in patients suffering from chronic kidney disease (CKD). Two generations of PTH assays are simultaneously present on the market for PTH quantification. As these assays are not yet standardized, this results in a significant level of confusion in the care of CKD patients. One key objective of the IFCC Committee for Bone Metabolism is to improve this situation. In this position paper, we will highlight the current state of PTH testing and propose a pathway to ultimately overcome issues resulting from PTH assay variability.
Collapse
Affiliation(s)
- Etienne Cavalier
- Department of Clinical Chemistry, University of Liège, CHU de Liège, Domaine du Sart-Tilman, B-4000 Liège, Belgium.
| | - Samuel Vasikaran
- PathWest Laboratory Medicine, Fiona Stanley Hospital, Murdoch, WA, Australia
| | - Harjit P Bhattoa
- Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, Debrecen Hungary
| | - Annemieke C Heijboer
- Department of Clinical Chemistry, Endocrine Laboratory, Amsterdam Gastroenterology & Metabolism, Vrije Universiteit Amsterdam and University of Amsterdam, Amsterdam UMC, Amsterdam, Netherlands
| | - Konstantinos Makris
- Clinical Biochemistry Department, KAT General Hospital, 14561 Athens, Greece; Laboratory for Research of the Musculoskeletal System "Th. Garofalidis", Medical School, University of Athens, Athens, Greece
| | - Candice Z Ulmer
- Clinical Chemistry Branch, Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Buford, Atlanta, GA, USA
| |
Collapse
|
7
|
Novel bone-targeted parathyroid hormone-related peptide antagonists inhibit breast cancer bone metastases. Anticancer Drugs 2021; 32:365-375. [PMID: 33595947 DOI: 10.1097/cad.0000000000001051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Patients with advanced breast cancer often develop bone metastases. Treatment is limited to palliative care. Parathyroid hormone (PTH)/parathyroid hormone-related peptide (PTHrP) antagonists for bone metastases failed clinically due to short half-life and inadequate concentration in bone. We synthesized two novel PTHrP antagonists fused to an inert bacterial collagen binding domain (CBD) that directs drugs to bone. PTH(7-33)-CBD is an N-terminal truncated PTHrP antagonist. [W2]PTH(1-33)-CBD is an PTHrP inverse-agonist. The aim of this study was to assess PTH(7-33)-CBD to reduce breast cancer bone metastases and prevent osteolytic destruction in mice and to assess both drugs for apoptosis of breast cancer cells in vitro and inhibition of PTH receptor (PTHR1). PTH(7-33)-CBD (1000 µg/kg, subcutaneous) or vehicle was administered 24 h prior to MDA-MB-231 breast cancer cell inoculation into the tibia marrow. Weekly tumor burden and bone density were measured. Pharmacokinetic analysis of PTH(7-33)-CBD in rat serum was evaluated. Drug effect on cAMP accumulation in SaOS-2 osteosarcoma cells and apoptosis of MDA-MB-231 cells was assessed. PTH(7-33)-CBD reduced MDA-MB-231 tumor burden and osteolytic destruction in mice 4-5 weeks post-treatment. PTH(7-33)-CBD (1000 μg/kg i.v. and subcutaneous) in rats was rapidly absorbed with peak concentration 5-min and terminal half-life 3-h. Bioavailability by the subcutaneous route was 43% relative to the i.v. route. PTH(7-33)-CBD was detected only on rat periosteal bone surfaces that stained positive for collagen-1. PTH(7-33)-CBD and [W2]PTH(1-33)-CBD (10-8M) blocked basal and PTH agonist-induced cAMP accumulation in SaOS-2 osteosarcoma cells. Both drugs induced PTHR1-dependent apoptosis of MDA-MB-231 cells in vitro. Novel bone-targeted PTHrP antagonists represent a new paradigm for treatment of breast cancer bone metastases.
Collapse
|
8
|
Kumar A, Balbach J. Inactivation of parathyroid hormone: perspectives of drug discovery to combating hyperparathyroidism. Curr Mol Pharmacol 2021; 15:292-305. [PMID: 33573587 DOI: 10.2174/1874467214666210126112839] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 11/22/2022]
Abstract
Hormonal coordination is tightly regulated within the human body and thus regulates human physiology. The parathyroid hormone (PTH), a member of the endocrine system, regulates the calcium and phosphate level within the human body. Under non-physiological conditions, PTH levels get upregulated (hyperparathyroidism) or downregulated (hypoparathyroidism) due to external or internal factors. In the case of hyperparathyroidism, elevated PTH stimulates cellular receptors present in the bones, kidneys, and intestines to increase the blood calcium level, leading to calcium deposition. This eventually causes various symptoms including kidney stones. Currently, there is no known medication that directly targets PTH in order to suppress its function. Therefore, it is of great interest to find novel small molecules or any other means that can modulate PTH function. The molecular signaling of PTH starts by binding of its N-terminus to the G-protein coupled PTH1/2 receptor. Therefore, any intervention that affects the N-terminus of PTH could be a lead candidate for treating hyperparathyroidism. As a proof-of-concept, there are various possibilities to inhibit molecular PTH function by (i) a small molecule, (ii) N-terminal PTH phosphorylation, (iii) fibril formation and (iv) residue-specific mutations. These modifications put PTH into an inactive state, which will be discussed in detail in this review article. We anticipate that exploring small molecules or other means that affect the N-terminus of PTH could be lead candidates in combating hyperparathyroidism.
Collapse
Affiliation(s)
- Amit Kumar
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College of Science, Technology and Medicine London, South Kensington, London SW7 2BU. United Kingdom
| | - Jochen Balbach
- Institute of Physics, Biophysics, Martin-Luther-University Halle- Wittenberg. Germany
| |
Collapse
|
9
|
Gild ML, Bullock M, Luxford C, Field M, Clifton-Bligh RJ. Congenital Hypoparathyroidism Associated With Elevated Circulating Nonfunctional Parathyroid Hormone Due to Novel PTH Mutation. J Clin Endocrinol Metab 2020; 105:5839775. [PMID: 32421798 DOI: 10.1210/clinem/dgaa279] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 05/13/2020] [Indexed: 11/19/2022]
Abstract
CONTEXT Familial hypoparathyroidism has a heterogeneous presentation where patients usually have low parathyroid hormone (PTH) levels due to impaired production or secretion. This contrasts with pseudohypoparathyroidism, in which PTH resistance is usually associated with an elevated serum PTH. High levels of circulating PTH can also be due to bioinactive PTH, which is difficult to distinguish from pseudohypoparathyroidism on biochemical grounds. CASE DESCRIPTION We report on 2 sisters from consanguineous parents who presented with tetany at birth and were diagnosed with congenital hypocalcemia. Serum PTH levels were normal for many years, but progressively increased in midadulthood to greater than 100x the upper limit of normal on multiple assays. Homozygosity mapping was performed on 1 sister that demonstrated loss of heterozygosity (LOH) around PTH. Sequencing revealed a previously unreported variant, c.94T>C, predicting a codon change of p.Ser32Pro that is biologically inactive. CONCLUSIONS This case report shows a previously unreported unusual biochemical phenotype of a rising PTH in the context of a novel PTH mutation. This expands the evolving genotypes associated with hypoparathyroidism without established gene mutations.
Collapse
Affiliation(s)
- Matti L Gild
- Cancer Genetics, Kolling Institute of Medical Research, Sydney, North South Wales, Australia
- Department of Genetics, Royal North Shore Hospital, Sydney, Australia
| | - Martyn Bullock
- Cancer Genetics, Kolling Institute of Medical Research, Sydney, North South Wales, Australia
| | - Catherine Luxford
- Cancer Genetics, Kolling Institute of Medical Research, Sydney, North South Wales, Australia
| | - Michael Field
- Cancer Genetics, Kolling Institute of Medical Research, Sydney, North South Wales, Australia
- Department of Endocrinology and Diabetes, Royal North Shore Hospital, Sydney, Australia
| | - Roderick J Clifton-Bligh
- Cancer Genetics, Kolling Institute of Medical Research, Sydney, North South Wales, Australia
- Department of Genetics, Royal North Shore Hospital, Sydney, Australia
| |
Collapse
|
10
|
Cavalier E, Souberbielle JC, Delanaye P. PTH determination in hemodialyzed patients-A laboratory perspective. Semin Dial 2019; 32:490-492. [PMID: 31631422 DOI: 10.1111/sdi.12844] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Parathyroid hormone (PTH) is a key player of bone remodelling in patients suffering from Chronic Kidney Disease-Mineral and Bone Disorder (CKD-MBD). Serum PTH concentrations are thus frequently measured in CKD patients. Nevertheless, this determination is far from simple. PTH stability can be an issue and degradation of the peptide can be important if storage is not properly done. Biologically active PTH circulates together with fragments, which can be detected by some immunoassays. There is, up to now, no standardization of the assays available on the market, which can lead to some confusion when patients are followed with different methods. The upper end of the reference ranges provided by some manufacturers have not been properly established and are sometimes far too high. Finally, PTH can be oxidized in vivo and thus become inactive, while still quantified by immunoassays. In this Editorial, we will try to highlight some of these issues on PTH measurement.
Collapse
Affiliation(s)
- Etienne Cavalier
- Department of Clinical chemistry, CHU de Liège, University of Liège, Liège, Belgium.,CKD-MBD Working group of the European Renal Association - European Dialysis and Transplant Association (ERA-EDTA).,International Federation of Clinical Chemistry (IFCC) Committee for Bone Metabolism (IFCC C-BM)
| | - Jean-Claude Souberbielle
- Laboratoire d'Explorations Fonctionnelles, INSERM U1151, Hôpital Necker-Enfant Malades, Paris, France
| | - Pierre Delanaye
- Department of Nephrology, Dialysis and Transplantation, CHU de Liège, University of Liège, Liège, Belgium
| |
Collapse
|
11
|
In-Cell NMR: Analysis of Protein-Small Molecule Interactions, Metabolic Processes, and Protein Phosphorylation. Int J Mol Sci 2019; 20:ijms20020378. [PMID: 30658393 PMCID: PMC6359726 DOI: 10.3390/ijms20020378] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/11/2019] [Accepted: 01/13/2019] [Indexed: 01/31/2023] Open
Abstract
Nuclear magnetic resonance (NMR) spectroscopy enables the non-invasive observation of biochemical processes, in living cells, at comparably high spectral and temporal resolution. Preferably, means of increasing the detection limit of this powerful analytical method need to be applied when observing cellular processes under physiological conditions, due to the low sensitivity inherent to the technique. In this review, a brief introduction to in-cell NMR, protein–small molecule interactions, posttranslational phosphorylation, and hyperpolarization NMR methods, used for the study of metabolites in cellulo, are presented. Recent examples of method development in all three fields are conceptually highlighted, and an outlook into future perspectives of this emerging area of NMR research is given.
Collapse
|
12
|
Wolff F, Gervy C, Cavalier E, Bergmann P, Cotton F, Heureux M, Corvilain B, Badot V. When obtaining a blood sample from the right arm was not the right thing to do: a case of elevated parathyroid hormone levels 27 years after thyroidectomy. Clin Chem Lab Med 2016; 54:e369-e371. [PMID: 27244879 DOI: 10.1515/cclm-2016-0345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 05/03/2016] [Indexed: 11/15/2022]
|
13
|
Abstract
PTH and Vitamin D are two major regulators of mineral metabolism. They play critical roles in the maintenance of calcium and phosphate homeostasis as well as the development and maintenance of bone health. PTH and Vitamin D form a tightly controlled feedback cycle, PTH being a major stimulator of vitamin D synthesis in the kidney while vitamin D exerts negative feedback on PTH secretion. The major function of PTH and major physiologic regulator is circulating ionized calcium. The effects of PTH on gut, kidney, and bone serve to maintain serum calcium within a tight range. PTH has a reciprocal effect on phosphate metabolism. In contrast, vitamin D has a stimulatory effect on both calcium and phosphate homeostasis, playing a key role in providing adequate mineral for normal bone formation. Both hormones act in concert with the more recently discovered FGF23 and klotho, hormones involved predominantly in phosphate metabolism, which also participate in this closely knit feedback circuit. Of great interest are recent studies demonstrating effects of both PTH and vitamin D on the cardiovascular system. Hyperparathyroidism and vitamin D deficiency have been implicated in a variety of cardiovascular disorders including hypertension, atherosclerosis, vascular calcification, and kidney failure. Both hormones have direct effects on the endothelium, heart, and other vascular structures. How these effects of PTH and vitamin D interface with the regulation of bone formation are the subject of intense investigation.
Collapse
Affiliation(s)
- Syed Jalal Khundmiri
- Department of Medicine, University of Louisville, Louisville, Kentucky, USA
- Department of Physiology and Biophysics, University of Louisville, Louisville, Kentucky, USA
| | - Rebecca D. Murray
- Department of Medicine, University of Louisville, Louisville, Kentucky, USA
- Department of Physiology and Biophysics, University of Louisville, Louisville, Kentucky, USA
| | - Eleanor Lederer
- Department of Medicine, University of Louisville, Louisville, Kentucky, USA
- Department of Physiology and Biophysics, University of Louisville, Louisville, Kentucky, USA
- Robley Rex VA Medical Center, University of Louisville, Louisville, Kentucky, USA
| |
Collapse
|
14
|
Kumar A, Baumann M, Balbach J. Small Molecule Inhibited Parathyroid Hormone Mediated cAMP Response by N-Terminal Peptide Binding. Sci Rep 2016; 6:22533. [PMID: 26932583 PMCID: PMC4773758 DOI: 10.1038/srep22533] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 02/11/2016] [Indexed: 11/30/2022] Open
Abstract
Ligand binding to certain classes of G protein coupled receptors (GPCRs) stimulates the rapid synthesis of cAMP through G protein. Human parathyroid hormone (PTH), a member of class B GPCRs, binds to its receptor via its N–terminal domain, thereby activating the pathway to this secondary messenger inside cells. Presently, GPCRs are the target of many pharmaceuticals however, these drugs target only a small fraction of structurally known GPCRs (about 10%). Coordination complexes are gaining interest due to their wide applications in the medicinal field. In the present studies we explored the potential of a coordination complex of Zn(II) and anthracenyl–terpyridine as a modulator of the parathyroid hormone response. Preferential interactions at the N–terminal domain of the peptide hormone were manifested by suppressed cAMP generation inside the cells. These observations contribute a regulatory component to the current GPCR–cAMP paradigm, where not the receptor itself, but the activating hormone is a target. To our knowledge, this is the first report about a coordination complex modulating GPCR activity at the level of deactivating its agonist. Developing such molecules might help in the control of pathogenic PTH function such as hyperparathyroidism, where control of excess hormonal activity is essentially required.
Collapse
Affiliation(s)
- Amit Kumar
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK.,Institute of Physics, Biophysics, Martin-Luther-University Halle-Wittenberg, Germany
| | - Monika Baumann
- Institute of Physics, Biophysics, Martin-Luther-University Halle-Wittenberg, Germany
| | - Jochen Balbach
- Institute of Physics, Biophysics, Martin-Luther-University Halle-Wittenberg, Germany.,Centre for Structure und Dynamics of Proteins (MZP), Martin-Luther-University Halle-Wittenberg, Germany
| |
Collapse
|
15
|
Gardella TJ, Vilardaga JP. International Union of Basic and Clinical Pharmacology. XCIII. The parathyroid hormone receptors--family B G protein-coupled receptors. Pharmacol Rev 2015; 67:310-37. [PMID: 25713287 DOI: 10.1124/pr.114.009464] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The type-1 parathyroid hormone receptor (PTHR1) is a family B G protein-coupled receptor (GPCR) that mediates the actions of two polypeptide ligands; parathyroid hormone (PTH), an endocrine hormone that regulates the levels of calcium and inorganic phosphate in the blood by acting on bone and kidney, and PTH-related protein (PTHrP), a paracrine-factor that regulates cell differentiation and proliferation programs in developing bone and other tissues. The type-2 parathyroid hormone receptor (PTHR2) binds a peptide ligand, called tuberoinfundibular peptide-39 (TIP39), and while the biologic role of the PTHR2/TIP39 system is not as defined as that of the PTHR1, it likely plays a role in the central nervous system as well as in spermatogenesis. Mechanisms of action at these receptors have been explored through a variety of pharmacological and biochemical approaches, and the data obtained support a basic "two-site" mode of ligand binding now thought to be used by each of the family B peptide hormone GPCRs. Recent crystallographic studies on the family B GPCRs are providing new insights that help to further refine the specifics of the overall receptor architecture and modes of ligand docking. One intriguing pharmacological finding for the PTHR1 is that it can form surprisingly stable complexes with certain PTH/PTHrP ligand analogs and thereby mediate markedly prolonged cell signaling responses that persist even when the bulk of the complexes are found in internalized vesicles. The PTHR1 thus appears to be able to activate the Gα(s)/cAMP pathway not only from the plasma membrane but also from the endosomal domain. The cumulative findings could have an impact on efforts to develop new drug therapies for the PTH receptors.
Collapse
Affiliation(s)
- Thomas J Gardella
- Endocrine Unit, Massachusetts General Hospital, Boston, Massachusetts (T.J.G.); and Laboratory for GPCR Biology, Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania (J.-P.V.)
| | - Jean-Pierre Vilardaga
- Endocrine Unit, Massachusetts General Hospital, Boston, Massachusetts (T.J.G.); and Laboratory for GPCR Biology, Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania (J.-P.V.)
| |
Collapse
|
16
|
Kumar A, Gopalswamy M, Wishart C, Henze M, Eschen-Lippold L, Donnelly D, Balbach J. N-terminal phosphorylation of parathyroid hormone (PTH) abolishes its receptor activity. ACS Chem Biol 2014; 9:2465-70. [PMID: 25158085 DOI: 10.1021/cb5004515] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The parathyroid hormone (PTH) is an 84-residue peptide, which regulates the blood Ca(2+) level via GPCR binding and subsequent activation of intracellular signaling cascades. PTH is posttranslationally phosphorylated in the parathyroid glands; however, the functional significance of this processes is not well characterized. In the present study, mass spectrometric analysis revealed three sites of phosphorylation, and NMR spectroscopy assigned Ser1, Ser3, and Ser17 as modified sites. These sites are located at the N-terminus of the hormone, which is important for receptor recognition and activation. NMR shows further that the three phosphate groups remotely disturb the α-helical propensity up to Ala36. An intracellular cAMP accumulation assay elucidated the biological significance of this phosphorylation because it ablated the PTH-mediated signaling. Our studies thus shed light on functional implications of phosphorylation at native PTH as an additional level of regulation.
Collapse
Affiliation(s)
| | | | - Clare Wishart
- School of
Biomedical Sciences, University of Leeds, Leeds LS2 9JT, U.K
| | | | - Lennart Eschen-Lippold
- Department of Stress and Developmental
Biology, Leibniz Institute of Plant Biochemistry, D-06120 Halle (Saale), Germany
| | - Dan Donnelly
- School of
Biomedical Sciences, University of Leeds, Leeds LS2 9JT, U.K
| | | |
Collapse
|
17
|
Aslan D, Andersen MD, Gede LB, de Franca TK, Jørgensen SR, Schwarz P, Jørgensen NR. Mechanisms for the bone anabolic effect of parathyroid hormone treatment in humans. Scandinavian Journal of Clinical and Laboratory Investigation 2011; 72:14-22. [PMID: 22085136 DOI: 10.3109/00365513.2011.624631] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Intermittent low-dose treatment with parathyroid hormone (PTH) analogues has become widely used in the treatment of severe osteoporosis. During normal physiological conditions, PTH stimulates both bone formation and resorption, and in patients with primary hyperparathyroidism, bone loss is frequent. However, development of the biochemical measurement of PTH in the 1980s led us to understand the regulation of PTH secretion and calcium metabolism which subsequently paved the way for the use of PTH as an anabolic treatment of osteoporosis as, when given intermittently, it has strong anabolic effects in bone. This could not have taken place without the basic understanding achieved by the biochemical measurements of PTH. The stimulatory effects of PTH on bone formation have been explained by the so-called 'anabolic window', which means that during PTH treatment, bone formation is in excess over bone resorption during the first 6-18 months. This is due to the following: (1) PTH up-regulates c-fos expression in bone cells, (2) IGF is essential for PTH's anabolic effect, (3) bone lining cells are driven to differentiate into osteoblasts, (4) mesenchymal stem cells adhesion to bone surface is enhanced, (5) PTH has a direct antiapoptotic effect on osteoblasts and (6) when PTH interferes with remodelling, the osteoblasts over-compensate, and (7) PTH also decreases sclerostin levels, thereby removing inhibition of Wnt signalling which is required for PTH's anabolic actions. Thus, the net formative effect of PTH given in intermittent treatment emerges through a complex network of pathways. In summary, the effects of PTH on bone turnover are dependent on the mode and dose of administration and studies investigating the mechanisms underlying this effect are reviewed in this article.
Collapse
|
18
|
Parathyroid Hormone and Parathyroid Hormone–Related Peptide in the Regulation of Calcium Homeostasis and Bone Development. Endocrinology 2010. [DOI: 10.1016/b978-1-4160-5583-9.00056-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
19
|
Lee S, Hong SW, Choi HS, Lee LY, Nam C, Rhee Y, Chung UI, Lim SK. Experimental parathyroid hormone gene therapy using ØC31 integrase. Endocr J 2008; 55:1033-41. [PMID: 18689953 DOI: 10.1507/endocrj.k08e-040] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
ØC31 integrase can integrate targeted plasmid DNA into preferred locations in mammalian genomes, resulting in robust, long-term expression of the integrated transgene. This system represents an effective tool that opens up promising possibilities for gene therapy. The classical treatment for hypoparathyroidism was calcium and vitamin D replacement. Recently, parathyroid hormone (PTH) replacement was reported to be a more potentially physiologic treatment option. However, PTH synthesis is technically difficult and costly. These issues may be minimized by using PTH gene therapy. We attempted to achieve site-specific genomic integration of the PTH gene into a human cell line and mice using this system. We cotransfected 293 HEK cells with PTH-attB plasmid with or without ØC31 integrase plasmid. Expression and secretion of PTH into culture supernatants and site-specific genomic integration of PTH cDNA were assessed by immunoradiometric assays and pseudo-site analysis, respectively. In in vivo experiments, we injected the PTH-attB plasmid with or without ØC31 integrase plasmid into a mouse tail vein using the hydrodynamic method. Plasma PTH concentrations were serially measured, and site-specific integration of PTH cDNA into the mouse genome was confirmed by examining hepatic genomic DNA. PTH was expressed and secreted from 293 HEK cells and mouse hepatocytes, and pseudo-site analysis confirmed the site-specific integration of PTH cDNA into the host genomes. The site-specificity and efficiency of this system are advantageous in many areas, including, potentially, gene therapy. PTH gene therapy is one candidate; however, for clinical applications, we need to regulate PTH expression and secretion in the future.
Collapse
Affiliation(s)
- Sihoon Lee
- Department of Internal Medicine, Graduate School of Medicine, Gachon University of Medicine and Science, Namdong-gu, Incheon, Korea
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Calvo NG, Gentili CR, de Boland AR. The early phase of programmed cell death in Caco-2 intestinal cells exposed to PTH. J Cell Biochem 2008; 105:989-97. [DOI: 10.1002/jcb.21897] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
21
|
Bosse-Doenecke E, Weininger U, Gopalswamy M, Balbach J, Knudsen SM, Rudolph R. High yield production of recombinant native and modified peptides exemplified by ligands for G-protein coupled receptors. Protein Expr Purif 2008; 58:114-21. [PMID: 18248821 DOI: 10.1016/j.pep.2007.10.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2007] [Revised: 10/11/2007] [Accepted: 10/13/2007] [Indexed: 10/22/2022]
Abstract
G-protein coupled receptors (GPCRs) comprise a large family of membrane proteins and attract pharmaceutical interest as therapeutic targets. Two examples of class B GPCRs that are involved in metabolic diseases are the Parathyroid hormone receptor 1 (PTHR1) and the Glucagon-like-peptide-1 receptor (GLP-1R) which play central roles in osteoporosis and diabetes mellitus type II, respectively. Class B GPCRs are characterised by a large extracellular N-terminal domain with a typical disulfide bridge pattern. This domain is responsible for the binding of peptide hormone ligands. Here we report the recombinant expression of these ligands in natural and several modified forms for their use in functional assays, NMR analyses or affinity purification of receptor/ligand complexes for crystallisation. Applying the SUMO system, low cost expression of soluble fusion-proteins is achieved. Moreover, via the SUMO cleavage site, the authentic N-terminal sequence which is essential for ligand-receptor interactions can be obtained. Purification of the peptide by RP-HPLC results in >98% pure preparations. The strategy can also be adopted for many other purposes, especially if small peptides are needed at either large amounts or with specific features like isotope, affinity or fluorescent labels. Furthermore, for the growing demand for therapeutic peptides, this method could represent a straightforward production process.
Collapse
Affiliation(s)
- Eva Bosse-Doenecke
- Institut für Biochemie und Biotechnologie, Technische Biochemie, Martin-Luther-Universität Halle-Wittenberg, Kurt-Mothes-Str. 3, D-06120 Halle, Germany.
| | | | | | | | | | | |
Collapse
|
22
|
Li X, Liu H, Qin L, Tamasi J, Bergenstock M, Shapses S, Feyen JHM, Notterman DA, Partridge NC. Determination of dual effects of parathyroid hormone on skeletal gene expression in vivo by microarray and network analysis. J Biol Chem 2007; 282:33086-97. [PMID: 17690103 DOI: 10.1074/jbc.m705194200] [Citation(s) in RCA: 141] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Parathyroid hormone (PTH) stimulates bone formation when injected daily but causes severe bone loss with continuous infusion. The mechanism of its paradoxical effects is still elusive. In this study, we compared changes in the gene expression profile in bone induced by intermittent or continuous treatment with three different PTH peptides, PTH-(1-34), -(1-31), and -(3-34), in Sprague-Dawley female rats. PTH-(1-34) regulated numerous genes (approximately 1,000), but differentially, in both regimes. PTH-(1-31) regulated a similar number of genes in the intermittent regimen but fewer in the continuous regimen, consistent with its less potent catabolic effect. PTH-(3-34) regulated very few genes in both regimes, which suggests the protein kinase C pathway plays a limited role in mediating the dual effects of PTH, whereas the cAMP-dependent protein kinase A pathway appears to predominate. In the intermittent treatment, many genes encoding signaling mediators, transcription factors, cytokines, and proteases/protease inhibitors are regulated rapidly and cyclically with each PTH injection; genes associated with skeletal development show a slowly accruing pattern of expression. With continuous treatment, some genes are regulated from 6 h, and the mRNA levels are sustained with a longer infusion, whereas others show a kinetic decrease and then increase later. Significant up-regulation of genes stimulating osteoclastogenesis in the anabolic regime suggests a provocative and paradoxical theme for the anabolic effect of PTH that a full anabolic response requires a transient up-regulation of genes classically associated with a resorptive response. Ingenuity pathway analysis was performed on the microarray data. A novel signaling network was established that is differentially regulated in the two PTH treatment regimes. Key regulators are suggested to be AREG, CCL2, WNT4, and cAMP-responsive element modulator.
Collapse
Affiliation(s)
- Xin Li
- Department of Physiology and Biophysics, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, NJ 08854, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Hinoi E, Ueshima T, Hojo H, Iemata M, Takarada T, Yoneda Y. Up-regulation of per mRNA expression by parathyroid hormone through a protein kinase A-CREB-dependent mechanism in chondrocytes. J Biol Chem 2006; 281:23632-42. [PMID: 16777848 DOI: 10.1074/jbc.m512362200] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In bone, clock genes are involved in the circadian oscillation of bone formation and extracellular matrix expression. However, to date little attention has been paid to circadian rhythm in association with expression of clock genes during chondrogenesis in cartilage. In this study, we investigated the functional expression of different clock genes by chondrocytes in the course of cartilage development. The mRNA expression of types I, II, and X collagens exhibited a 24-h rhythm with a peak at zeitgeber time 6, in addition to a 24-h rhythmicity of all the clock genes examined in mouse femurs in vivo. Marked expression of different clock genes was seen in both osteoblastic MC3T3-E1 and chondrogenic ATDC5 cells in vitro, whereas parathyroid hormone (PTH) transiently increased period 1 (per1) mRNA expression at 1 h in both cell lines. Similar increases were seen in the mRNA levels for both per1 and per2 in prehypertrophic chondrocytes in metatarsal organotypic cultures within 2 h of exposure to PTH. PTH significantly activated the mouse per1 (mper1) and mper2 promoters but not the mper3 promoter in a manner sensitive to both a protein kinase A inhibitor and deletion of the cAMP-responsive element sequence (CRE) in ATDC5 cells. In HEK293 cells, introduction of brain and muscle aryl hydrocarbon receptor nuclear translocator-like protein 1 (bmal1)/clock enhanced mouse type II collagen first intron reporter activity without affecting promoter activity, with reduction effected by either per1 or per2. These results suggest that PTH directly stimulates mper expression through a protein kinase A-CRE-binding protein signaling pathway for subsequent regulation of bmal1/clock-dependent extracellular matrix expression in cartilage.
Collapse
Affiliation(s)
- Eiichi Hinoi
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School of Natural Science and Technology, Kanazawa, Ishikawa 920-1192, Japan
| | | | | | | | | | | |
Collapse
|
24
|
Souberbielle JC, Friedlander G, Cormier C. Practical considerations in PTH testing. Clin Chim Acta 2006; 366:81-9. [PMID: 16310759 DOI: 10.1016/j.cca.2005.10.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2005] [Revised: 10/18/2005] [Accepted: 10/20/2005] [Indexed: 10/25/2022]
Abstract
New knowledge concerning PTH biology have accumulated during the past few years. The finding that the so-called "intact" PTH assays measure a "non-1-84" PTH fragment in addition to full-length PTH has led to the development of new assays. These new assays, which were initially thought to measure 1-84 PTH only, have been shown to recognize also another PTH species called "amino-PTH". As the various names given to the different assay methods are highly confusing, there is a need for a simplified nomenclature. A simple way would be to identify the older "intact" PTH assays as second-generation assays and the new assays (Whole, CAP, BioIntact) as third-generation assays. Although of considerable potential interest for the comprehension of PTH physiology, the third-generation PTH assays have not yet proved to be superior to the second-generation assays in clinical practice. There is thus currently no recommendation to switch from the second-generation to the third-generation assays in clinical practice, or to use a ratio derived from the concommitent measurement of PTH with both assay-generation. Because second- and third-generation PTH assays are usually highly correlated, significant differences in the clinical information provided by these methods are unlikely. However, our opinion is that more definitive bone biopsy studies in dialyzed patients selected according to their bone- and calcium-related treatment are still needed to reach a consensus. Finally, we have proposed that PTH reference values should be established in healthy subjects with a normal vitamin D status. This supposes that 25OHD is measured in the reference population beforehand, and that the subjects with vitamin D insufficiency are eliminated from the reference group. Although more complicated than the usual way to establish normative data, we have shown that it decreases the upper limit of normal by 25-35%, enhancing thus the diagnostic sensitivity for hyperparathyroidism without a decrease in specificity.
Collapse
Affiliation(s)
- Jean-Claude Souberbielle
- Laboratoire d'Explorations Fonctionnelles, hôpital Necker-Enfants Malades, AP-HP, 149 rue de Sèvres, 75015 Paris, France.
| | | | | |
Collapse
|
25
|
Thuau R, Guilhaudis L, Ségalas-Milazzo I, Chartrel N, Oulyadi H, Boivin S, Fournier A, Leprince J, Davoust D, Vaudry H. Structural studies on 26RFa, a novel human RFamide-related peptide with orexigenic activity. Peptides 2005; 26:779-89. [PMID: 15808908 DOI: 10.1016/j.peptides.2005.01.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2004] [Revised: 12/27/2004] [Accepted: 01/03/2005] [Indexed: 11/24/2022]
Abstract
A novel hypothalamic neuropeptide of the RFamide family, comprising 26 amino acids residues and thus termed 26RFa, has been recently characterized in human, and was found to be the endogenous ligand for the orphan G protein-coupled receptor GPR103. Intracerebroventricular injection of 26RFa provokes a robust increase in food intake in rodents. In the present study, we have investigated the solution conformation of 26RFa by using two-dimensional NMR spectroscopy in different media. In water, 26RFa exhibits mainly a random coil conformation although the presence of a nascent helix was detected between residues 6 and 15. In methanol, 26RFa adopts a well-defined conformation consisting of an amphipathic alpha-helical structure (Pro4-Arg17), flanked by two N- and C-terminal disordered regions. The strong conservation, from amphibians to mammals, of the amino acid sequence corresponding to the amphipathic helix and to the C-terminal flexible octapeptide of 26RFa, suggests that these two domains are crucial for the interaction of the peptide with its receptor.
Collapse
Affiliation(s)
- Romain Thuau
- Laboratory of Nuclear Magnetic Resonance, European Institute for Peptide Research (IFRMP 23), UMR 6014 CNRS, University of Rouen, 76821 Mont-Saint-Aignan, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Gensure RC, Gardella TJ, Jüppner H. Parathyroid hormone and parathyroid hormone-related peptide, and their receptors. Biochem Biophys Res Commun 2005; 328:666-78. [PMID: 15694400 DOI: 10.1016/j.bbrc.2004.11.069] [Citation(s) in RCA: 186] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2004] [Indexed: 11/29/2022]
Abstract
Parathyroid hormone (PTH) has a central role in the regulation of serum calcium and phosphate, while parathyroid hormone-related peptide (PTHrP) has important developmental roles. Both peptides signal through the same receptor, the PTH/PTHrP receptor (a class B G-protein-coupled receptor). The different biological effects of these ligands result from their modes of regulation and secretion, endocrine vs. paracrine/autocrine. The importance of PTH and PTHrP is evident by the variety of clinical syndromes caused by deficiency or excess production of either peptide, and the demonstration that intermittent injection of PTH increases bone mass, and thus provides a means to treat osteoporosis. This, in turn, has triggered increased interest in understanding the mechanisms of PTH/PTHrP receptor action and the search for smaller peptide or non-peptide agonists that have efficacy at this receptor when administered non-parenterally.
Collapse
Affiliation(s)
- Robert C Gensure
- Endocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | | | | |
Collapse
|
27
|
Murray TM, Rao LG, Divieti P, Bringhurst FR. Parathyroid hormone secretion and action: evidence for discrete receptors for the carboxyl-terminal region and related biological actions of carboxyl- terminal ligands. Endocr Rev 2005; 26:78-113. [PMID: 15689574 DOI: 10.1210/er.2003-0024] [Citation(s) in RCA: 173] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
PTH is a major systemic regulator of the concentrations of calcium, phosphate, and active vitamin D metabolites in blood and of cellular activity in bone. Intermittently administered PTH and amino-terminal PTH peptide fragments or analogs also augment bone mass and currently are being introduced into clinical practice as therapies for osteoporosis. The amino-terminal region of PTH is known to be both necessary and sufficient for full activity at PTH/PTHrP receptors (PTH1Rs), which mediate the classical biological actions of the hormone. It is well known that multiple carboxyl-terminal fragments of PTH are present in blood, where they comprise the major form(s) of circulating hormone, but these fragments have long been regarded as inert by-products of PTH metabolism because they neither bind to nor activate PTH1Rs. New in vitro and in vivo evidence, together with older observations extending over the past 20 yr, now points strongly to the existence of novel large carboxyl-terminal PTH fragments in blood and to receptors for these fragments that appear to mediate unique biological actions in bone. This review traces the development of this field in the context of the evolution of our understanding of the "classical" receptor for amino-terminal PTH and the now convincing evidence for these receptors for carboxyl-terminal PTH. The review summarizes current knowledge of the structure, secretion, and metabolism of PTH and its circulating fragments, details available information concerning the pharmacology and actions of carboxyl-terminal PTH receptors, and frames their likely biological and clinical significance. It seems likely that physiological parathyroid regulation of calcium and bone metabolism may involve receptors for circulating carboxy-terminal PTH ligands as well as the action of amino-terminal determinants within the PTH molecule on the classical PTH1R.
Collapse
Affiliation(s)
- Timothy M Murray
- Department of Medicine, University of Toronto, and the Division of Endocrinology and Metabolism, St. Michael's Hospital, Toronto, Ontario, Canada.
| | | | | | | |
Collapse
|
28
|
Shimizu N, Dean T, Khatri A, Gardella TJ. Amino-terminal parathyroid hormone fragment analogs containing alpha,alpha-di-alkyl amino acids at positions 1 and 3. J Bone Miner Res 2004; 19:2078-86. [PMID: 15537452 DOI: 10.1359/jbmr.040914] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2004] [Revised: 06/15/2004] [Accepted: 07/23/2004] [Indexed: 11/18/2022]
Abstract
UNLABELLED To define and minimize the N-terminal PTH pharmacophore, the effects of introducing different conformationally constraining di-alkyl amino acids at positions 1 and 3 of PTH(1-14) analogs were studied. Improvements in PTH receptor-binding affinity and signaling potency were found, although some substitutions resulted in partial agonism. INTRODUCTION The N-terminal portion of parathyroid hormone (PTH) plays a critical role in PTH-1 receptor (P1R) activation. To investigate the mechanisms underlying this action and to minimize the N-terminal PTH pharmacophore, we employed the PTH(1-14) fragment as a scaffold for structure-activity relationship studies, and thus previously found that substitutions of the conformationally constraining, di-alkyl amino acid, alpha-amino-isobutyric acid (Aib), at positions 1 and 3 increase the P1R-binding affinity and signaling potency of the analog approximately 100-fold. Here we extend these findings by investigating the effects of other constrained di-alkyl amino acids at positions 1 and/or 3 on PTH analog activity. MATERIALS AND METHODS The di-alkyl amino acids, 1-aminocycloalkane-carboxylic acid (Ac(x)c, x = 3, 5, or 6) or diethylglycine (Deg), representing alkyl configurations of varying volumes and shape (cyclic and linear), were introduced into the parent peptide, [M]PTH(1-14) (M = Ala(1,3,12),Gln(10),Har(11),Trp(14)), and the analogs were tested for activity in P1R-expressing cells. RESULTS Relative to the binding affinity and cAMP-stimulating potency of the parent peptide (IC(50) = 27 mM; EC(50) = 220 nM), PTH(1-14) analogs substituted at position 1 exhibited 2- (Ac(3)c) to 60-fold (Ac(5)c) increases in affinity and potency, as measured in LLC-PK1 cells stably expressing the cloned P1R. Combining the substitutions of Ac(5)c(1) and Aib(3) yielded the highest affinity and most potent PTH(1-14) and shorter-length analogs to date: [Ac(5)c(1), Aib(3),M]PTH(1-X) (X = 14, 11, and 10; IC(50)s = 80 nM, 260 nM, and 850 microM; EC(50)s = 1.7 nM, 3.1 nM, and 1.9 microM, respectively). The effects of Ac(6)c(1) were similar to those of Ac(5)c(1). A dissociation of binding affinity and signaling activity occurred with Deg, as [Deg1,3,M]PTH(1-14) was a partial agonist. CONCLUSION Constraining the N-terminal PTH backbone conformation with di-alkyl amino acids at positions 1 and 3 may be a general strategy for optimizing and minimizing the PTH pharmacophore; however, inhibitory side-chain effects may be encountered. The new analogs presented should be useful as minimum-length functional probes of the PTH-PTH receptor interaction mechanism.
Collapse
Affiliation(s)
- Naoto Shimizu
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | |
Collapse
|
29
|
Shimizu N, Dean T, Tsang JC, Khatri A, Potts JT, Gardella TJ. Novel parathyroid hormone (PTH) antagonists that bind to the juxtamembrane portion of the PTH/PTH-related protein receptor. J Biol Chem 2004; 280:1797-807. [PMID: 15550385 DOI: 10.1074/jbc.m408270200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Current antagonists for the parathyroid hormone (PTH)/PTH-related protein (PTHrP) receptor (PTHR) are N-terminally truncated or N-terminally modified analogs of PTH(1-34) or PTHrP(1-34) and are thought to bind predominantly to the N-terminal extracellular (N) domain of the receptor. We hypothesized that ligands that bind only to PTHR region comprised of the extracellular loops and seven transmembrane helices (the juxtamembrane or J domain) could also antagonize the PTHR. To test this, we started with the J domain-selective agonists [Gln(10),Ala(12),Har(11),Trp(14),Arg(19) (M)]PTH(1-21), [M]PTH(1-15), and [M]PTH(1-14), and introduced substitutions at positions 1-3 that were predicted to dissociate PTHR binding and cAMP signaling activities. Strong dissociation was observed with the tri-residue sequence diethylglycine (Deg)(1)-para-benzoyl-l-phenylalanine (Bpa)(2)-Deg(3). In HKRK-B7 cells, which express the cloned human PTHR, [Deg(1,3),Bpa(2),M]PTH(1-21), [Deg(1,3),Bpa(2),M]PTH(1-15), and [Deg(1,3),Bpa(2),M]PTH(1-14) fully inhibited (IC(50)s = 100-700 nm) the binding of (125)I-[alpha-aminoisobutyric acid(1,3),M]PTH(1-15) and were severely defective for stimulating cAMP accumulation. In ROS 17/2.8 cells, which express the native rat PTHR, [Deg(1,3),Bpa(2),M]PTH(1-21) and [Deg(1,3),Bpa(2),M]PTH(1-15) antagonized the cAMP-agonist action of PTH(1-34), as did PTHrP(5-36) (IC(50)s = 0.7 microm, 2.6 microm, and 36 nm, respectively). In COS-7 cells expressing PTHR-delNt, which lacks the N domain of the receptor, [Deg(1,3),Bpa(2), M]PTH(1-21) and [Deg(1,3),Bpa(2),M]PTH(1-15) inhibited the agonist actions of [alpha-aminoisobutyric acid(1,3)]PTH(1-34) and [M]PTH(1-14) (IC(50)s approximately 1 microm), whereas PTHrP(5-36) failed to inhibit. [Deg(1,3),Bpa(2),M]PTH(1-14) inhibited the constitutive cAMP-signaling activity of PTHR-tether-PTH(1-9), in which the PTH(1-9) sequence is covalently linked to the PTHR J domain, as well as that of PTHR(cam)H223R. Thus, the J-domain-selective N-terminal PTH fragment analogs can function as antagonists as well as inverse agonists for the PTHR. The new ligands described should be useful for further studies of the ligand binding and activation mechanisms that operate in the critical PTHR J domain.
Collapse
Affiliation(s)
- Naoto Shimizu
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA
| | | | | | | | | | | |
Collapse
|
30
|
Gensure RC, Ponugoti B, Gunes Y, Papasani MR, Lanske B, Bastepe M, Rubin DA, Jüppner H. Identification and characterization of two parathyroid hormone-like molecules in zebrafish. Endocrinology 2004; 145:1634-9. [PMID: 14684608 DOI: 10.1210/en.2003-0964] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Zebrafish (Danio rerio) have receptors homologous to the human PTH (hPTH)/PTHrP receptor (PTH1R) and PTH-2 receptor (PTH2R) and an additional receptor (PTH3R) with high homology to the PTH1R. To find natural ligands for zPTH1R and zPTH3R, we searched the zebrafish genomic database and discovered two distinct regions that, when translated (zPTH1 and zPTH2), showed high homology to hPTH. Isolation of cDNAs and determination of the intron/exon boundaries revealed genomic structures which were similar to known PTHs. Peptides consisting of the first 34 amino acids after the pre- and prosequences of the zebrafish PTHs (zPTHs) were synthesized and were shown to be fully active at the hPTH1R. zPTH2(1-34) was, however, approximately 30-fold less potent at the zPTH1R than hPTH(1-34), hPTHrP(1-36), and zPTH1(1-34). When tested with zPTH3R, zPTH1(1-34) and hPTHrP(1-36) showed similar potencies, whereas the potency of zPTH2(1-34) was moderately (3-fold) reduced. To determine whether other fishes have multiple PTHs, we searched the genomic database of the Japanese pufferfish (Takifugu rubripes) and identified zPTH1 and zPTH2 homologs. Phylogenetic analysis showed that PTHs from zebrafish and pufferfish are more closely related to each other than to known mammalian PTH homologs or to PTHrP and tuberoinfundibular peptide of 39 residues. This is consistent with evolution of two teleost PTH-like peptides occurring after the evolutionary divergence between fishes and mammals. Overall, the PTH system appears more complex in fishes than in mammals, providing evidence of continued evolution in nontetrapod species. The availability of multiple forms of fish PTH and their receptors provide additional tools for PTH ligand/receptor structure-function studies.
Collapse
Affiliation(s)
- Robert C Gensure
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston 02114, USA
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Swarthout JT, D'Alonzo RC, Selvamurugan N, Partridge NC. Parathyroid hormone-dependent signaling pathways regulating genes in bone cells. Gene 2002; 282:1-17. [PMID: 11814673 DOI: 10.1016/s0378-1119(01)00798-3] [Citation(s) in RCA: 265] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Parathyroid hormone (PTH) is an 84-amino-acid polypeptide hormone functioning as a major mediator of bone remodeling and as an essential regulator of calcium homeostasis. PTH and PTH-related protein (PTHrP) indirectly activate osteoclasts resulting in increased bone resorption. During this process, PTH changes the phenotype of the osteoblast from a cell involved in bone formation to one directing bone resorption. In addition to these catabolic effects, PTH has been demonstrated to be an anabolic factor in skeletal tissue and in vitro. As a result, PTH has potential medical application to the treatment of osteoporosis, since intermittent administration of PTH stimulates bone formation. Activation of osteoblasts by PTH results in expression of genes important for the degradation of the extracellular matrix, production of growth factors, and stimulation and recruitment of osteoclasts. The ability of PTH to drive changes in gene expression is dependent upon activation of transcription factors such as the activator protein-1 family, RUNX2, and cAMP response element binding protein (CREB). Much of the regulation of these processes by PTH is protein kinase A (PKA)-dependent. However, while PKA is linked to many of the changes in gene expression directed by PTH, PKA activation has been shown to inhibit mitogen-activated protein kinase (MAPK) and proliferation of osteoblasts. It is now known that stimulation of MAPK and proliferation by PTH at low concentrations is protein kinase C (PKC)-dependent in both osteoblastic and kidney cells. Furthermore, PTH has been demonstrated to regulate components of the cell cycle. However, whether this regulation requires PKC and/or extracellular signal-regulated kinases or whether PTH is able to stimulate other components of the cell cycle is unknown. It is possible that stimulation of this signaling pathway by PTH mediates a unique pattern of gene expression resulting in proliferation in osteoblastic and kidney cells; however, specific examples of this are still unknown. This review will focus on what is known about PTH-mediated cell signaling, and discuss the established or putative PTH-regulated pattern of gene expression in osteoblastic cells following treatment with catabolic (high) or anabolic (low) concentrations of the hormone.
Collapse
Affiliation(s)
- John T Swarthout
- Cell and Molecular Biology Program, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | | | | | | |
Collapse
|
32
|
Barbier JR, MacLean S, Whitfield JF, Morley P, Willick GE. Structural requirements for conserved arginine of parathyroid hormone. Biochemistry 2001; 40:8955-61. [PMID: 11467957 DOI: 10.1021/bi010460k] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Arg-20 is one of two residues conserved in all peptides known to activate the parathyroid hormone (PTH) receptor. Previous studies have failed to find any naturally encoded analogues of residue 20 that had any adenylyl cyclase (AC) stimulating activity. In this work we have studied substitutions of Arg-20 with nonencoded amino acids and conformationally constrained analogues with side chains mimicking that of Arg. No analogue had more than 20% of the AC-stimulating ability of the natural Arg-20-bearing peptide. In descending order of activity, the most active analogues had (S)-4-piperidyl-(N-amidino)glycine (PipGly), norleucine (Nle), citrulline (Cit), or ornithine (Orn) at residue 20. Analogues with Arg-20 substituted with L-4-piperidyl-(N-amidino)alanine, Lys, Glu, Ala, Gln, (S)-2-amino-4-[(2-amino)pyrimidinyl]butanoic acid, or L-(4-guanidino)phenylalanine had very low or negligible activity. Low or negligible activities of Lys or Orn analogues suggested ionic interactions play a minor role in the Arg interaction with the receptor. The conformational constraints imposed by the PipGly ring had a negative effect on its ability to substitute for Arg. The side-chain H-bonding potential of the Cit ureimido group was likely an important factor in its mimicry of Arg. The increase in amphiphilicity, as demonstrated by its greater high-performance liquid chromatographic retention, and increased alpha-helix, as shown by circular dichroic spectroscopy, likely contributed to the activity of the Nle-20 analogue. The data demonstrated that specific H-bonding, hydrophobicity of the side chain, stabilization of alpha-helix, and possibly specific cation positioning were all important in the interaction of Arg-20 with receptor groups.
Collapse
Affiliation(s)
- J R Barbier
- Institute for Biological Sciences, National Research Council, Ottawa, Ontario, Canada K1A 0R6
| | | | | | | | | |
Collapse
|
33
|
Abstract
The receptor for parathyroid hormone (PTH) and PTH-related protein (PTHrP) is a G protein-coupled receptor (GPCR) that plays a key role in controlling blood Ca(2+) concentration and endochondral bone formation. This review focuses on the molecular mechanisms by which the receptor recognizes the PTH and PTHrP peptide ligands and transmits their signal across the cell membrane. The available data suggest that there are two principal components to the ligand-receptor interaction. First, a docking interaction between the C-terminal portion of PTH(1-34) and the N-terminal extracellular domain of the receptor; and second, a weaker interaction between the N-terminal portion of the ligand and the juxtamembrane region of the receptor, which induces signal transduction. A full understanding of these processes could lead to new PTH/PTHrP receptor ligands that are effective in controlling diseases of bone and mineral metabolism, such as osteoporosis.
Collapse
Affiliation(s)
- T J Gardella
- Endocrine Unit and Dept of Pediatrics, Massachusetts General Hospital and Harvard Medical School, 02114, Boston, MA, USA.
| | | |
Collapse
|
34
|
Hoare SR, Gardella TJ, Usdin TB. Evaluating the signal transduction mechanism of the parathyroid hormone 1 receptor. Effect of receptor-G-protein interaction on the ligand binding mechanism and receptor conformation. J Biol Chem 2001; 276:7741-53. [PMID: 11108715 DOI: 10.1074/jbc.m009395200] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ligand binding to the PTH1 receptor is described by a "two-site" model, in which the C-terminal portion of the ligand interacts with the N-terminal domain of the receptor (N interaction), and the N-terminal region of the ligand binds the juxtamembrane domain of the receptor (J interaction). Previous studies have not considered the dynamic nature of receptor conformation in ligand binding and receptor activation. In this study the ligand binding mechanism was compared for the G-protein-coupled (RG) and uncoupled (R) PTH1 receptor conformations. The two-site model was confirmed by demonstration of spatially distinct binding sites for PTH(3-34) and PTH(1-14): PTH(1-14), which binds predominantly to the J domain, only partially inhibited binding of 125I-PTH(3-34); and PTH(3-34), shown to bind predominantly to the N domain, only partially inhibited PTH(1-14)-stimulated cAMP accumulation. To assess the effect of R-G coupling, ligand binding to R was measured by displacement of 125I-PTH(3-34) with 30 microM guanosine 5'-3-O-(thio)triphosphate (GTPgammaS) present, and binding to RG was measured by displacement of 125I-[MAP]PTHrP(1-36) (where MAP is model amphipathic peptide), a new radioligand that binds selectively to RG. Agonists bound with higher affinity to RG than R, whereas antagonists bound similarly to these states. The J interaction was responsible for enhanced agonist binding to RG: residues 1 and 2 were required for increased PTH(1-34) affinity for RG; residue 5 of MAP-PTHrP(1-36) was a determinant of R/RG binding selectivity, and PTH(1-14) bound selectively to RG. The N interaction was insensitive to R-G coupling; PTH(3-34) binding was GTPgammaS-insensitive. Finally, several observations suggest the receptor conformation is more "closed" at RG than R. At the R state, an open conformation is suggested by the simultaneous binding of PTH(1-14) and PTH(3-34). At RG PTH(1-14) better occluded binding of 125I-PTH(3-34) and agonist ligands bound pseudo-irreversibly, suggesting a more closed conformation of this receptor state. The results extend the two-site model to take into account R and RG conformations and suggest a model for differences of receptor conformation between these states.
Collapse
Affiliation(s)
- S R Hoare
- Unit on Cell Biology, Laboratory of Genetics, National Institute of Mental Health, Bethesda, Maryland 20892-4092, USA
| | | | | |
Collapse
|
35
|
Jüppner H, Potts JT. Roles of Parathyroid Hormone and Parathyroid Hormone–Related Peptide in Calcium Metabolism and Bone Biology: Biological Actions and Receptors. Compr Physiol 2000. [DOI: 10.1002/cphy.cp070317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
36
|
Diaz R, Fuleihan GE, Brown EM. Parathyroid Hormone and Polyhormones: Production and Export. Compr Physiol 2000. [DOI: 10.1002/cphy.cp070316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
37
|
Jin L, Briggs SL, Chandrasekhar S, Chirgadze NY, Clawson DK, Schevitz RW, Smiley DL, Tashjian AH, Zhang F. Crystal Structure of Human Parathyroid Hormone 1–34 at 0.9-Å Resolution. J Biol Chem 2000. [DOI: 10.1016/s0021-9258(19)61502-4] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
38
|
Shimizu M, Potts JT, Gardella TJ. Minimization of parathyroid hormone. Novel amino-terminal parathyroid hormone fragments with enhanced potency in activating the type-1 parathyroid hormone receptor. J Biol Chem 2000; 275:21836-43. [PMID: 10777513 DOI: 10.1074/jbc.m909861199] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The amino-terminal and carboxyl-terminal portions of the 1-34 fragment of parathyroid hormone (PTH) contain the major determinants of receptor activation and receptor binding, respectively. We investigated how the amino-terminal signaling portion of PTH interacts with the receptor by utilizing analogs of the weakly active fragment, rat (r) PTH(1-14)NH(2), and cells transfected with the wild-type human PTH-1 receptor (hP1R-WT) or a truncated PTH-1 receptor which lacked most of the amino-terminal extracellular domain (hP1R-delNt). Of 132 mono-substituted PTH(1-14) analogs, most having substitutions in the (1-9) region were inactive in assays of cAMP formation in LLC-PK1 cells stably expressing hP1R-WT, whereas most having substitutions in the (10-14) region were active. Several substitutions (e.g. Ser(3) --> Ala, Asn(10) --> Ala or Gln, Leu(11) --> Arg, Gly(12) --> Ala, His(14) --> Trp) enhanced activity 2-10-fold. These effects were additive, as [Ala(3),(10,12),Arg(11), Trp(14)] rPTH(1-14)NH(2) was 220-fold more potent than rPTH(1-14)NH(2) (EC(50) = 0.6 +/- 0.1 and 133 +/- 16 micrometer, respectively). Native rPTH(1-11) was inactive, but [Ala(3,10), Arg(11)]rPTH(1-11)NH(2) achieved maximal cAMP stimulation (EC(50) = 17 micrometer). The modified PTH fragments induced cAMP formation with hP1R-delNt in COS-7 cells as potently as they did with hP1R-WT; PTH(1-34) was 6,000-fold weaker with hP1R-delNt than with hP1R-WT. The most potent analog, [Ala(3,10,12),Arg(11), Trp(14)]rPTH(1-14)NH(2), stimulated inositol phosphate production with hP1R-WT. The results show that short NH(2)-terminal peptides of PTH can be optimized for considerable gains in signaling potency through modification of interactions involving the regions of the receptor containing the transmembrane domains and extracellular loops.
Collapse
Affiliation(s)
- M Shimizu
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA
| | | | | |
Collapse
|
39
|
Condon SM, Morize I, Darnbrough S, Burns CJ, Miller BE, Uhl J, Burke K, Jariwala N, Locke K, Krolikowski PH, Kumar NV, Labaudiniere RF. The Bioactive Conformation of Human Parathyroid Hormone. Structural Evidence for the Extended Helix Postulate. J Am Chem Soc 2000. [DOI: 10.1021/ja994033u] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Stephen M. Condon
- Contribution from the Departments of Medicinal Chemistry, Biology, Spectroscopy, and Computer-Assisted Drug Design, Rhône-Poulenc Rorer Research and Development, 500 Arcola Road, Collegeville, Pennsylvania 19426
| | - Isabelle Morize
- Contribution from the Departments of Medicinal Chemistry, Biology, Spectroscopy, and Computer-Assisted Drug Design, Rhône-Poulenc Rorer Research and Development, 500 Arcola Road, Collegeville, Pennsylvania 19426
| | - Shelley Darnbrough
- Contribution from the Departments of Medicinal Chemistry, Biology, Spectroscopy, and Computer-Assisted Drug Design, Rhône-Poulenc Rorer Research and Development, 500 Arcola Road, Collegeville, Pennsylvania 19426
| | - Christopher J. Burns
- Contribution from the Departments of Medicinal Chemistry, Biology, Spectroscopy, and Computer-Assisted Drug Design, Rhône-Poulenc Rorer Research and Development, 500 Arcola Road, Collegeville, Pennsylvania 19426
| | - Bruce E. Miller
- Contribution from the Departments of Medicinal Chemistry, Biology, Spectroscopy, and Computer-Assisted Drug Design, Rhône-Poulenc Rorer Research and Development, 500 Arcola Road, Collegeville, Pennsylvania 19426
| | - Joanne Uhl
- Contribution from the Departments of Medicinal Chemistry, Biology, Spectroscopy, and Computer-Assisted Drug Design, Rhône-Poulenc Rorer Research and Development, 500 Arcola Road, Collegeville, Pennsylvania 19426
| | - Kathleen Burke
- Contribution from the Departments of Medicinal Chemistry, Biology, Spectroscopy, and Computer-Assisted Drug Design, Rhône-Poulenc Rorer Research and Development, 500 Arcola Road, Collegeville, Pennsylvania 19426
| | - Navinchandra Jariwala
- Contribution from the Departments of Medicinal Chemistry, Biology, Spectroscopy, and Computer-Assisted Drug Design, Rhône-Poulenc Rorer Research and Development, 500 Arcola Road, Collegeville, Pennsylvania 19426
| | - Kenneth Locke
- Contribution from the Departments of Medicinal Chemistry, Biology, Spectroscopy, and Computer-Assisted Drug Design, Rhône-Poulenc Rorer Research and Development, 500 Arcola Road, Collegeville, Pennsylvania 19426
| | - Paul H. Krolikowski
- Contribution from the Departments of Medicinal Chemistry, Biology, Spectroscopy, and Computer-Assisted Drug Design, Rhône-Poulenc Rorer Research and Development, 500 Arcola Road, Collegeville, Pennsylvania 19426
| | - N. Vasant Kumar
- Contribution from the Departments of Medicinal Chemistry, Biology, Spectroscopy, and Computer-Assisted Drug Design, Rhône-Poulenc Rorer Research and Development, 500 Arcola Road, Collegeville, Pennsylvania 19426
| | - Richard F. Labaudiniere
- Contribution from the Departments of Medicinal Chemistry, Biology, Spectroscopy, and Computer-Assisted Drug Design, Rhône-Poulenc Rorer Research and Development, 500 Arcola Road, Collegeville, Pennsylvania 19426
| |
Collapse
|
40
|
Reidhaar-Olson JF, Davis RM, De Souza-Hart JA, Selick HE. Active variants of human parathyroid hormone (1-34) with multiple amino acid substitutions. Mol Cell Endocrinol 2000; 160:135-47. [PMID: 10715547 DOI: 10.1016/s0303-7207(99)00211-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We used site-directed mutagenesis to construct 55 single-site variants of rhPTH, a recombinantly-expressed form of human parathyroid hormone (1-34) containing three amino acid changes compared to the natural sequence (ML8, ML18 and FY34). We identified several mutations, at residues Lys(13), Glu(19), Val(21), Glu(22), Lys(27) and Asp(30), that increase biological activity by up to 2. 5-fold, as measured by stimulation of adenylate cyclase activity in rat UMR-106 cells. We constructed a series of 15 variants in which two to eight substitutions at these positions were combined, and found that the mutations behaved additively, leading to peptides with significantly enhanced potency. The most active combination variant, with six substitutions (KS13, ES19, VQ21, ES22, KQ27 and DN30), is 15 times more active than the parent molecule. However, the extent to which such combinations increase the activity of the peptide depends critically on the identity of the residues at positions 8 and 18. We constructed two of the combination variants in a variety of sequence backgrounds containing different combinations of leucine, methionine and norleucine at positions 8 and 18. Enhancements in potency were significantly reduced when Met or Nle was present at either of these positions, both in UMR-106 cells and human SaOS-2 cells. A corresponding non-additivity was observed in direct measurements of receptor binding affinity on UMR-106 cells. These results suggest that interactions, either direct or indirect, between certain PTH side chains prevent these mutations from behaving in an additive manner.
Collapse
Affiliation(s)
- J F Reidhaar-Olson
- Affymax Research Institute, 3410 Central Expressway, Santa Clara, CA 95051-0703, USA.
| | | | | | | |
Collapse
|
41
|
Behar V, Bisello A, Bitan G, Rosenblatt M, Chorev M. Photoaffinity cross-linking identifies differences in the interactions of an agonist and an antagonist with the parathyroid hormone/parathyroid hormone-related protein receptor. J Biol Chem 2000; 275:9-17. [PMID: 10617579 DOI: 10.1074/jbc.275.1.9] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Analogs of parathyroid hormone (PTH)-related protein (PTHrP), singularly substituted with a photoreactive L-p-benzoylphenylalanine (Bpa) at each of the first 6 N-terminal positions, were pharmacologically evaluated in human embryonic kidney cells stably expressing the recombinant human PTH/PTHrP receptor. Two of these analogs, in which the photoreactive residue is either in position 1 or 2 (Bpa(1)- and Bpa(2)-PTHrP, respectively) displayed high affinity binding. Bpa(1)-PTHrP also displayed high efficacy for the stimulation of increased cAMP levels. Surprisingly, Bpa(2)-PTHrP was found to be a potent antagonist, despite the presence of the principal activation domain (sequence 1-6). Analysis of the digestion profiles of the ligand-receptor photoconjugates revealed that both the agonist and the antagonist cross-link to the S-CH(3) group of Met(425) in transmembrane domain 6 of the human PTH/PTHrP receptor. However, the antagonist Bpa(2)-PTHrP also cross-links to a proximal site within the receptor domain Pro(415)-Met(425). Unlike the antagonist Bpa(2)-PTHrP, the potent agonist Bpa(2)-PTH, also bearing the Bpa residue in position 2, cross-links only to the S-CH(3) group of Met(425) (similar to Bpa(1)-PTHrP and Bpa(1)-PTH). Taken together, these results suggest that the antagonist Bpa(2)-PTHrP is able to distinguish between two distinct conformations of the receptor. The comparison between PTHrP analogs substituted by Bpa at two consecutive positions and across PTH and PTHrP reveals insights into the PTH/PTHrP ligand-receptor bimolecular interaction at the level of a single amino acid.
Collapse
Affiliation(s)
- V Behar
- Division of Bone and Mineral Metabolism, Charles A. Dana Laboratories, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA
| | | | | | | | | |
Collapse
|
42
|
Carter PH, Jüppner H, Gardella TJ. Studies of the N-terminal region of a parathyroid hormone-related peptide (1-36) analog: receptor subtype-selective agonists, antagonists, and photochemical cross-linking agents. Endocrinology 1999; 140:4972-81. [PMID: 10537121 DOI: 10.1210/endo.140.11.7102] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The N-terminal regions of PTH and PTH-related peptide (PTHrP) are involved in receptor-mediated signaling and subtype selectivity. To better understand the molecular basis for these processes, we first prepared a series of [I5,W23,Y36]-PTHrP(1-36)NH2 analogs having stepwise deletions of residues 1-4 and characterized them with the human (h)PTH-1 and hPTH-2 receptor subtypes stably transfected in LLC-PK1 cells. Deletions beyond residue 2 caused progressive and severe losses in cAMP-signaling efficacy without dramatically diminishing receptor-binding affinity; consistent with this, [I5,W23]-PTHrP(5-36) was a potent antagonist for both PTH receptor subtypes. We then prepared and characterized photolabile analogs of [I5,W23,Y36]-PTHrP(1-36)NH2 that were singly modified with parabenzoyl-L-phenylalanine (Bpa) along the first six residues. These full-length analogs exhibited receptor subtype-selective agonism, antagonism, and photochemical cross-linking profiles. In particular, the [Bpa2]- and [Bpa4]-substituted analogs selectively antagonized and preferentially cross-linked to the PTH-1 receptor and PTH-2 receptor, respectively. These results demonstrate that the 1-5 region of [I5,W23]-PTHrP(1-36) is critical for activating the PTH-1 and PTH-2 receptors and suggest that the individual residues in this region play distinct roles in modulating the activation states of the two receptors. The cross-linking of both agonist and antagonist ligands to these PTH receptors lays the groundwork for identifying critical signaling determinants in the ligand binding pocket of the receptor.
Collapse
Affiliation(s)
- P H Carter
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston 02114, USA
| | | | | |
Collapse
|
43
|
Bisello A, Behar V, Greenberg Z, Suva LJ, Rosenblatt M, Chorev M. Development of a photoreactive parathyroid hormone antagonist to probe antagonist-receptor bimolecular interaction. THE JOURNAL OF PEPTIDE RESEARCH : OFFICIAL JOURNAL OF THE AMERICAN PEPTIDE SOCIETY 1999; 54:120-8. [PMID: 10461746 DOI: 10.1034/j.1399-3011.1999.00096.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Parathyroid hormone (PTH) and PTH-related protein (PTHrP) exert their calciotropic activities by binding to a specific seven-transmembrane-helix-containing G protein-coupled receptor mainly located in bone and kidney cells. In order to map in detail the nature of hormone-receptor interaction, we are employing 'photoaffinity scanning' of the bimolecular interface. To this end, we have developed photoreactive benzophenone (BP)-containing PTH analogs which can be specifically and efficiently cross-linked to the human (h) PTH/PTHrP receptor. In this report, we describe the photocross-linking of a BP-containing PTH antagonist, [Nle8,18,D-2-Nal12,Lys13(epsilon-BP),2-Nal23,Tyr34]bPT H(7-34)NH2 (ANT) to the recombinant hPTH/PTHrP receptor stably expressed in human embryonic kidney cells (HEK-293, clone C-21). This photoreactive antagonist has high affinity for the hPTH/PTHrP receptor and inhibits agonist-induced cyclase activity and intracellular calcium release. The photo-induced cross-linking of the radioiodinated antagonist (125I-ANT) to the recombinant hPTH/PTHrP receptor followed by SDS-PAGE analysis reveals a single radiolabeled band of approximately 85kDa, similar to that observed after cross-linking of a radioiodinated BP-containing agonist. The formation of this covalent 125I-ANT - hPTH/PTHrP receptor conjugate is competed dose-dependently by a variety of unlabelled PTH- and PTHrP-derived agonists and antagonists. This is the first report of a specific and efficient photocross-linking of a radioiodinated PTH antagonist to the hPTH/PTHrP receptor. Therefore, it provides the opportunity to study directly the nature of the bimolecular interaction of PTH antagonist with the hPTH/PTHrP receptor.
Collapse
Affiliation(s)
- A Bisello
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | | | | | | | | | | |
Collapse
|
44
|
Erdmann S, Burkhardt H, von der Mark K, Müller W. Mapping of a carboxyl-terminal active site of parathyroid hormone by calcium-imaging. Cell Calcium 1998; 23:413-21. [PMID: 9924633 DOI: 10.1016/s0143-4160(98)90098-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We recently showed that the C-terminal fragment PTH (52-84) effectively increases intracellular free calcium ([Ca2+]i) in a subset of growth plate chondrocytes not activated by the N-terminal PTH fragment (1-34). Here we characterize the active site on C-terminal PTH (52-84) with respect to calcium (Ca2+)-signaling and the mechanism involved by using synthetic PTH-subfragments in digital CCD ratio-imaging experiments. Our results show amino acids 73-76 to be the core region for increasing [Ca2+]i. Ryanodine (1 microM), caffeine (10 mM), lithium (2 mM), or cyclopiazonic acid (2-5 microM), agents that interfere with intracellular Ca2+ release, all failed to block PTH (52-84) induced [Ca2+]i increases. Depletion of extracellular calcium ([Ca2+]o) blocked PTH (52-84) induced [Ca2+]i increases, indicating a transmembrane Ca2+ influx. In contrast to voltage-gated and Ca2+ release activated Ca2+ influx, PTH (52-84) evoked Ca2+ influx was not blocked by nickel (1 mM). We conclude that PTH amino acids 73-76 are essential for activation of a nickel-insensitive Ca2+ influx pathway in growth plate chondrocytes that is likely to be of relevance for matrix calcification, a key step in endochondral bone formation.
Collapse
Affiliation(s)
- S Erdmann
- Institut für Physiologie der Charité, Abteilung Neurophysiologie, AG Molekulare Zellphysiologie, Berlin, Germany
| | | | | | | |
Collapse
|
45
|
Hua QX, Jia WH, Bullock BP, Habener JF, Weiss MA. Transcriptional activator-coactivator recognition: nascent folding of a kinase-inducible transactivation domain predicts its structure on coactivator binding. Biochemistry 1998; 37:5858-66. [PMID: 9558319 DOI: 10.1021/bi9800808] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A model of transcriptional activator-coactivator recognition is provided by the mammalian CREB activation domain and the KIX domain of coactivator CBP. The CREB kinase-inducible activation domain (pKID, 60 residues) is disordered in solution and undergoes an alpha-helical folding transition on binding to CBP [Radhakrishan, I., Perez-Alvarado, G. C., Parker, D., Dyson, H. J., Montminy, M. R., and Wright, P. E. (1997) Cell 91, 741-752]. Binding requires phosphorylation of a conserved serine (RPpSYR) in pKID associated in vivo with the biological activation of CREB signaling pathways. The CBP-bound structure of CREB contains two alpha-helices (designated alphaA and alphaB) flanking the phosphoserine; the bound structure is stabilized by specific interactions with CBP. Here, the nascent structure of an unbound pKID domain is characterized by multidimensional NMR spectroscopy. The solubility of the phosphopeptide (46 residues) was enhanced by truncation of N- and C-terminal residues not involved in pKID-CBP interactions. Although disordered under physiologic conditions, the pKID fragment and its unphosphorylated parent peptide exhibit partial folding at low temperatures. One recognition helix (alphaA) is well-defined at 4 degreesC, whereas the other (alphaB) is disordered but inducible in 40% trifluoroethanol (TFE). Such nascent structure is independent of serine phosphorylation and correlates with the relative extent of engagement of the two alpha-helices in the pKID-KIX complex; whereas alphaA occupies a peripheral binding site with few intermolecular contacts, the TFE-inducible alphaB motif is deeply engaged in a hydrophobic groove. Our results support the use of TFE as an empirical probe of hidden structural propensities and define a correspondence between induced fit and the nascent structure of peptide fragments.
Collapse
Affiliation(s)
- Q X Hua
- Department of Biochemistry, Center for Molecular Oncology, The University of Chicago, Illinois 60637, USA
| | | | | | | | | |
Collapse
|
46
|
Olstad OK, Reppe S, Loseth OP, Jemtland R, Gautvik KM. Binding and cyclic AMP stimulation by N-terminally deleted human PTHs (3-84 and 4-84) in a homologous ligand receptor system. J Bone Miner Res 1997; 12:1348-57. [PMID: 9286750 DOI: 10.1359/jbmr.1997.12.9.1348] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We have produced in yeast two human parathyroid hormone (hPTH) analogs with amino-terminal deletions, hPTH(3-84) and hPTH(4-84), employing the mating factor alpha (MF alpha) expression system. The authenticity of the polypeptides was demonstrated by amino-terminal analysis, amino acid composition, and molecular mass analysis. In cells (LLC-PK1) transfected with the human PTH/parathyroid hormone-related protein (PTHrP) receptor, using [125I-Tyr36]chickenPTHrP(1-36)NH2 as radioligand, binding studies revealed dissociation constants at equilibrium (Kd) for hPTH(3-84) and hPTH(4-84) of 4.7 and 8.0 nM, respectively, only slightly higher than natural recombinant hPTH(1-84) Kd = 2.3 nM). In comparison, [Nle8,18,Tyr34]bovinePTH(3-34)NH2 and [Tyr36]cPTHrP(1-36)NH2 showed equal Kd's of 1.9 nM. Neither of the N-terminally deleted hPTH analogs showed any detectable stimulation of cAMP production in the cells at concentrations below 20 nM. At supersaturated concentrations (500 nM) with receptor occupancy of more than 95% these hPTH analogs revealed about 15% rest agonism compared with that of hPTH(1-84). hPTH(1-84) and [Tyr36]cPTHrP(1-36)NH2 showed an equal half maximal cyclic adenosine monophosphate (cAMP) stimulation of about 0.8 and 0.7 nM, respectively. The hPTH analogs did not show any ability to antagonize cellular cAMP production induced by either hPTH or [Tyr36]cPTHrP(1-36)NH2. [Nle8,18,Tyr34]bPTH(3-34)NH2 did also not antagonize cAMP stimulation by hPTH, but inhibited [Tyr36]cPTHrP(1-36)NH2-induced cAMP production by 40% when present at a 1000 M excess. These distinct results related to PTH and PTHrP from different species are important to consider in experiments evaluating potential hPTH or PTHrP antagonism, and employment of a hPTH/PTHrP receptor model is a requirement.
Collapse
Affiliation(s)
- O K Olstad
- Institute of Medical Biochemistry, University of Oslo, Norway
| | | | | | | | | |
Collapse
|
47
|
Potts JT, Gardella TJ, Jüppner H, Kronenberg H. The history of parathyroid hormone and its receptor: structure-based design of parathyroid hormone analogues. Osteoporos Int 1997; 7 Suppl 3:S169-73. [PMID: 9536326 DOI: 10.1007/bf03194366] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- J T Potts
- Endocrine Unit, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | |
Collapse
|
48
|
Lane NE, Kimmel DB, Nilsson MH, Cohen FE, Newton S, Nissenson RA, Strewler GJ. Bone-selective analogs of human PTH(1-34) increase bone formation in an ovariectomized rat model. J Bone Miner Res 1996; 11:614-25. [PMID: 9157776 DOI: 10.1002/jbmr.5650110509] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Intermittent parathyroid hormone (PTH) therapy increases bone mass. The purpose of this study was to determine if analogs of human PTH(1-34) (hPTH[1-34]), which differ from the native sequence in their receptor-activating properties, could promote bone formation in an ovariectomized (OVX) osteopenic rat model. We synthesized two hPTH(1-34) analogs with single substitutions for serine in the 3-position that in vitro are partial agonists in kidney. In the renal cell line OK, maximal cyclic adenosine monophosphate (cAMP) activation by [His(3)]hPTH(134) was 50%, and maximal cAMP activation by [Leu(3)]hPTH(1-34) was 20% of that produced by hPTH(1-34). Both analogs were full agonists in UMR-106 rat osteosarcoma cells and other bone-derived systems, but both had reduced potency compared with hPTh(1-34). Six-month-old retired breeder Sprague-Dawley rats were ovariectomized, and five animals underwent sham operation. On day 56 post-OVX, five sham-operated and five pre-PTH treatment OVX animals were sacrificed, and the remaining animals were randomized into 10 groups of six animals each. All other animals were injected with one of the hPTH analogs or hPTH(1-34) at 0, 4, 40, or 400 mu g/kg of body weight (BW)/day and were killed on day 84. Histomorphometry of the proximal tibia metaphysis and biochemical markers of bone turnover (osteocalcin and pyridinoline cross-links) were the primary endpoints. The cancellous bone volume was significantly lower at day 56 post-OVX (pretreatment) and at day 84 post-OVX (post-vehicle treatment) than at baseline. None of the compounds significantly increased the cancellous bone volume. Trabecular number declined after OVX and did not change with hPTH treatment. In contrast, the trabecular thickness declined after OVX but was higher after treatment with 40 mu g/kg of BW/day or 400 mu g/kg of BW/day of hPTH(1-34). In OVX rats, the mineralizing surface was higher than baseline at day 56 and fell toward control levels by day 84. All three peptides produced marked dose-related increases in the mineralizing surface and bone formation rates, but the two analogs were less potent than hPTH(1-34). Likewise, all peptides produced significant dose-related increases in the serum osteocalcin level. The osteoclast surface was not affected by OVX but was decreased with medium and high doses of hPTH(1-34). Pyridinoline cross-link excretion was not significantly affected by treatment with hPTH(1-34) but responded with a dose-dependent decrease to treatment with [His3]hPTH(1-34). These data suggest that bone selective analogs of hPTH(1-34) maintain the ability to induce bone formation but are less potent than hPTH(1-34).
Collapse
Affiliation(s)
- N E Lane
- Department of Medicine, University of California at San Francisco, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
Nakamoto C, Behar V, Chin KR, Adams AE, Suva LJ, Rosenblatt M, Chorev M. Probing the bimolecular interactions of parathyroid hormone with the human parathyroid hormone/parathyroid hormone-related protein receptor. 1. Design, synthesis and characterization of photoreactive benzophenone-containing analogs of parathyroid hormone. Biochemistry 1995; 34:10546-52. [PMID: 7654710 DOI: 10.1021/bi00033a029] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Parathyroid hormone (PTH) regulates calcium and phosphate metabolism through a G-protein-coupled receptor which is shared with PTH-related protein (PTHrP). Therefore, structure-activity studies of PTH and PTHrP with their common receptor provide an unusual opportunity to examine the structural elements in the two hormones and their common receptor which are involved in the expression of biological activity. Our approach to studying the nature of the bimolecular interface between hormone and receptor is to use a series of specially designed photoreactive benzophenone- (BP-) containing PTH analogs in "photoaffinity scanning" of the PTH/PTHrP receptor. In this report we describe a series of BP-containing agonists and antagonists which have been synthesized by solid-phase methodology and characterized physiocochemically and biologically. Each of the 12 analogs contains a single BP moiety at a different defined position. Examples of BP-containing agonists prepared and studied in human osteogenic sarcoma Saos-2/B-10 cells are [Nle8,18,Lys13(epsilon-pBZ2),L-2-Nal23,Tyr34]bPTH(1-34 )NH2(K13)(Kb = 13 nM; Km = 2.7 nM) and [Nle8,18,L-Bpa23,Tyr34[bPTH(1-34)NH2(L-Bpa23) (Kb = 42 nM; Km = 8.5 nM). Another BP-containing analog, [Nle8,18,D-2-Nal12,Lys13(epsilon-pBZ2),L-2-Nal23 ,Tyr34]bPTH(7-34)NH2, was a potent antagonist (Kb = 95 nM; Ki = 72 nM). The amino acids substituted by residues carrying the BP moiety span the biologically active domain of the hormone (Phe7, Gly12, Lys13, Trp23, and Lys26). Analysis of photo-cross-linked conjugates of PTH/PTHrP receptor with BP-containing PTH analogs should help to identify the "contact points" between ligand and receptor.
Collapse
Affiliation(s)
- C Nakamoto
- Division of Bone and Mineral Metabolism, Harvard-Thorndike Laboratories, Beth Israel Hospital, Boston, Massachusetts, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
The PTH/PTHrP receptor belongs to a novel family of G-protein-coupled receptors which also includes an insect receptor for a diuretic hormone and the protein encoded by a genomic DNA clone from Caenorhabditis elegans. Despite significant structural conservation, rat, opossum, and human PTH/PTHrP receptor homologs display distinct functional characteristics when tested with either [Arg2, Tyr34]hPTH(1-34)amide or [Nle8.18, Tyr34]bPTH(7-34)-amide. These PTH analogs, and chimeras between rat/opossum and between rat/human PTH/PTHrP receptors, led to the identification of receptor residues that appear to be involved in ligand/receptor interaction and receptor activation, respectively. The search for mutations in the PTH/PTHrP receptor gene in genomic DNA of patients with pseudohypoparathyroidism type Ib (PHP-Ib) revealed several silent polymorphisms and a missense mutation in the receptor's tail region which did not affect receptor function. Mutations in the PTH/PTHrP receptor are therefore rarely, if at all, responsible for PHP-Ib. A mutation in the PTH/PTHrP receptor is, however, the most likely cause of Jansen-type metaphyseal chondrodysplasia, a rare form of short-limbed dwarfism which is associated with severe hypercalcemia despite normal or low levels of circulating PTH and PTHrP. A missense mutation was identified which causes constitutive, ligand-independent receptor activation, and thus explains the laboratory and the growth-plate abnormalities in affected individuals.
Collapse
Affiliation(s)
- H Jüppner
- Department of Medicine, Massachusetts General Hospital, Boston, USA
| |
Collapse
|