1
|
Gutiérrez-Santiago F, Cintas-Galán M, Martín-Expósito M, del Carmen Mota-Trujillo M, Cobo-Huesa C, Perez-Fernandez J, Navarro Gómez F. A High-Copy Suppressor Screen Reveals a Broad Role of Prefoldin-like Bud27 in the TOR Signaling Pathway in Saccharomyces cerevisiae. Genes (Basel) 2022; 13:genes13050748. [PMID: 35627133 PMCID: PMC9141189 DOI: 10.3390/genes13050748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/18/2022] [Accepted: 04/21/2022] [Indexed: 11/16/2022] Open
Abstract
Bud27 is a prefoldin-like, a member of the family of ATP-independent molecular chaperones that associates with RNA polymerases I, II, and III in Saccharomyces cerevisiae. Bud27 and its human ortholog URI perform several functions in the cytoplasm and the nucleus. Both proteins participate in the TOR signaling cascade by coordinating nutrient availability with gene expression, and lack of Bud27 partially mimics TOR pathway inactivation. Bud27 regulates the transcription of the three RNA polymerases to mediate the synthesis of ribosomal components for ribosome biogenesis through the TOR cascade. This work presents a high-copy suppression screening of the temperature sensitivity of the bud27Δ mutant. It shows that Bud27 influences different TOR-dependent processes. Our data also suggest that Bud27 can impact some of these TOR-dependent processes: cell wall integrity and autophagy induction.
Collapse
Affiliation(s)
- Francisco Gutiérrez-Santiago
- Departamento de Biología Experimental-Genética, Universidad de Jaén, Paraje de las Lagunillas, s/n, E-23071 Jaén, Spain; (F.G.-S.); (M.C.-G.); (M.M.-E.); (M.d.C.M.-T.); (C.C.-H.); (J.P.-F.)
| | - María Cintas-Galán
- Departamento de Biología Experimental-Genética, Universidad de Jaén, Paraje de las Lagunillas, s/n, E-23071 Jaén, Spain; (F.G.-S.); (M.C.-G.); (M.M.-E.); (M.d.C.M.-T.); (C.C.-H.); (J.P.-F.)
| | - Manuel Martín-Expósito
- Departamento de Biología Experimental-Genética, Universidad de Jaén, Paraje de las Lagunillas, s/n, E-23071 Jaén, Spain; (F.G.-S.); (M.C.-G.); (M.M.-E.); (M.d.C.M.-T.); (C.C.-H.); (J.P.-F.)
| | - Maria del Carmen Mota-Trujillo
- Departamento de Biología Experimental-Genética, Universidad de Jaén, Paraje de las Lagunillas, s/n, E-23071 Jaén, Spain; (F.G.-S.); (M.C.-G.); (M.M.-E.); (M.d.C.M.-T.); (C.C.-H.); (J.P.-F.)
| | - Cristina Cobo-Huesa
- Departamento de Biología Experimental-Genética, Universidad de Jaén, Paraje de las Lagunillas, s/n, E-23071 Jaén, Spain; (F.G.-S.); (M.C.-G.); (M.M.-E.); (M.d.C.M.-T.); (C.C.-H.); (J.P.-F.)
| | - Jorge Perez-Fernandez
- Departamento de Biología Experimental-Genética, Universidad de Jaén, Paraje de las Lagunillas, s/n, E-23071 Jaén, Spain; (F.G.-S.); (M.C.-G.); (M.M.-E.); (M.d.C.M.-T.); (C.C.-H.); (J.P.-F.)
| | - Francisco Navarro Gómez
- Departamento de Biología Experimental-Genética, Universidad de Jaén, Paraje de las Lagunillas, s/n, E-23071 Jaén, Spain; (F.G.-S.); (M.C.-G.); (M.M.-E.); (M.d.C.M.-T.); (C.C.-H.); (J.P.-F.)
- Centro de Estudios Avanzados en Aceite de Oliva y Olivar, Universidad de Jaén, Paraje de las Lagunillas, s/n, E-23071 Jaén, Spain
- Correspondence: ; Tel.: +34-953-212771; Fax: +34-953-211875
| |
Collapse
|
2
|
Han L, Guy MP, Kon Y, Phizicky EM. Lack of 2'-O-methylation in the tRNA anticodon loop of two phylogenetically distant yeast species activates the general amino acid control pathway. PLoS Genet 2018; 14:e1007288. [PMID: 29596413 PMCID: PMC5892943 DOI: 10.1371/journal.pgen.1007288] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 04/10/2018] [Accepted: 03/05/2018] [Indexed: 01/03/2023] Open
Abstract
Modification defects in the tRNA anticodon loop often impair yeast growth and cause human disease. In the budding yeast Saccharomyces cerevisiae and the phylogenetically distant fission yeast Schizosaccharomyces pombe, trm7Δ mutants grow poorly due to lack of 2'-O-methylation of C32 and G34 in the tRNAPhe anticodon loop, and lesions in the human TRM7 homolog FTSJ1 cause non-syndromic X-linked intellectual disability (NSXLID). However, it is unclear why trm7Δ mutants grow poorly. We show here that despite the fact that S. cerevisiae trm7Δ mutants had no detectable tRNAPhe charging defect in rich media, the cells constitutively activated a robust general amino acid control (GAAC) response, acting through Gcn2, which senses uncharged tRNA. Consistent with reduced available charged tRNAPhe, the trm7Δ growth defect was suppressed by spontaneous mutations in phenylalanyl-tRNA synthetase (PheRS) or in the pol III negative regulator MAF1, and by overexpression of tRNAPhe, PheRS, or EF-1A; all of these also reduced GAAC activation. Genetic analysis also demonstrated that the trm7Δ growth defect was due to the constitutive robust GAAC activation as well as to the reduced available charged tRNAPhe. Robust GAAC activation was not observed with several other anticodon loop modification mutants. Analysis of S. pombe trm7 mutants led to similar observations. S. pombe Trm7 depletion also resulted in no observable tRNAPhe charging defect and a robust GAAC response, and suppressors mapped to PheRS and reduced GAAC activation. We speculate that GAAC activation is widely conserved in trm7 mutants in eukaryotes, including metazoans, and might play a role in FTSJ1-mediated NSXLID. The ubiquitous tRNA anticodon loop modifications have important but poorly understood functions in decoding mRNAs in the ribosome to ensure accurate and efficient protein synthesis, and their lack often impairs yeast growth and causes human disease. Here we investigate why ribose methylation of residues 32 and 34 in the anticodon loop is important. Mutations in the corresponding methyltransferase Trm7/FTSJ1 cause poor growth in the budding yeast Saccharomyces cerevisiae and near lethality in the evolutionarily distant fission yeast Schizosaccharomyces pombe, each due to reduced functional tRNAPhe. We previously showed that tRNAPhe anticodon loop modification in yeast and humans required two evolutionarily conserved Trm7 interacting proteins for Cm32 and Gm34 modification, which then stimulated G37 modification. We show here that both S. cerevisiae and S. pombe trm7Δ mutants have apparently normal tRNAPhe charging, but constitutively activate a robust general amino acid control (GAAC) response, acting through Gcn2, which senses uncharged tRNA. We also show that S. cerevisiae trm7Δ mutants grow poorly due in part to constitutive GAAC activation as well as to the uncharged tRNAPhe. We propose that TRM7 is important to prevent constitutive GAAC activation throughout eukaryotes, including metazoans, which may explain non-syndromic X-linked intellectual disability associated with human FTSJ1 mutations.
Collapse
Affiliation(s)
- Lu Han
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester School of Medicine, Rochester, NY, United States of America
| | - Michael P. Guy
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester School of Medicine, Rochester, NY, United States of America
- Department of Chemistry and Biochemistry, Northern Kentucky University, Highland Heights, KY, United States of America
| | - Yoshiko Kon
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester School of Medicine, Rochester, NY, United States of America
| | - Eric M. Phizicky
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester School of Medicine, Rochester, NY, United States of America
- * E-mail:
| |
Collapse
|
3
|
Kimura Y, Tanaka C, Oka M. Identification of Major Enzymes Involved in the Synthesis of Diadenosine Tetraphosphate and/or Adenosine Tetraphosphate in Myxococcus xanthus. Curr Microbiol 2018; 75:811-817. [PMID: 29468302 DOI: 10.1007/s00284-018-1452-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 02/08/2018] [Indexed: 01/13/2023]
Abstract
Myxococcus xanthus generates diadenosine tetraphosphates (Ap4A) and diadenosine pentaphosphates (Ap5A) under various stress conditions. M. xanthus lysyl-tRNA synthetase (LysS) efficiently synthesizes Ap4A from ATP, Ap5A from ATP and adenosine tetraphosphate (Ap4), and Ap4 from ATP and triphosphate. To identify other M. xanthus enzymes that can catalyze Ap4A and Ap4 synthesis, 15 M. xanthus aminoacyl-tRNA synthetases (aaRSs), four acyl-CoA synthetases (Acys), three acetyl-CoA synthetases (Aces), phosphoglycerate kinase (Pgk), and adenylate kinase (Adk) were expressed in Escherichia coli and examined for Ap4A or Ap4 synthetase activity using ATP or ATP and triphosphate as substrates. Among the tested enzymes, LysS had the highest Ap4A synthetase activity. AlaRS, SerRS, and LeuRS1 showed high ADP synthetase activity with ATP as a substrate in the presence of pyrophosphatase, and also demonstrated the ability to produce Ap4 from ATP and triphosphate in the absence of pyrophosphatase. Ap4 formation by AlaRS, SerRS, and LeuRS1 was approximately 4- to 13-fold higher compared with that of Ap4A, suggesting that these enzymes prefer triphosphate over ATP as a substrate in the second reaction. Some of the recombinant M. xanthus Acys and Aces also synthesized Ap4 from ATP and triphosphate. However, Pgk was capable of catalyzing the production of Ap4 from ATP and 3-phosphoglycerate in the presence of Mg2+ and did not require triphosphate, suggesting that this enzyme is mainly responsible for Ap4 synthesis in M. xanthus.
Collapse
Affiliation(s)
- Yoshio Kimura
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki-cho, Kagawa, Japan.
| | - Chihiro Tanaka
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki-cho, Kagawa, Japan
| | - Manami Oka
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki-cho, Kagawa, Japan
| |
Collapse
|
4
|
Evdokimov AG, Mekel M, Hutchings K, Narasimhan L, Holler T, McGrath T, Beattie B, Fauman E, Yan C, Heaslet H, Walter R, Finzel B, Ohren J, McConnell P, Braden T, Sun F, Spessard C, Banotai C, Al-Kassim L, Ma W, Wengender P, Kole D, Garceau N, Toogood P, Liu J. Rational protein engineering in action: the first crystal structure of a phenylalanine tRNA synthetase from Staphylococcus haemolyticus. J Struct Biol 2007; 162:152-69. [PMID: 18086534 DOI: 10.1016/j.jsb.2007.11.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2007] [Revised: 10/12/2007] [Accepted: 11/04/2007] [Indexed: 10/22/2022]
Abstract
In this article, we describe for the first time the high-resolution crystal structure of a phenylalanine tRNA synthetase from the pathogenic bacterium Staphylococcus haemolyticus. We demonstrate the subtle yet important structural differences between this enzyme and the previously described Thermus thermophilus ortholog. We also explain the structure-activity relationship of several recently reported inhibitors. The native enzyme crystals were of poor quality--they only diffracted X-rays to 3-5A resolution. Therefore, we have executed a rational surface mutagenesis strategy that has yielded crystals of this 2300-amino acid multidomain protein, diffracting to 2A or better. This methodology is discussed and contrasted with the more traditional domain truncation approach.
Collapse
Affiliation(s)
- Artem G Evdokimov
- Pfizer Global Research & Development, Michigan Laboratories, Ann Arbor, 2800 Plymouth Road, Ann Arbor, MI 48105, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Savopoulos JW, Hibbs M, Jones EJ, Mensah L, Richardson C, Fosberry A, Downes R, Fox SG, Brown JR, Jenkins O. Identification, cloning, and expression of a functional phenylalanyl-tRNA synthetase (pheRS) from Staphylococcus aureus. Protein Expr Purif 2001; 21:470-84. [PMID: 11281723 DOI: 10.1006/prep.2001.1407] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Phenylalanyl-tRNA synthetase (pheRS) is unique among aminoacyl tRNA synthetases in that it is a heterotetrameric enzyme composed of two alpha-subunits and two larger beta-subunits. In prokaryotes, the alpha- and beta-subunits of pheRS are encoded by the genes pheS and pheT, respectively. In this report we describe the isolation of a DNA fragment (3.52 kb) containing the pheS and pheT genes from a Staphylococcus aureus (WCUH29) genomic DNA library. Both genes, found as a part of transcriptional operon, were predicted to encode polypeptides which showed strong primary and structural similarity to prokaryotic phenylalanyl-tRNA synthetase alpha- and beta- subunits. We describe the high-level overexpression and purification of recombinant S. aureus pheRS using pheS and pheT genes as part of an artificial operon in Escherichia coli. For comparative analysis we also report a procedure for the purification of native pheRS from S. aureus (Oxford Strain) and demonstrate that Michaelis-Menten parameters for both recombinant and native enzyme, at least for phenylalanine tRNA aminoacylation are comparable.
Collapse
Affiliation(s)
- J W Savopoulos
- GlaxoSmithkline Pharmaceuticals, New Frontiers Science Park (North), Coldharbour Road, Harlow, Essex CM19 5AD, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Marcilla A, Pallotti C, Gomez-Lobo M, Caballero P, Valentin E, Sentandreu R. Cloning and characterization of the phenylalanyl-tRNA synthetase beta subunit gene from Candida albicans. FEMS Microbiol Lett 1998; 161:179-85. [PMID: 9561746 DOI: 10.1111/j.1574-6968.1998.tb12946.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
A Candida albicans expression library was constructed from RNA isolated from regenerating protoplasts. A 1.4-kb cDNA clone was used to isolate a genomic fragment. Sequence analysis revealed an open reading frame of 593 amino acids with an overall identity of 63.6% with the phenylalanyl-tRNA synthetase beta subunit (FRS1) of Saccharomyces cerevisiae. We named it CaFRS1. It is located in a single copy in chromosome R, SfiI fragment M. Its expression showed a decrease during the cell wall regeneration process in protoplasts of both yeast and mycelial cells of C. albicans, suggesting its requirement thereof in initial steps of the cell wall synthesis.
Collapse
Affiliation(s)
- A Marcilla
- Secció Departamental de Microbiologia, Facultat de Farmacia, Universitat de Valencia, Burjassot, Valencia, Spain.
| | | | | | | | | | | |
Collapse
|
7
|
Aphasizhev R, Senger B, Rengers JU, Sprinzl M, Walter P, Nussbaum G, Fasiolo F. Conservation in evolution for a small monomeric phenylalanyl-tRNA synthetase of the tRNA(Phe) recognition nucleotides and initial aminoacylation site. Biochemistry 1996; 35:117-23. [PMID: 8555164 DOI: 10.1021/bi9517998] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We previously showed that yeast mitochondrial phenylalanyl-tRNA synthetase (MSF protein) is evolutionarily distant to the cytoplasmic counterpart based on a high degree of divergence in protein sequence, molecular mass, and quaternary structure. Using yeast cytoplasmic tRNA(Phe) which is efficiently aminoacylated by MSF protein, we report here the tRNA(Phe) primary site of aminoacylation and the identity determinants for MSF protein. As for the cytoplasmic phenylalanyl-tRNA synthetase (Sampson, J. R., Di Renzo, A. B., Behlen, L. S., & Uhlenbeck, O. C. (1989) Science 243, 1363-1366), MSF protein recognizes nucleotides from the anticodon and the acceptor end including base A73 and, as shown here, adjacent G1-C72 base pair or at least C72 base. This indicates that the way of tRNA(Phe) binding for the two phenylalanine enzymes is conserved in evolution. However, tRNA(Phe) tertiary structure seems more critical for the interaction with the cytoplasmic enzyme than with MSF protein, and unlike cytoplasmic phenylalanyl-tRNA synthetase, the small size of the monomeric MSF protein probably does not allow contacts with residue 20 at the top corner of the L molecule. We also show that MSF protein preferentially aminoacylates the terminal 2'-OH group of tRNA(Phe) but with a catalytic efficiency for tRNA(Phe)-CC-3'-deoxyadenosine reduced 100-fold from that of native tRNA(Phe), suggesting a role of the terminal 3'-OH in catalysis. The loss is only 1.5-fold when tRNA(Phe)-CC-3'-deoxyadenosine is aminoacylated by yeast cytoplasmic PheRS (Sprinzl, M., & Cramer, F. (1973) Nature 245, 3-5), indicating mechanistic differences between the two PheRS's active sites for the amino acid transfer step.
Collapse
Affiliation(s)
- R Aphasizhev
- CNRS, Institut de Biologie Moléculaire et Cellulaire, Strasbourg, France
| | | | | | | | | | | | | |
Collapse
|
8
|
Mosyak L, Safro M. Phenylalanyl-tRNA synthetase from Thermus thermophilus has four antiparallel folds of which only two are catalytically functional. Biochimie 1993; 75:1091-8. [PMID: 8199244 DOI: 10.1016/0300-9084(93)90008-g] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Phenylalanyl-tRNA synthetase from Thermus thermophilus has an alpha 2 beta 2 type quaternary structure and is one of the most complicated members of the synthetase family. Identification of PheRSTT as a member of class II aaRSs was based only on sequence alignment of the small alpha-subunit with other synthetases. The three-dimensional crystal structure of the catalytic and 'catalytic-like' domains at 2.9 A resolution in PheRSTT is described. The alpha-subunit contains an antiparallel fold which includes signature motifs 1, 2 and 3, characteristic of class II synthetases. One of the three structural domains of the beta-subunit (alpha'-domain) is formed by a seven-stranded antiparallel beta-sheet surrounded by alpha-helices similar to catalytic domains in SerRS, AspRS and the alpha-subunit of PheRSTT. The alpha beta heterodimer (alpha and alpha') exhibits essentially the same topology in the intersubunit region as in the known alpha 2 structures of class II aaRS's. The multimerization area of whole PheRSTT molecule comprises a quasi-tetrahedral four-helix bundle.
Collapse
Affiliation(s)
- L Mosyak
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | | |
Collapse
|
9
|
Webster K, Keill S, Konigsberg W, Williams K, Spicer E. Identification of amino acid residues at the interface of a bacteriophage T4 regA protein-nucleic acid complex. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)35722-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
10
|
Keller B, Kast P, Hennecke H. Cloning and sequence analysis of the phenylalanyl-tRNA synthetase genes (pheST) from Thermus thermophilus. FEBS Lett 1992; 301:83-8. [PMID: 1451792 DOI: 10.1016/0014-5793(92)80215-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
While crystals suitable for X-ray diffraction analyses are available of phenylalanyl-tRNA synthetase (PheRS) from the thermophilic bacterium Thermus thermophilus, neither the primary structure of its constituent alpha and beta subunits nor the nucleotide sequence of the corresponding pheS and pheT genes were known. Using specific oligonucleotides of conserved pheS regions that were adapted to the T. thermophilus codon usage, we identified, cloned and subsequently sequenced the pheST genes of this bacterium. The sequences reported here will greatly aid in the three-dimensional structure determination of T. thermophilus PheRS, a heterotetrameric (alpha 2 beta 2), class II aminoacyl-tRNA synthetase.
Collapse
Affiliation(s)
- B Keller
- Mikrobiologisches Institut, Eidgenössische Technische Hochschule, Zürich, Switzerland
| | | | | |
Collapse
|
11
|
Kast P, Wehrli C, Hennecke H. Impaired affinity for phenylalanine in Escherichia coli phenylalanyl-tRNA synthetase mutant caused by Gly-to-Asp exchange in motif 2 of class II tRNA synthetases. FEBS Lett 1991; 293:160-3. [PMID: 1959653 DOI: 10.1016/0014-5793(91)81176-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Phenylalanyl-tRNA synthetase (PheRS; alpha 2 beta 2 subunit structure) is a member of class II of tRNA synthetases. We report here the genetic analysis of an Escherichia coli mutant strain which is auxotrophic for phenylalanine because it has a PheRS with a decreased affinity for phenylalanine. The mutant pheS gene encoding the PheRS alpha subunit was cloned and sequenced, and the deviation from the wild-type gene was found to result in a Gly191-to-Asp191 exchange. This alteration is located within motif 2, one of 3 conserved sequence motifs characteristic for class II aminoacyl-tRNA synthetases. Motif 2 may thus participate in the formation of the phenylalanine binding site in PheRS.
Collapse
Affiliation(s)
- P Kast
- Mikrobiologisches Institut, Eidgenössische Technische Hochschule, Zürich, Switzerland
| | | | | |
Collapse
|
12
|
Kast P, Hennecke H. Amino acid substrate specificity of Escherichia coli phenylalanyl-tRNA synthetase altered by distinct mutations. J Mol Biol 1991; 222:99-124. [PMID: 1942071 DOI: 10.1016/0022-2836(91)90740-w] [Citation(s) in RCA: 106] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Neither the tertiary structure nor the location of active sites are known for phenylalanyl-tRNA synthetase (PheRS; alpha 2 beta 2 structure), a member of class II aminoacyl-tRNA synthetases. In an attempt to detect the phenylalanine (Phe) binding site, two Escherichia coli PheRS mutant strains (pheS), which were resistant to p-fluorophenylalanine (p-F-Phe) were analysed genetically. The pheS mutations were found to cause Ala294 to Ser294 exchanges in the alpha subunits from both independent strains. This alteration (S294) resided in the well-conserved C-terminal part of the alpha subunit, precisely within motif 3, a typical class II tRNA synthetase sequence. We thus propose that motif 3 participates in the formation of the Phe binding site of PheRS. Mutation S294 was also the key for proposing a mechanism by which the substrate analogue p-F-Phe is excluded from the enzymatic reaction; this may be achieved by steric interactions between the para-position of the aromatic ring and the amino acid residue at position 294. The Phe binding site model was then tested by replacing the alanine at position 294 as well as the two flanking phenylalanines (positions 293 and 295) by a number of selected other amino acids. In vivo and in vitro results demonstrated that Phe293 and Phe295 are not directly involved in substrate binding, but replacements of those residues affected PheRS stability. However, exchanges at position 294 altered the binding of Phe, and certain mutants showed pronounced changes in specificity towards Phe analogues. Of particular interest was the Gly294 PheRS in which presumably an enlarged cavity for the para position of the aromatic ring allowed an increased aminoacylation of tRNA with p-F-Phe. Moreover, the larger para-chloro and para-bromo derivatives of Phe could interact with this enzyme in vitro and became highly toxic in vivo. The possible exploitation of the Gly294 mutant PheRS for the incorporation of non-proteinogenic amino acids into proteins is discussed.
Collapse
Affiliation(s)
- P Kast
- Mikrobiologisches Institut, Eidgenössische Technische Hochschule, Zürich, Switzerland
| | | |
Collapse
|
13
|
Mirande M. Aminoacyl-tRNA synthetase family from prokaryotes and eukaryotes: structural domains and their implications. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1991; 40:95-142. [PMID: 2031086 DOI: 10.1016/s0079-6603(08)60840-5] [Citation(s) in RCA: 200] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- M Mirande
- Laboratoire d'Enzymologie, Centre National de la Recherche Scientifique, Gif-sur-Yvette, France
| |
Collapse
|
14
|
Brakhage AA, Wozny M, Putzer H. Structure and nucleotide sequence of the Bacillus subtilis phenylalanyl-tRNA synthetase genes. Biochimie 1990; 72:725-34. [PMID: 2127701 DOI: 10.1016/0300-9084(90)90157-c] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The nucleotide sequence of the Bacillus subtilis pheST genes coding for the 2 subunits of phenylalanyl-tRNA synthetase has been determined. The pheS gene corresponds to 1029 bp and the pheT gene to 2412 bp. The encoded proteins have Mrs of 38,947 (343 amino acids, alpha-subunit) and 87,916 (804 amino acids, beta-subunit), respectively. The genes are adjacent on the chromosome separated by only 15 nucleotides. The pheT gene is immediately followed by a hairpin structure typical of a rho-independent transcription terminator. S1 nuclease mapping and primer extension analysis of pheST mRNA revealed a major start of transcription 318 nucleotides upstream of the pheS gene, and 6 nucleotides downstream of a E sigma 43 promoter consensus sequence. Within the 5'-noncoding region several potential secondary structures have been noted.
Collapse
Affiliation(s)
- A A Brakhage
- Institut für Mikrobiologie, Universität Münster, Germany
| | | | | |
Collapse
|
15
|
|