Armstrong GA. Eubacteria show their true colors: genetics of carotenoid pigment biosynthesis from microbes to plants.
J Bacteriol 1994;
176:4795-802. [PMID:
8050991 PMCID:
PMC196312 DOI:
10.1128/jb.176.16.4795-4802.1994]
[Citation(s) in RCA: 73] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The opportunities to understand eubacterial carotenoid biosynthesis and apply the lessons learned in this field to eukaryotes have improved dramatically in the last several years. On the other hand, many questions remain. Although the pigments illustrated in Fig. 2 represent only a small fraction of the carotenoids found in nature, the characterization of eubacterial genes required for their biosynthesis has not yet been completed. Identifying those eukaryotic carotenoid biosynthetic mutants, genes, and enzymes that have no eubacterial counterparts will also prove essential for a full description of the biochemical pathways (81). Eubacterial crt gene regulation has not been studied in detail, with the notable exceptions of M. xanthus and R. capsulatus (5, 33, 39, 45, 46, 84). Determination of the rate-limiting reaction(s) in carotenoid biosynthesis has thus far yielded species-specific results (12, 27, 47, 69), and the mechanisms of many of the biochemical conversions remain obscure. Predicted characteristics of some carotenoid biosynthesis gene products await confirmation by studying the purified proteins. Despite these challenges, (over)expression of eubacterial or eukaryotic carotenoid genes in heterologous hosts has already created exciting possibilities for the directed manipulation of carotenoid levels and content. Such efforts could, for example, enhance the nutritional value of crop plants or yield microbial production of novel and desirable pigments. In the future, the functional compatibility of enzymes from different organisms will form a central theme in the genetic engineering of carotenoid pigment biosynthetic pathways.
Collapse