1
|
Nakano K, Karasawa N, Hashizume M, Tanaka Y, Ohsugi T, Uchimaru K, Watanabe T. Elucidation of the Mechanism of Host NMD Suppression by HTLV-1 Rex: Dissection of Rex to Identify the NMD Inhibitory Domain. Viruses 2022; 14:344. [PMID: 35215946 PMCID: PMC8875924 DOI: 10.3390/v14020344] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/02/2022] [Accepted: 02/03/2022] [Indexed: 01/24/2023] Open
Abstract
The human retrovirus human T-cell leukemia virus type I (HTLV-1) infects human T cells by vertical transmission from mother to child through breast milk or horizontal transmission through blood transfusion or sexual contact. Approximately 5% of infected individuals develop adult T-cell leukemia/lymphoma (ATL) with a poor prognosis, while 95% of infected individuals remain asymptomatic for the rest of their lives, during which time the infected cells maintain a stable immortalized latent state in the body. It is not known why such a long latent state is maintained. We hypothesize that the role of functional proteins of HTLV-1 during early infection influences the phenotype of infected cells in latency. In eukaryotic cells, a mRNA quality control mechanism called nonsense-mediated mRNA decay (NMD) functions not only to eliminate abnormal mRNAs with nonsense codons but also to target virus-derived RNAs. We have reported that HTLV-1 genomic RNA is a potential target of NMD, and that Rex suppresses NMD and stabilizes viral RNA against it. In this study, we aimed to elucidate the molecular mechanism of NMD suppression by Rex using various Rex mutant proteins. We found that region X (aa20-57) of Rex, the function of which has not been clarified, is required for NMD repression. We showed that Rex binds to Upf1, which is the host key regulator to detect abnormal mRNA and initiate NMD, through this region. Rex also interacts with SMG5 and SMG7, which play essential roles for the completion of the NMD pathway. Moreover, Rex selectively binds to Upf3B, which is involved in the normal NMD complex, and replaces it with a less active form, Upf3A, to reduce NMD activity. These results revealed that Rex invades the NMD cascade from its initiation to completion and suppresses host NMD activity to protect the viral genomic mRNA.
Collapse
Affiliation(s)
- Kazumi Nakano
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo 108-8639, Japan
| | - Nobuaki Karasawa
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo 108-8639, Japan
| | - Masaaki Hashizume
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo 108-8639, Japan
| | - Yuetsu Tanaka
- Faculty of Medicine, University of the Ryukyus, Nishihara 903-0125, Japan
| | - Takeo Ohsugi
- Department of Laboratory Animal Science, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu 069-8501, Japan
| | - Kaoru Uchimaru
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo 108-8639, Japan
| | - Toshiki Watanabe
- Department of Practical Management of Medical Information, Graduate School of Medicine, St. Marianna University, Kawasaki 216-8511, Japan
| |
Collapse
|
2
|
D'Agostino DM, Cavallari I, Romanelli MG, Ciminale V. Post-transcriptional Regulation of HTLV Gene Expression: Rex to the Rescue. Front Microbiol 2019; 10:1958. [PMID: 31507567 PMCID: PMC6714889 DOI: 10.3389/fmicb.2019.01958] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 08/08/2019] [Indexed: 11/13/2022] Open
Abstract
Human T-lymphotropic virus type 1 (HTLV-1) and other members of the Deltaretrovirus genus code for a regulatory protein named Rex that binds to the Rex-responsive element present on viral mRNAs. Rex rescues viral mRNAs from complete splicing or degradation and guides them to the cytoplasm for translation. The activity of Rex is essential for expression of viral transcripts coding for the virion components and thus represents a potential target for virus eradication. We present an overview of the functional properties of the HTLV-1 and HTLV-2 Rex proteins (Rex-1 and Rex-2), outline mechanisms controlling Rex function, and discuss similarities and differences in the sequences of Rex coded by HTLV-1, -2, -3, and -4 that may influence their molecular anatomy and functional properties.
Collapse
Affiliation(s)
| | | | - Maria Grazia Romanelli
- Section of Biology and Genetics, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Vincenzo Ciminale
- Istituto Oncologico Veneto IOV - IRCCS, Padua, Italy.,Department of Surgery, Oncology and Gastroenterology, University of Padova, Padua, Italy
| |
Collapse
|
3
|
Kheirabadi M, Taghdir M. Is unphosphorylated Rex, as multifunctional protein of HTLV-1, a fully intrinsically disordered protein? An in silico study. Biochem Biophys Rep 2016; 8:14-22. [PMID: 28955936 PMCID: PMC5613702 DOI: 10.1016/j.bbrep.2016.07.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 07/18/2016] [Accepted: 07/19/2016] [Indexed: 02/01/2023] Open
Abstract
Intracellularlocation of a viral unspliced mRNA in host cell is a crucial factor for normal life of the virus. Rex is a neucleo-cytoplasmic shuffling protein of Human T-cell Leukemia Virus-1(HTLV-1)which has important role in active transport of cargo-containing RNA from nucleus to cytoplasm. Therefore, it plays a crucial role in the disease development by the virus. In spite of its importance, the 3d-structurephosphorylated and unphosphorylated of this protein has not been determined. In this study, first we predicted whether Rex protein is an ordered or disordered protein. In second step protein 3Dstructure of Rex was obtained. The content of disorder-promoting amino acids, flexibility, hydrophobicity, short linear motifs (SLiMs) and protein binding regions and probability of Rex crystallization were calculated by various In Silico methods. The3D models of Rex protein were obtained by various In Silico methods, such as homology modeling, threading and ab initio, including; I-TASSER, LOMETS, SPARSKS, ROBBETA and QUARK servers. By comparing and analyzing Qmean, z-scores and energy levels of selected models, the best structures with highest favored region in Ramachandran plot (higher than 90%) was refined with MODREFINER software. In silico analysis of Rex physicochemical properties and also predicted SLiMs and binding regions sites confirms that unphosphorylated Rex protein in HTLV-1 as Rev protin in HIV is wholly disordered protein belongs to the class of intrinsically disordered proteins with extended disorder (native coils, native pre-molten globules). Physico-chemical properties of Rex protein were confirmed unphosphorilated Rex protein is a wholly intrinsically disordered protein. The 3d-structure model of Rex protein was determined.
Collapse
Affiliation(s)
- Mitra Kheirabadi
- Department of Biology, Faculty of Basic Science, Hakim Sabzevari University, 9617976487 Sabzevar, Iran
| | - Majid Taghdir
- Departmentof Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
4
|
Nakano K, Watanabe T. HTLV-1 Rex Tunes the Cellular Environment Favorable for Viral Replication. Viruses 2016; 8:58. [PMID: 26927155 PMCID: PMC4810248 DOI: 10.3390/v8030058] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 02/09/2016] [Accepted: 02/09/2016] [Indexed: 12/18/2022] Open
Abstract
Human T-cell leukemia virus type-1 (HTLV-1) Rex is a viral RNA binding protein. The most important and well-known function of Rex is stabilizing and exporting viral mRNAs from the nucleus, particularly for unspliced/partially-spliced mRNAs encoding the structural proteins essential for viral replication. Without Rex, these unspliced viral mRNAs would otherwise be completely spliced. Therefore, Rex is vital for the translation of structural proteins and the stabilization of viral genomic RNA and, thus, for viral replication. Rex schedules the period of extensive viral replication and suppression to enter latency. Although the importance of Rex in the viral life-cycle is well understood, the underlying molecular mechanism of how Rex achieves its function has not been clarified. For example, how does Rex protect unspliced/partially-spliced viral mRNAs from the host cellular splicing machinery? How does Rex protect viral mRNAs, antigenic to eukaryotic cells, from cellular mRNA surveillance mechanisms? Here we will discuss these mechanisms, which explain the function of Rex as an organizer of HTLV-1 expression based on previously and recently discovered aspects of Rex. We also focus on the potential influence of Rex on the homeostasis of the infected cell and how it can exert its function.
Collapse
Affiliation(s)
- Kazumi Nakano
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 4-6-1, Shirokanedai, Minatoku, Tokyo 108-8639, Japan.
| | - Toshiki Watanabe
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 4-6-1, Shirokanedai, Minatoku, Tokyo 108-8639, Japan.
| |
Collapse
|
5
|
Bidoia C. Human T-lymphotropic virus proteins and post-translational modification pathways. World J Virol 2012; 1:115-30. [PMID: 24175216 PMCID: PMC3782272 DOI: 10.5501/wjv.v1.i4.115] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Revised: 06/04/2012] [Accepted: 07/13/2012] [Indexed: 02/05/2023] Open
Abstract
Cell life from the cell cycle to the signaling transduction and response to stimuli is finely tuned by protein post-translational modifications (PTMs). PTMs alter the conformation, the stability, the localization, and hence the pattern of interactions of the targeted protein. Cell pathways involve the activation of enzymes, like kinases, ligases and transferases, that, once activated, act on many proteins simultaneously, altering the state of the cell and triggering the processes they are involved in. Viruses enter a balanced system and hijack the cell, exploiting the potential of PTMs either to activate viral encoded proteins or to alter cellular pathways, with the ultimate consequence to perpetuate through their replication. Human T-lymphotropic virus type 1 (HTLV-1) is known to be highly oncogenic and associates with adult T-cell leukemia/lymphoma, HTLV-1-associated myelopathy/tropical spastic paraparesis and other inflammatory pathological conditions. HTLV-1 protein activity is controlled by PTMs and, in turn, viral activity is associated with the modulation of cellular pathways based on PTMs. More knowledge is acquired about the PTMs involved in the activation of its proteins, like Tax, Rex, p12, p13, p30, HTLV-I basic leucine zipper factor and Gag. However, more has to be understood at the biochemical level in order to counteract the associated fatal outcomes. This review will focus on known PTMs that directly modify HTLV-1 components and on enzymes whose activity is modulated by viral proteins.
Collapse
Affiliation(s)
- Carlo Bidoia
- Carlo Bidoia, Centre for Research in Infectious Diseases, School of Medicine and Medical Science, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
6
|
Nuclear export and expression of human T-cell leukemia virus type 1 tax/rex mRNA are RxRE/Rex dependent. J Virol 2012; 86:4559-65. [PMID: 22318152 DOI: 10.1128/jvi.06361-11] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) is a complex retrovirus associated with the lymphoproliferative disease adult T-cell leukemia/lymphoma (ATL) and the neurodegenerative disorder tropical spastic paraparesis/HTLV-1-associated myelopathy (TSP/HAM). Replication of HTLV-1 is under the control of two major trans-acting proteins, Tax and Rex. Previous studies suggested that Tax activates transcription from the viral long terminal repeat (LTR) through recruitment of cellular CREB and transcriptional coactivators. Other studies reported that Rex acts posttranscriptionally and allows the cytoplasmic export of unspliced or incompletely spliced viral mRNAs carrying gag/pol and env only. As opposed to HIV's Rev-responsive element (RRE), the Rex-responsive element (RxRE) is present in all viral mRNAs in HTLV-1. However, based on indirect observations, it is believed that nuclear export and expression of the doubly spliced tax/rex RNA are Rex independent. In this study, we demonstrate that Rex does stimulate Tax expression, through nuclear-cytoplasmic export of the tax/rex RNA, even though a Rex-independent basal export mechanism exists. This effect was dependent upon the RxRE element and the RNA-binding activity of Rex. In addition, Rex-mediated export of tax/rex RNA was CRM1 dependent and inhibited by leptomycin B treatment. RNA immunoprecipitation (RNA-IP) experiments confirmed Rex binding to the tax/rex RNA in both transfected cells with HTLV-1 molecular clones and HTLV-1-infected T cells. Since both Rex and p30 interact with the tax/rex RNA and with one another, this may offer a temporal and dynamic regulation of HTLV-1 replication. Our results shed light on HTLV-1 replication and reveal a more complex regulatory network than previously anticipated.
Collapse
|
7
|
Kesic M, Doueiri R, Ward M, Semmes OJ, Green PL. Phosphorylation regulates human T-cell leukemia virus type 1 Rex function. Retrovirology 2009; 6:105. [PMID: 19919707 PMCID: PMC2780990 DOI: 10.1186/1742-4690-6-105] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2009] [Accepted: 11/17/2009] [Indexed: 11/10/2022] Open
Abstract
Background Human T-cell leukemia virus type 1 (HTLV-1) is a pathogenic complex deltaretrovirus, which is the causative agent of adult T-cell leukemia/lymphoma (ATL) and HTLV-1-associated myelopathy/tropical spastic paraparesis. In addition to the structural and enzymatic viral gene products, HTLV-1 encodes the positive regulatory proteins Tax and Rex along with viral accessory proteins. Tax and Rex proteins orchestrate the timely expression of viral genes important in viral replication and cellular transformation. Rex is a nucleolar-localizing shuttling protein that acts post-transcriptionally by binding and facilitating the export of the unspliced and incompletely spliced viral mRNAs from the nucleus to the cytoplasm. HTLV-1 Rex (Rex-1) is a phosphoprotein and general protein kinase inhibition correlates with reduced function. Therefore, it has been proposed that Rex-1 function may be regulated through site-specific phosphorylation. Results We conducted a phosphoryl mapping of Rex-1 over-expressed in transfected 293 T cells using a combination of affinity purification and liquid chromatography tandem mass spectrometry. We achieved 100% physical coverage of the Rex-1 polypeptide and identified five novel phosphorylation sites at Thr-22, Ser-36, Thr-37, Ser-97, and Ser-106. We also confirmed evidence of two previously identified residues, Ser-70 and Thr-174, but found no evidence of phosphorylation at Ser-177. The functional significance of these phosphorylation events was evaluated using a Rex reporter assay and site-directed mutational analysis. Our results indicate that phosphorylation at Ser-97 and Thr-174 is critical for Rex-1 function. Conclusion We have mapped completely the site-specific phosphorylation of Rex-1 identifying a total of seven residues; Thr-22, Ser-36, Thr-37, Ser-70, Ser-97, Ser-106, and Thr-174. Overall, this work is the first to completely map the phosphorylation sites in Rex-1 and provides important insight into the regulation of Rex-1 function.
Collapse
Affiliation(s)
- Matthew Kesic
- Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210, USA.
| | | | | | | | | |
Collapse
|
8
|
Abstract
Viruses are intracellular pathogens that have to usurp some of the cellular machineries to provide an optimal environment for their own replication. An increasing number of reports reveal that many viruses induce modifications of nuclear substructures including nucleoli, whether they replicate or not in the nucleus of infected cells. Indeed, during infection of cells with various types of human viruses, nucleoli undergo important morphological modifications. A large number of viral components traffic to and from the nucleolus where they interact with different cellular and/or viral factors, numerous host nucleolar proteins are redistributed in other cell compartments or are modified and some cellular proteins are delocalised in the nucleolus of infected cells. Well‐documented studies have established that several of these nucleolar modifications play a role in some steps of the viral cycle, and also in fundamental cellular pathways. The nucleolus itself is the place where several essential steps of the viral cycle take place. In other cases, viruses divert host nucleolar proteins from their known functions in order to exert new unexpected role(s). Copyright © 2009 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Anna Greco
- Université de Lyon, Lyon F-69003, France.
| |
Collapse
|
9
|
Site-specific phosphorylation regulates human T-cell leukemia virus type 2 Rex function in vivo. J Virol 2009; 83:8859-68. [PMID: 19553333 DOI: 10.1128/jvi.00908-09] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human T-cell leukemia virus type 2 (HTLV-2) Rex is a transacting regulatory protein required for efficient cytoplasmic expression of the unspliced and incompletely spliced viral mRNA transcripts encoding the structural and enzymatic proteins. Previously, it was demonstrated that phosphorylation of Rex-2, predominantly on serine residues, is correlated with an altered conformation, as observed by a gel mobility shift and the detection of two related protein species (p24(Rex) and p26(Rex)). Rex-2 phosphorylation is required for specific binding to its viral-mRNA target sequence and inhibition of mRNA splicing and may be linked to subcellular compartmentalization. Thus, the phosphorylation-induced structural state of Rex in the infected cell may be a switch that determines whether HTLV exists in a latent or productive state. We conducted a phosphoryl and functional mapping of both structural forms of mammalian-cell-expressed Rex 2 using affinity purification, liquid chromatography-tandem mass spectrometry, and site-directed substitutional mutational analysis. We identified two phosphorylation sites in p24(Rex) at Ser-117 and Thr-164. We also identified six phosphorylation sites in p26(Rex) at Thr-19, Ser-117, Ser-125, Ser-151, Ser-153, and Thr-164. We evaluated the functional significance of these phosphorylation events and found that phosphorylation on Thr-164, Ser-151, and Ser-153 is critical for Rex-2 function in vivo and that phosphorylation of Ser-151 is correlated with nuclear/nucleolar subcellular localization. Overall, this work is the first to completely map the phosphorylation sites in Rex-2 and provides important insight into the phosphorylation continuum that tightly regulates Rex-2 structure, cellular localization, and function.
Collapse
|
10
|
Human T-cell leukemia virus type 2 Rex carboxy terminus is an inhibitory/stability domain that regulates Rex functional activity and viral replication. J Virol 2009; 83:5232-43. [PMID: 19279097 DOI: 10.1128/jvi.02271-08] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human T-cell leukemia virus (HTLV) regulatory protein, Rex, functions to increase the expression of the viral structural and enzymatic gene products. The phosphorylation of two serine residues (S151 and S153) at the C terminus is important for the function of HTLV-2 Rex (Rex-2). The Rex-2 phosphomimetic double mutant (S151D, S153D) is locked in a functionally active conformation. Since rex and tax genes overlap, Rex S151D and S153D mutants were found to alter the Tax oncoprotein coding sequence and transactivation activities. Therefore, additional Rex-2 mutants including P152D, A157D, S151Term, and S158Term were generated and characterized ("Term" indicates termination codon). All Rex-2 mutants and wild-type (wt) Rex-2 localized predominantly to the nucleus/nucleolus, but in contrast to the detection of phosphorylated and unphosphorylated forms of wt Rex-2 (p26 and p24), mutant proteins were detected as a single phosphoprotein species. We found that Rex P152D, A157D, and S158Term mutants are more functionally active than wt Rex-2 and that the Rex-2 C terminus and its specific phosphorylation state are required for stability and optimal expression. In the context of the provirus, the more active Rex mutants (A157D or S158Term) promoted increased viral protein production, increased viral infectious spread, and enhanced HTLV-2-mediated cellular proliferation. Moreover, these Rex mutant viruses replicated and persisted in inoculated rabbits despite higher antiviral antibody responses. Thus, we identified in Rex-2 a novel C-terminal inhibitory domain that regulates functional activity and is positively regulated through phosphorylation. The ability of this domain to modulate viral replication likely plays a key role in the infectious spread of the virus and in virus-induced cellular proliferation.
Collapse
|
11
|
Queiroz ATLD, Mota-Miranda ACA, Oliveira TD, Moreau DR, Urpia CDC, Carvalho CM, Galvão-Castro B, Alcantara LCJ. Re-mapping the molecular features of the human immunodeficiency virus type 1 and human T-cell lymphotropic virus type 1 Brazilian sequences using a bioinformatics unit established in Salvador, Bahia, Brazil, to give support to the viral epidemiology studies. Mem Inst Oswaldo Cruz 2007. [DOI: 10.1590/s0074-02762007005000005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
12
|
Younis I, Yamamoto B, Phipps A, Green PL. Human T-cell leukemia virus type 1 expressing nonoverlapping tax and rex genes replicates and immortalizes primary human T lymphocytes but fails to replicate and persist in vivo. J Virol 2006; 79:14473-81. [PMID: 16282446 PMCID: PMC1287553 DOI: 10.1128/jvi.79.23.14473-14481.2005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) is an oncogenic retrovirus associated primarily with adult T-cell leukemia and neurological disease. HTLV-1 encodes the positive trans-regulatory proteins Tax and Rex, both of which are essential for viral replication. Tax activates transcription initiation from the viral long terminal repeat and modulates the transcription or activity of a number of cellular genes. Rex regulates gene expression posttranscriptionally by facilitating the cytoplasmic expression of incompletely spliced viral mRNAs. Tax and Rex mutants have been identified that have defective activities or impaired biochemical properties associated with their function. To ultimately determine the contribution of specific protein activities on viral replication and cellular transformation of primary T cells, mutants need to be characterized in the context of an infectious molecular clone. Since the tax and rex genes are in partially overlapping reading frames, mutation in one gene frequently disrupts the other, confounding interpretation of mutational analyses in the context of the virus. Here we generated and characterized a unique proviral clone (H1IT) in which the tax and rex genes were separated by expressing Tax from an internal ribosome entry site. We showed that H1IT expresses both functional Tax and Rex. In short- and long-term coculture assays, H1IT was competent to infect and immortalize primary human T cells similar to wild-type HTLV-1. In contrast, H1IT failed to efficiently replicate and persist in inoculated rabbits, thus emphasizing the importance of temporal and quantitative regulation of specific mRNA for viral survival in vivo.
Collapse
Affiliation(s)
- Ihab Younis
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | |
Collapse
|
13
|
Abstract
Adult T-cell leukemia (ATL) is an aggressive hematologic malignancy caused by human T-cell leukemia virus type I (HTLV-1). Tax, encoded by the HTLV-1 pX region, has been recognized by its pleiotropic actions to play a critical role in leukemogenesis. Three highly conserved 21-bp repeat elements located within the long terminal repeat, commonly referred to as Tax-responsive element 1 (TRE-1), are critical to Tax-mediated viral transcriptional activation through complex interaction with cyclic AMP-responsive element binding protein (CREB), CBP/p300 and PCAF. Tax has also been shown to activate transcription from a number of critical cellular genes through the NF-kappaB and serum-responsive factor pathways. Tax transactivation has been attributed to the protein's interaction with transcription factors, chromatin remodeling complexes, cell cycle and repair genes. In this review, we will discuss some of the latest findings on this fascinating viral activator and highlight its regulation of cellular factors including CREB, p300/CBP and their effect on RNA polymerase II and chromatin remodeling, as well as its role in cytoplasmic and nuclear function. We will highlight the possible contribution of each factor, discuss Tax's critical peptide domains and highlight its post-transcriptional modifications. It is quite obvious that, collectively, Tax's effects on a wide variety of cellular targets cooperate in promoting cell proliferation and leukemogenesis. In addition, the post-transcriptional effects of Rex play an important role in virus replication. Understanding these interactions at a molecular level will facilitate the targeted development of drugs to effectively inhibit or treat ATL.
Collapse
Affiliation(s)
- Fatah Kashanchi
- Department of Biochemistry and Molecular Biology, The George Washington University School of Medicine, 2300 Eye St, NW, Ross Hall, Washington, DC, USA.
| | | |
Collapse
|
14
|
Shang WH, Adachi Y, Nakamura A, Copeland T, Kim SR, Kamata T. Regulation of Amphiphysin1 by Mitogen-activated Protein Kinase. J Biol Chem 2004; 279:40890-6. [PMID: 15262992 DOI: 10.1074/jbc.m404527200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Amphiphysin1, which can simultaneously bind to dynamin1 and the clathrin adaptor AP-2, is essential for dynamin1 recruitment during receptor-mediated endocytosis, but little is known about its regulatory mechanism. Here, we purified a 120-kDa mitogen-activated protein kinase (MAPK) substrate protein from porcine brains and identified the protein as amphiphysin1. Serine phosphorylation of amphiphysin1 was rapidly induced by nerve growth factor (NGF) in PC12 cells, and the induction was blocked by a MAPK inhibitor. Furthermore, when phosphorylated by MAPK in vitro or by NGF treatment in vivo, amphiphysin1 failed to bind to AP-2, but its association with dynamin1 was unaffected. Consistent with this, mutation of consensus MAPK phosphorylation sites increased amphiphysin1 binding to AP-2 and their intracellular colocalization. Thus, we propose that MAPK phosphorylation of amphiphysin1 controls NGF receptor/TrkA-mediated endocytosis by terminating the amphiphysin1-AP-2 interaction. This perhaps helps to regulate the availability of amphiphysin1-dynamin1 complexes for binding to the endocytic vesicle.
Collapse
Affiliation(s)
- Wei Hao Shang
- Department of Molecular Biology and Biochemistry, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
| | | | | | | | | | | |
Collapse
|
15
|
Narayan M, Younis I, D'Agostino DM, Green PL. Functional domain structure of human T-cell leukemia virus type 2 rex. J Virol 2004; 77:12829-40. [PMID: 14610204 PMCID: PMC262564 DOI: 10.1128/jvi.77.23.12829-12840.2003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Rex protein of human T-cell leukemia virus (HTLV) acts posttranscriptionally to induce the cytoplasmic expression of the unspliced and incompletely spliced viral RNAs encoding the viral structural and enzymatic proteins and is therefore essential for efficient viral replication. Rex function requires nuclear import, RNA binding, multimerization, and nuclear export. In addition, it has been demonstrated that the phosphorylation status of HTLV-2 Rex (Rex-2) correlates with RNA binding and inhibition of splicing in vitro. Recent mutational analyses of Rex-2 revealed that the phosphorylation of serine residues 151 and 153 within a novel carboxy-terminal domain is critical for function in vivo. To further define the functional domain structure of Rex-2, we evaluated a panel of Rex-2 mutants for subcellular localization, RNA binding capacity, multimerization and trans-dominant properties, and the ability to shuttle between the nucleus and the cytoplasm. Rex-2 mutant S151A,S153A, which is defective in phosphorylation and function, showed diffuse cytoplasmic staining, whereas mutant S151D,S153D, previously shown to be functional and in a conformation corresponding to constitutive phosphorylation, displayed increased intense speckled staining in the nucleoli. In vivo RNA binding analyses indicated that mutant S151A,S153A failed to efficiently bind target RNA, while its phosphomimetic counterpart, S151D,S153D, bound twofold more RNA than wild-type Rex-2. Taken together, these findings provide direct evidence that the phosphorylation status of Rex-2 is linked to cellular trafficking and RNA binding capacity. Mutants with substitutions in either of the two putative multimerization domains or in the putative activation domain-nuclear export signal displayed a dominant negative phenotype as well as defects in multimerization and nucleocytoplasmic shuttling. Several carboxy-terminal mutants that displayed wild-type levels of phosphorylation and localized to the nucleolus were also partially impaired in shuttling. This is consistent with the hypothesis that the carboxy terminus of Rex-2 contains a novel domain that is required for efficient shuttling. This work thus provides a more detailed functional domain map of Rex-2 and further insight into its regulation of HTLV replication.
Collapse
Affiliation(s)
- Murli Narayan
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | |
Collapse
|
16
|
Franchini G, Fukumoto R, Fullen JR. T-Cell Control by Human T-Cell Leukemia/Lymphoma Virus Type 1. Int J Hematol 2003; 78:280-96. [PMID: 14686485 DOI: 10.1007/bf02983552] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Human T-cell leukemia/lymphoma virus type 1 (HTLV-1) causes neoplastic transformation of human T-cells in a small number of infected individuals several years from infection. Collective evidence from in vitro studies indicates that several viral proteins act in concert to increase the responsiveness of T-cells to extracellular stimulation, modulate proapoptotic and antiapoptotic gene signals, enhance T-cell survival, and avoid immune recognition of the infected T-cells. The virus promotes T-cell proliferation by usurping several signaling pathways central to immune T-cell function, such as antigen stimulation and receptor-ligand interaction, suggesting that extracellular signals are important for HTLV-1 oncogenesis. Environmental factors such as chronic antigen stimulation may therefore be of importance, as also suggested by epidemiological data. Thus genetic and environmental factors together with the virus contribute to disease development. This review focuses on current knowledge of the mechanisms regulating HTLV-1 replication and the T-cell pathways that are usurped by viral proteins to induce and maintain clonal proliferation of infected T-cells. The relevance of these laboratory findings is related to clonal T-cell proliferation and adult T-cell leukemia/lymphoma development in vivo.
Collapse
Affiliation(s)
- Genoveffa Franchini
- Basic Research Laboratory, National Cancer Institute, Bethesda, Maryland 20892-5055, USA.
| | | | | |
Collapse
|
17
|
Franchini G, Nicot C, Johnson JM. Seizing of T Cells by Human T-Cell Leukemia⧸Lymphoma Virus Type 1. Adv Cancer Res 2003; 89:69-132. [PMID: 14587871 DOI: 10.1016/s0065-230x(03)01003-0] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Human T-cell leukemia/lymphoma virus type 1 (HTLV-1) causes neoplastic transformation of human T-cells in a small number of infected individuals several years from infection. Several viral proteins act in concert to increase the responsiveness of T-cells to extracellular stimulation, modulate proapoptotic and antiapoptotic gene signals, enhance T-cell survival, and avoid immune recognition of the infected T-cells. The virus promotes T-cell proliferation by usurping several signaling pathways central to immune T-cell function. Viral proteins modulate the downstream effects of antigen stimulation and receptor-ligand interaction, suggesting that extracellular signals are important for HTLV-1 oncogenesis. Environmental factors such as chronic antigen stimulation are therefore important, as also suggested by epidemiological data. The ability of a given individual to respond to specific antigens is determined genetically. Thus, genetic and environmental factors, together with the virus, contribute to disease development. As in the case of other virus-associated cancers, HTLV-1-induced leukemia/lymphoma can be prevented by avoiding viral infection or by intervention during the asymptomatic phase with approaches able to interrupt the vicious cycle of virus-induced proliferation of a subset of T-cells. This review focuses on current knowledge of the mechanisms regulating HTLV-1 replication and the T-cell pathways that are usurped by viral proteins to induce and maintain clonal proliferation of infected T-cells in vitro. The relevance of these laboratory findings will be related to clonal T-cell proliferation and adult T-cell leukemia/lymphoma development in vivo.
Collapse
Affiliation(s)
- Genoveffa Franchini
- National Cancer Institute, Basic Research Laboratory, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
18
|
Narayan M, Kusuhara K, Green PL. Phosphorylation of two serine residues regulates human T-cell leukemia virus type 2 Rex function. J Virol 2001; 75:8440-8. [PMID: 11507189 PMCID: PMC115089 DOI: 10.1128/jvi.75.18.8440-8448.2001] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The function of the human T-cell leukemia virus (HTLV) Rex phosphoprotein is to increase the level of the viral structural and enzymatic gene products expressed from the incompletely spliced viral RNAs containing the Rex-responsive element. The phosphorylation of HTLV type 2 Rex (Rex-2), predominantly on serine residues, correlates with an altered conformation, as detected by a gel mobility shift, and is required for specific binding to its viral RNA target sequence. Thus, the phosphorylation state of Rex in the infected cell may be a switch that determines whether the virus exists in a latent or a productive state. A mutational analysis of Rex-2 that focused on serine and threonine residues was performed to identify regions or domains within Rex-2 important for function, with a specific emphasis on identifying Rex-2 phosphorylation mutants. We identified mutations near the carboxy terminus that disrupted a novel region or domain and abrogated Rex-2 function. Mutant M17 (with S151A and S153A mutations) displayed reduced phosphorylation that correlated with reduced function. Replacement of both serine residues 151 and 153 with phosphomimetic aspartic acid restored Rex-2 function and locked Rex-2 in a phosphorylated active conformation. A mutant containing threonine residues at positions 151 and 153 displayed a phenotype indistinguishable from that of wild-type Rex. Furthermore, this same mutant showed increased threonine phosphorylation and decreased serine phosphorylation, providing conclusive evidence that one or both of these residues are phosphorylated in vivo. Our results provide the first direct evidence that the phosphorylation of Rex-2 is important for function. Further understanding of HTLV Rex phosphorylation will provide insight into the regulatory control of HTLV replication and ultimately the pathobiology of HTLV.
Collapse
Affiliation(s)
- M Narayan
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | |
Collapse
|
19
|
Kubota S, Eguchi T, Shimo T, Nishida T, Hattori T, Kondo S, Nakanishi T, Takigawa M. Novel mode of processing and secretion of connective tissue growth factor/ecogenin (CTGF/Hcs24) in chondrocytic HCS-2/8 cells. Bone 2001; 29:155-61. [PMID: 11502477 DOI: 10.1016/s8756-3282(01)00492-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The synthesis, processing, and secretion of human connective tissue growth factor (CTGF/Hcs24) in a human chondrocytic cell line, HCS-2/8, were analyzed immunochemically. By metabolic pulse-labeling, chasing, and subsequent immunoprecipitation analyses, active synthesis of CTGF was observed not only in growing HCS-2/8 cells, but also in confluent cells. However, secretion and processing of CTGF were found to be regulated differentially, depending upon the growth status. During phases of growth, HCS-2/8 cells released CTGF molecules immediately without sequestering them within the cell layer. In contrast, after the cells reached confluence, the secretion slowed, resulting in an accumulation of CTGF in the cells or extracellular matrices (ECMs). Also, in confluent cell layers, a 10 kDa protein that was reactive to an anti-CTGF serum was observed. This CTGF-related small protein was not detected immediately after labeling, but gradually appeared within 6 h after chase, which suggests its entity as a processed subfragment of CTGF. Surprisingly, the 10 kDa protein was stable even 48 h after synthesis, and was not released by ECM digestion, suggesting an intracellular maintenance and function. Taken together, the behavior of CTGF in HCS-2/8 cells is remarkably different from that reported in fibroblasts, which may represent unique roles for CTGF in the growth and differentiation of chondrocytes.
Collapse
Affiliation(s)
- S Kubota
- Department of Biochemistry and Molecular Dentistry, Graduate School of Medicine and Dentistry Okayama University Dental School, Okayama, Japan
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Johnson JM, Harrod R, Franchini G. Molecular biology and pathogenesis of the human T-cell leukaemia/lymphotropic virus Type-1 (HTLV-1). Int J Exp Pathol 2001; 82:135-47. [PMID: 11488989 PMCID: PMC2517711 DOI: 10.1046/j.1365-2613.2001.00191.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Retroviruses are associated with a variety of diseases, including immunological and neurological disorders, and various forms of cancer. In humans, the Human T-cell Leukaemia/Lymphotropic virus type 1 (HTLV-1), which belongs to the Oncovirus family, is the aetiological agent of two diverse diseases: Adult T-cell leukaemia/lymphoma (ATLL) (Poiesz et al. 1980; Hinuma et al. 1981; Yoshida et al. 1982), as well as the neurological disorder tropical spastic paraparesis/HTLV-1-associated myelopathy (TSP/HAM) (Gessain et al. 1985; Rodgers-Johnson et al. 1985; Osame et al. 1986). HTLV-1 is the only human retrovirus known to be the aetiological agent of cancer. A genetically related virus, HTLV-2, has been identified and isolated (Kalyanaraman et al. 1982). However, there has been no demonstration of a definitive aetiological role for HTLV-2 in human disease to date. Simian T-cell lymphotropic viruses types 1 and 2 (STLV-1 and -2) and bovine leukaemia virus (BLV) have also been classified in same group, Oncoviridae, based upon their similarities in genetic sequence and structure to HTLV-1 and -2 (Burny et al. 1988; Dekaban et al. 1995; Slattery et al. 1999). This article will focus on HTLV-1, reviewing its discovery, molecular biology, and its role in disease pathogenesis.
Collapse
Affiliation(s)
- J M Johnson
- National Cancer Institute, Basic Research Laboratory, 41 Library Drive, Building 41, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
21
|
Minakuchi M, Kakazu N, Gorrin-Rivas MJ, Abe T, Copeland TD, Ueda K, Adachi Y. Identification and characterization of SEB, a novel protein that binds to the acute undifferentiated leukemia-associated protein SET. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:1340-51. [PMID: 11231286 DOI: 10.1046/j.1432-1327.2001.02000.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SET, the translocation breakpoint-encoded protein in acute undifferentiated leukemia (AUL), is a 39-kDa nuclear phosphoprotein and has an inhibitory activity for protein phosphatase 2A (PP2A). SET is fused to a putative oncoprotein, CAN/NUP214, in AUL and is thought to play a key role in leukemogenesis by its nuclear localization, protein-protein interactions and PP2A inhibitory activity. Here, we describe the isolation and characterization of a novel cDNA encoding a protein with 1542 amino-acid residues that specifically interacts in a yeast two-hybrid system as well as in human cells with SET. This new protein, which we name SEB (SET-binding protein), is identified as a 170-kDa protein by immunoprecipitation with a specific antibody and is localized predominantly in the nucleus. SEB1238--1434 is determined as a SET-binding region that specifically binds to SET182--223. SEB also has an oncoprotein Ski homologous region (amino acids 654--858), six PEST sequences and three sequential PPLPPPPP repeats at the C-terminus. SEB mRNA is expressed ubiquitously in all human adult tissues and cells examined. The SEB gene locus is assigned to the chromosome 18q21.1 that contains candidate tumor suppressor genes associated with deletions in cancer and leukemia. Although the function of SEB is not known, we propose that SEB plays a key role in the mechanism of SET-related leukemogenesis and tumorigenesis, perhaps by suppressing SET function or by regulating the transforming activity of Ski in the nucleus.
Collapse
Affiliation(s)
- M Minakuchi
- Laboratory of Molecular Clinical Chemistry, Institute for Chemical Research, Kyoto University, Uji, Kyoto, Japan
| | | | | | | | | | | | | |
Collapse
|
22
|
Kubota S, Hattori T, Shimo T, Nakanishi T, Takigawa M. Novel intracellular effects of human connective tissue growth factor expressed in Cos-7 cells. FEBS Lett 2000; 474:58-62. [PMID: 10828451 DOI: 10.1016/s0014-5793(00)01573-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
To clarify the multiple functionality of connective tissue growth factor (CTGF), we examined the effects of nascent CTGF within the cell by transient expression. In Cos-7 cells, expression of human CTGF induced an altered cell morphology. It was associated with an increased cellular DNA content and loose attachment, indicating the cells were in G2/M phase. Overexpression of CTGF did not induce cell growth, whereas recombinant CTGF efficiently stimulated the proliferation extracellularly. These results indicate that intracellular CTGF may act as an antimitotic agent, thus it should also be noted that nascent CTGF was found to accumulate around the central mitotic machinery.
Collapse
Affiliation(s)
- S Kubota
- Department of Biochemistry and Molecular Dentistry, Okayama University Dental School, 2-5-1 Shikata-cho, Okayama 700-8525, Japan
| | | | | | | | | |
Collapse
|
23
|
Heger P, Rosorius O, Hauber J, Stauber RH. Titration of cellular export factors, but not heteromultimerization, is the molecular mechanism of trans-dominant HTLV-1 rex mutants. Oncogene 1999; 18:4080-90. [PMID: 10435589 DOI: 10.1038/sj.onc.1202762] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The HTLV-1 Rex protein is an essential shuttle protein required for nuclear export of unspliced and incompletely-spliced viral RNAs. Several trans-dominant (TD) mutant Rex proteins have been reported, however, the mechanism of trans-dominance is not known. We compared TD Rex mutants and found that a natural occurring Rex mutant, Rexp21, lacking the RNA binding domain, was highly TD and inhibited also HIV-1 Rev function. Using fusions to the green fluorescent protein (GFP) we observed that Rexp21-GFP displayed a cytoplasmic localization but was actively shuttling between the nucleus and the cytoplasm in live human cells. The presence of Rexp21-GFP inhibited the nuclear export of Rex and HIV-1 Rev as assayed by cotransfection and microinjection experiments. However, Rex-GFP or Rexp21-GFP did not form heteromultimers with nuclear Rex mutants in vivo. In contrast, shuttling was essential for trans-dominance. Thus, we propose that TD Rex mutants do not function by retaining WT Rex in the nucleus by protein-protein interactions, as demonstrated for Rev, but to titrate factors essential for Rex/Rev export. Our findings demonstrate differences between the regulatory proteins Rex and Rev and implicate a novel strategy to generate highly TD Rex mutants also applicable to other proteins.
Collapse
Affiliation(s)
- P Heger
- Institute for Medical and Clinical Virology, University of Erlangen-Nürnberg, Erlangen, Germany
| | | | | | | |
Collapse
|
24
|
Kubota S, Copeland TD, Pomerantz RJ. Nuclear and nucleolar targeting of human ribosomal protein S25: common features shared with HIV-1 regulatory proteins. Oncogene 1999; 18:1503-14. [PMID: 10050887 DOI: 10.1038/sj.onc.1202429] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The nuclear and nucleolar targeting properties of human ribosomal protein S25 (RPS25) were analysed by the expression of epitope-tagged RPS25 cDNAs in Cos-1 cells. The tagged RPS25 was localized to the cell nucleus, with a strong predominance in the nucleolus. At the amino terminus of RPS25, two stretches of highly basic residues juxtapose. This configuration shares common features with the nucleolar targeting signals (NOS) of lentiviral RNA-binding transactivators, including human immunodeficiency viruses' (HIV) Rev proteins. Deletion and site-directed mutational analyses demonstrated that the first NOS-like stretch is dispensable for both nuclear and nucleolar localization of RPS25, and that the nuclear targeting signal is located within the second NOS-like stretch. It has also been suggested that a set of continuous basic residues and the total number of basic residues should be required for nucleolar targeting. Signal-mediated nuclear/nucleolar targeting was further characterized by the construction and expression of a variety of chimeric constructs, utilizing three different backbones with RPS25 cDNA fragments. Immunofluorescence analyses demonstrated a 17 residue peptide of RPS25 as a potential nuclear/nucleolar targeting signal. The identified peptide signal may belong to a putative subclass of NOS, characterized by compact structure, together with lentiviral RNA-binding transactivators.
Collapse
Affiliation(s)
- S Kubota
- Center for Human Virology, Department of Medicine, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | |
Collapse
|
25
|
Heger P, Rosorius O, Koch C, Casari G, Grassmann R, Hauber J. Multimer formation is not essential for nuclear export of human T-cell leukemia virus type 1 Rex trans-activator protein. J Virol 1998; 72:8659-68. [PMID: 9765406 PMCID: PMC110278 DOI: 10.1128/jvi.72.11.8659-8668.1998] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Rex trans-regulatory protein of human T-cell leukemia virus type 1 (HTLV-1) is required for the nuclear export of incompletely spliced and unspliced viral mRNAs and is therefore essential for virus replication. Rex is a nuclear phosphoprotein that directly binds to its cis-acting Rex response element RNA target sequence and constantly shuttles between the nucleus and cytoplasm. Moreover, Rex induces nuclear accumulation of unspliced viral RNA. Three protein domains which mediate nuclear import-RNA binding, nuclear export, and Rex oligomerization have been mapped within the 189-amino-acid Rex polypeptide. Here we identified a different region in the carboxy-terminal half of Rex which is also required for biological activity. In inactive mutants with mutations that map within this region, as well as in mutants that are deficient in Rex-specific multimerization, Rex trans activation could be reconstituted by fusion to a heterologous leucine zipper dimerization interface. The intracellular trafficking capabilities of wild-type and mutant Rex proteins reveal that biologically inactive and multimerization-deficient Rex mutants are still efficiently translocated from the nucleus to the cytoplasm. This observation indicates that multimerization is essential for Rex function but is not required for nuclear export. Finally, we are able to provide an improved model of the HTLV-1 Rex domain structure.
Collapse
Affiliation(s)
- P Heger
- Institute for Clinical and Molecular Virology, University Erlangen-Nürnberg, D-91054 Erlangen, Germany
| | | | | | | | | | | |
Collapse
|
26
|
Franklin A, Nyborg J. Mechanisms of Tax Regulation of Human T Cell Leukemia Virus Type I Gene Expression. J Biomed Sci 1995; 2:17-29. [PMID: 11725037 DOI: 10.1007/bf02257921] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
During the last several years, the human T cell leukemia virus type I (HTLV-I) has become recognized as an important cause for public health concern throughout the world. HTLV-I is the causative agent of a variety of clinical diseases, including an aggressive lymphoproliferative disorder named adult T cell leukemia. HTLV-I induces pathogenicity in the infected host cell through the synthesis of a virally encoded protein called Tax. Expression of Tax is critical to the life cycle of the virus, as the protein greatly increases the efficiency of HTLV-I gene transcription and replication. Furthermore, Tax has been shown to deregulate the transcription of many cellular genes, leading to the hypothesis that the presence of Tax promotes unchecked growth in the HTLV-I-infected cell. The mechanism of Tax trans-activation of HTLV-I gene expression is not known. Tax does not bind directly to the Tax-responsive promoter elements of the virus, but appears to function through interaction with certain cellular DNA binding proteins, including activating transcription factor 2 and cAMP response element binding protein that recognize these sequences. This review summarizes some of the recent work in the field aimed at elucidating the mechanism of Tax trans-activation of HTLV-I gene expression. Copyright 1995 S. Karger AG, Basel
Collapse
Affiliation(s)
- A.A. Franklin
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colo., USA
| | | |
Collapse
|
27
|
Orita S, Kobayashi H, Saiga A, Kubota R, Osame M, Igarashi H. A spontaneous point mutation in the human T-cell leukemia virus type 1 pX gene leads to expression of a novel doubly spliced pX-mRNA that encodes a 25-kD, amino-terminal deleted rex protein. DNA Cell Biol 1994; 13:353-64. [PMID: 8011162 DOI: 10.1089/dna.1994.13.353] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Primary RNA transcripts of the human T-cell leukemia virus type 1 (HTLV-1) are processed into mature mRNA by a complex series of splicing events. In this paper, we report the finding of a novel doubly spliced pX mRNA in two out of eight HTLV-1-infected cell lines and in one out of 13 peripheral blood mononuclear cells from HTLV-1-infected individuals. The second splicing for this novel pX mRNA is different from that for the known doubly spliced pX mRNA. A novel acceptor site in this splicing was generated by a single point mutation (G to A) at nucleotide 7,337 of the pX gene. This mRNA contained a complete open reading frame that encodes an amino-terminal truncated p27rex protein with 189 amino acids. A new 25-kD protein was detected in the cell lines expressing the novel pX mRNA by an antibody against the carboxy-terminal peptide of p27rex and was termed p25rex. Although the function of p25rex is not clear, we clarified that p25rex is a cytoplasmic phosphoprotein and its function is different from the transcriptional regulator function of p27rex. The possibility that the mutated virus is replicable only in cells coinfected with the wild type HTLV-1 may explain why the incidence of the mutants observed here is low.
Collapse
Affiliation(s)
- S Orita
- Shionogi Institute for Medical Science, Osaka, Japan
| | | | | | | | | | | |
Collapse
|
28
|
Adachi Y, Pavlakis GN, Copeland TD. Identification of in vivo phosphorylation sites of SET, a nuclear phosphoprotein encoded by the translocation breakpoint in acute undifferentiated leukemia. FEBS Lett 1994; 340:231-5. [PMID: 8131851 DOI: 10.1016/0014-5793(94)80144-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
SET, the translocation breakpoint-encoded protein in acute undifferentiated leukemia (AUL), is identified as a 39-kDa phosphoprotein found predominantly in the cell nuclei [1994, J. Biol. Chem. 269, 2258-2262]. SET is fused to a putative oncoprotein, CAN, in AUL and is thought to regulate the transformation potential of SET-CAN by its nuclear localization and phosphorylation. We investigated in detail the in vivo phosphorylation of SET. Phosphorylation of SET occurred in all human cell lines examined in vivo, primarily on serine residues. Endoproteinase Glu-C digestion of phosphorylated SET yielded two phosphopeptides. By radiosequencing, we identified the in vivo phosphorylation sites of SET as Ser9 and Ser24. The surrounding sequences of Ser9 and Ser24 contained an apparent consensus site sequence for protein kinase C.
Collapse
Affiliation(s)
- Y Adachi
- Human Retrovirus Section, National Cancer Institute-Frederick Cancer Research and Development Center, MD 21702-1201
| | | | | |
Collapse
|
29
|
Identification and characterization of SET, a nuclear phosphoprotein encoded by the translocation break point in acute undifferentiated leukemia. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)42162-4] [Citation(s) in RCA: 135] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|