1
|
Habibian M, Sadeghi G, Karimi A. Effects of purslane (<i>Portulaca oleracea</i> L.) powder on growth performance, blood indices, and antioxidant status in broiler chickens with triiodothyronine-induced ascites. Arch Anim Breed 2017. [DOI: 10.5194/aab-60-315-2017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Abstract. This study was carried out to evaluate the effects of dietary supplementation of purslane powder (PP) on performance, blood indices, and antioxidant status in broilers with triiodothyronine (T3)-induced ascites. In total, 240 one-day-old male broiler chicks (Ross 308) were randomly assigned to four treatments, with four replicates per treatment and 15 birds per replicate. The experimental diets included (i) a control diet, (ii) a control diet plus 1.5 mg kg−1 of T3 (T3 diet), (iii) a T3 diet with the addition of 1.5 g kg−1 of PP, and (iv) a T3 diet with the addition of 3 g kg−1 of PP. Feed intake and body weight were measured at 10, 24, 39, and 49 days of experiment. Blood and liver samples were collected from two birds in each replicate at 24 and 49 days of experiment. The T3-treated birds had higher (P < 0. 05) right ventricle to total ventricle (RV ∕ TV) ratio and mortality due to ascites compared with the control. In addition, during the entire experimental period (0 to 49 days of experiment) the T3-treated birds had lower (P < 0. 05) feed intake, body weight gain, and production efficiency index and higher (P < 0. 05) feed conversion ratio compared with the control. Dietary supplementation of PP reduced (P < 0. 05) mortality due to ascites and RV ∕ TV ratio, while the production efficiency index was increased (P < 0. 05) by the addition of PP to the diet. The T3-treated birds had higher (P < 0. 05) red blood cell counts, hematocrit percentage, and hemoglobin concentration compared with the control at 24 and 49 days of experiment. Dietary supplementation of PP substantially alleviated (P < 0. 05) the negative effects of T3 on hematocrit and hemoglobin values at both 24 and 49 days of experiment and on red blood cells counts at 49 days of experiment. The T3 birds showed an increase (P < 0. 05) in activities of lactate dehydrogenase, alanine aminotransferase, and aspartate aminotransferase at 49 days of experiment. However, the detrimental effect of T3 on alanine aminotransferase activity was attenuated (P < 0. 05) by dietary supplementation of PP. The plasma and liver activities of superoxide dismutase, catalase, and glutathione peroxidase were lower (P < 0. 05) in T3-treated birds compared with the control at 24 and 49 days of experiment, whereas malondialdehyde concentrations were elevated (P < 0. 05) by dietary T3 administration. Dietary supplementation of PP, especially at 3 g kg−1, increased (P < 0. 05) the plasma and liver activities of antioxidant enzymes, and reduced (P < 0. 05) the plasma and liver concentrations of malondialdehyde near to the control levels. It is concluded that the supplementation of 3 g kg−1 of PP in diet improves oxidative status and reduces ascites incidence in broiler chickens without impairing their growth performance.
Collapse
|
2
|
Fathi M, Heidari M, Ahmadisefat AA, Habibian M, Moeini MM. Influence of dietary glutamine supplementation on performance, biochemical indices and enzyme activities in broilers with cold-induced ascites. ANIMAL PRODUCTION SCIENCE 2016. [DOI: 10.1071/an15300] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This study was conducted to investigate the effects of dietary glutamine supplementation on performance and biochemical indices of broilers with cold-induced ascites. A total of 240 1-day-old male broiler chicks (Ross 308) were randomly allotted to three treatment groups, with four replicate pens per treatment and 20 birds per pen. The control birds were kept in a thermoneutral chamber and fed a basal diet, whereas the other two experimental groups were kept in a cold chamber to induce ascites and fed the basal diet supplemented with either 0 or 100 mg of glutamine/kg. The cold-treated birds consumed less (P < 0.05) feed and had lower (P < 0.05) weight gain compared with the control birds. Dietary glutamine supplementation had no effect (P > 0.05) on broiler performance. The cold-treated birds had higher (P < 0.05) right ventricle to total ventricle ratio and mortality due to ascites compared with the control birds. However, mortality due to ascites and right ventricle to total ventricle ratio was reduced (P < 0.05) by dietary glutamine supplementation. The cold-treated birds had higher (P < 0.05) red blood cell counts, haematocrit percentage and haemoglobin concentration compared with the control birds at 21 and 42 days of age. The activities of plasma lactate dehydrogenase, aspartate aminotransferase and alanine aminotransferase were increased (P < 0.05) in cold-treated birds compared with the control birds at 42 days of age, but dietary glutamine supplementation reduced (P < 0.05) the activities of alanine aminotransferase and aspartate aminotransferase near to the control levels. The plasma and liver glutathione peroxidase activities were increased (P < 0.05) in cold-treated birds compared with the control birds at 21 and 42 days of age, whereas the reverse was true for malondialdehyde concentrations. The glutathione peroxidase activity was increased (P < 0.05), whereas the malondialdehyde concentration was decreased (P < 0.05) by dietary glutamine supplementation compared with the cold-treated birds at 42 days of age. The results indicated that the beneficial effect of glutamine is probably related to its ability to maintain near to normal free radical scavenging enzymes and the level of glutathione peroxidase bioactivity, thereby protecting cell membranes from oxidative damage via decreased lipid peroxidation.
Collapse
|
3
|
Tao X, Dong H, Zhang H, Xin H. Sex-based responses of plasma creatine kinase in broilers to thermoneutral constant and cyclic high temperatures. Br Poult Sci 2011; 52:800-6. [DOI: 10.1080/00071668.2011.628639] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
4
|
Sekrecka-Belniak A, Balcerzak M, Buchet R, Pikula S. Active creatine kinase is present in matrix vesicles isolated from femurs of chicken embryo: Implications for bone mineralization. Biochem Biophys Res Commun 2009; 391:1432-6. [PMID: 20026305 DOI: 10.1016/j.bbrc.2009.12.083] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2009] [Accepted: 12/15/2009] [Indexed: 11/29/2022]
Abstract
Proteomic analysis of matrix vesicles (MVs) isolated from 17-day-old chicken embryo femurs revealed the presence of creatine kinase. In this report we identified the enzyme functionally and suggest that the enzyme may participate in the synthesis of ATP from ADP and phosphocreatine within the lumen of these organelles. Then, ATP is converted by nucleotide hydrolyzing enzymes such as Na(+), K(+)-ATPase, protein kinase C, or alkaline phosphatase to yield inorganic phosphate (P(i)), a substrate for mineralization. Alternatively, ATP can be hydrolyzed by a nucleoside triphosphate pyrophosphatase phosphodiesterase 1 producing inorganic pyrophosphate (PP(i)), a mineralization inhibitor. In addition, immunochemical evidence indicated that VDAC 2 is present in MVs that may serve as a transporter of nucleotides from the extracellular matrix. We discussed the implications of ATP production and hydrolysis by MVs as regulatory mechanisms for mineralization.
Collapse
Affiliation(s)
- Anna Sekrecka-Belniak
- Department of Biochemistry, Nencki Institute of Experimental Biology, 3 Pasteur S., 02-093 Warsaw, Poland
| | | | | | | |
Collapse
|
5
|
Kataoka T, Yoneda M, Takeyama M, Ohno-Jinno A, Sugita I, Li H, Isogai Z, Iwaki M, Zako M. Distinct response to heparin by two chicken brain type creatine kinase subunits. Neurochem Int 2009; 55:566-72. [PMID: 19465079 DOI: 10.1016/j.neuint.2009.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2009] [Accepted: 05/13/2009] [Indexed: 10/20/2022]
Abstract
In the chicken, two creatine kinase-type B (B-CK) isoproteins, Ba- and Bb-CK, both of which are derived from a single copy gene by alternative splicing, dimerize in neural tissues. The two isoproteins contain distinct N-terminal portions, but their functional difference remains unknown. We investigated the binding affinities of Ba- and Bb-CK to heparin, hyaluronan and chondroitin sulfates, and examined the influence of these glycosaminoglycans on enzyme activity. Chicken retinal samples analyzed by Western blotting and amino acid sequence study after two-dimensional gel electrophoresis showed that heparin binds Bb-CK, but not Ba-CK, while hyaluronan and chondroitin sulfates showed no interaction with either isoprotein. Using fusion proteins covering the distinct N-terminal portions, we also showed that heparin did not react with the N-terminus of Ba-CK, but did react with that of Bb-CK. Site-directed mutagenesis of basic amino acids found in the N-terminal portion of Bb-CK identified three basic amino acids critical for this binding. Furthermore, heparin dose-dependently inhibited the enzymatic activities of Ba-CK; Bb-CK activities were less intensely inhibited. Hyaluronan and chondroitin sulfates had no effects on the activities of these enzymes. Thus, the N-terminal portion of B-CK is critical to mediate its affinity to heparin and control enzyme activity, which may be important for regulating energy metabolism in neural tissues such as brain and retina, unique organs abundant in heparan sulfates.
Collapse
Affiliation(s)
- Takuya Kataoka
- Department of Ophthalmology, Aichi Medical University, Nagakute, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Daneshyar M, Kermanshahi H, Golian A. Changes of biochemical parameters and enzyme activities in broiler chickens with cold-induced ascites. Poult Sci 2009; 88:106-10. [DOI: 10.3382/ps.2008-00170] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
7
|
Mochida K, Ito K, Kono K, Onduka T, Kakuno A, Fujii K. Molecular and histological evaluation of tributyltin toxicity on spermatogenesis in a marine fish, the mummichog (Fundulus heteroclitus). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2007; 83:73-83. [PMID: 17451821 DOI: 10.1016/j.aquatox.2007.03.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2007] [Revised: 03/22/2007] [Accepted: 03/23/2007] [Indexed: 05/15/2023]
Abstract
There is still concern about the effects of organotin compounds (OTs) on marine organisms, and especially on their reproductive systems. We investigated the toxicity of tributyltin oxide (TBTO) on spermatogenesis in a marine fish, mummichog, Fundulus heteroclitus. TBTO exposure caused serious histological damage to the testis, including reduction in counts of spermatids and spermatozoa and malformation of somatic cells around the seminal duct. Analysis of the incorporation of bromodeoxyuridine into spermatogenic cells revealed inhibition of the proliferation of germ cells. To find a biomarker for evaluation of the effects of TBTO on fish spermatogenesis, we cloned genes downregulated by TBTO exposure in the mummichog testis, and identified mummichog creatine kinase (mCK). The cDNA sequence of mCK contained an open reading frame encoding 387 amino acid residues (M(r)=43,344). The derived amino acid sequence of mCK was very similar to that of the testicular-type CK of the rainbow trout, Oncorhynchus mykiss. Furthermore, Northern blot analysis revealed that mCK was produced specifically in the testis. We therefore identified mCK in the mummichog as a testicular-type CK. Real-time PCR revealed that exposure of the fish to TBTO significantly reduced mCK expression in the testis. To some extent, this reduction was coincident with that of bromodeoxyuridine incorporation into spermatogenic cells. The mCK gene can therefore be used as a biomarker for evaluating the effects of TBTO on fish spermatogenesis. In addition, levels of expression of the mCK gene in control fish were well correlated with increments in the gonad somatic index (GSI) below 4%. Individuals that were thought to have testicular damage caused by TBTO could be discriminated from those considered normal. The results suggest that TBTO is involved in the suppression of fish spermatogenesis and that analysis of both GSI values and mCK gene expression is useful for evaluating the levels of xenobiotic pollution in coastal areas.
Collapse
Affiliation(s)
- Kazuhiko Mochida
- National Research Institute of Fisheries and Environment of Inland Sea, Fisheries Research Agency, Maruishi 2-17-5, Hatsukaichi, Hiroshima 739-0452, Japan.
| | | | | | | | | | | |
Collapse
|
8
|
Willis D, Zhang Y, Molloy GR. Transcription of brain creatine kinase in U87-MG glioblastoma is modulated by factor AP2. ACTA ACUST UNITED AC 2005; 1728:18-33. [PMID: 15777731 DOI: 10.1016/j.bbaexp.2005.01.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2004] [Revised: 01/14/2005] [Accepted: 01/19/2005] [Indexed: 11/28/2022]
Abstract
Our previous studies established in U87-MG glioblastoma cells that elevated cAMP increased transcription of the endogenous as well as a transiently-transfected brain creatine kinase (CKB) gene, despite the absence of a cAMP response element (CRE) in the CKB proximal promoter. This report employed transfection to show that the transcription of CKB in U87 cells is induced by transcription factor AP2alpha, which is known to be activated by cAMP. Dominant-negative forms of AP2alpha not only prevented the AP2alpha-mediated activation of CKB but also blocked the cAMP-mediated increase in CKB transcription caused by forskolin treatment. The mutation of the four potential AP2 elements within the CKB proximal promoter showed that induction of CKB by AP2 was mediated principally through the AP2 element located at -50 bp in the promoter. Electromobility shift assays revealed a protein in U87 nuclear extracts that bound to a consensus AP2alpha element as well as to the (-50) AP2 element in CKB. Interestingly, the CKB (-50) AP2 element contains GCCAATGGG which also bound NF-Y, the CCAAT-binding protein, suggesting that interplay between AP2 and NF-Y may modulate CKB transcription. This is the first report of a role for AP2 in the regulation of CKB transcription and of an AP2 element within which an NF-Y site is located.
Collapse
Affiliation(s)
- Dianna Willis
- Department of Biological Sciences, University of Delaware, 117 Wolf Hall, Newark, DE 19716, USA
| | | | | |
Collapse
|
9
|
Bosworth CA, Chou CW, Cole RB, Rees BB. Protein expression patterns in zebrafish skeletal muscle: initial characterization and the effects of hypoxic exposure. Proteomics 2005; 5:1362-71. [PMID: 15732137 DOI: 10.1002/pmic.200401002] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Patterns of protein expression were examined in white skeletal muscle from adult zebrafish (Danio rerio). High resolution two-dimensional gel electrophoresis resolved between 300 and 400 spots with molecular masses between 20 and 120 kDa and isoelectric points between about 5 and 8. Forty spots, representing a range of protein size, charge, and abundance were excised, digested with trypsin, and subjected to matrix-assisted laser-desorption/ionisation-time of flight mass spectrometry for protein identification. Twenty-nine spots were identified, including enzymes of energy metabolism, contractile proteins, an iron transport protein, and a heat shock protein. In addition, several spots matched theoretical proteins predicted from genome sequencing. These theoretical proteins were tentatively identified by similarity to known proteins. Patterns of muscle protein expression were then measured after zebrafish were exposed to low oxygen (16 torr) for 48 h, an exposure previously shown to increase the survival of zebrafish at more severe reductions in oxygen. Exposure to low oxygen (hypoxia) did not change the general pattern of protein expression but did affect the amounts of six low abundance proteins. The relatively subtle effects of hypoxia on patterns of muscle protein expression contrasts the widespread changes previously documented in mRNA levels in this and other species of fish during hypoxic stress. The difference between protein and mRNA expression illustrates the need to integrate both measures for a more complete understanding of gene expression in fish during hypoxic exposure.
Collapse
Affiliation(s)
- Charles A Bosworth
- Department of Biological Sciences, University of New Orleans, New Orleans, LA 70148, USA
| | | | | | | |
Collapse
|
10
|
Tankson JD, Thaxton JP, Vizzier-Thaxton Y. Biochemical and immunological changes in chickens experiencing pulmonary hypertension syndrome caused by Enterococcus faecalis. Poult Sci 2002; 81:1826-31. [PMID: 12512573 DOI: 10.1093/ps/81.12.1826] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Recent studies have proven that Enterococcus faecalis (1.5 x 10(7) live bacteria from a tryptic broth culture given s.c. or intra-abdominally (IA) to 5-wk-old broilers) caused pulmonary hypertension syndrome (PHS) in 97% of the birds within 48 h. Definitive diagnosis of PHS was made at necropsy by observing a cavity on the surface of the right ventricular wall and by increased ratio of left ventricular weight to total ventricular weight. A nonlethal method of diagnosing PHS would enhance the study of PHS and alert production poultrymen to the onset of ascites (waterbelly), which is the cuLminating event of PHS. In the present study, serum hemoglobin, glucose, protein, cholesterol, aspartate amino transferase (AST) and creatine kinase-MB (myocardial in origin) enzymes, differential leukocyte numbers, and specific antibody levels against Ent. faecalis were evaluated as nonlethal diagnostic indicators of PHS. Decreases in serum protein and cholesterol of 3 and 10%, respectively, plus increases in percentages of basophils and monocytes of 18 and 40%, respectively, appear to indicate that PHS has been initiated. An agglutinating antibody, specific against Ent. faecalis, but not against other closely related bacteria, has been developed. Presence of this antibody in a bird means that the bird has previously encountered Ent. faecalis. Thus, this antibody may become a diagnostic for PHS in fast-growing chickens.
Collapse
Affiliation(s)
- J D Tankson
- Department of Poultry Science, Mississippi State University, Mississippi State, Mississippi 39762-9665, USA
| | | | | |
Collapse
|
11
|
Farrés J, Holmberg N, Schlattner U, Bailey JE, Wallimann T, Kallio PT. Expressing creatine kinase in transgenic tobacco--a first step towards introducing an energy buffering system in plants. Transgenic Res 2002; 11:49-59. [PMID: 11878275 DOI: 10.1023/a:1013957819596] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Creatine kinase a key enzyme in cellular energy homeostasis of vertebrates offers the promise of engineering plants with enhanced stress tolerance. In order to provide plants with such an energy buffering system, tobacco was transformed with a cDNA, encoding the cytosolic brain-type isoform of chicken creatine kinase (BB-CK), the expression of which was under the control of the cauliflower mosaic virus 35S (CaMV 35S) promoter. Transgenic tobacco plants were selected and suspension cultures generated. Both transgenic plants and suspension cultures were shown to stably express enzymatically active BB-CK in vitro and in vivo, and in most cases for three successive generations (T0-T2). Exogenously supplied creatine was shown to enter the plant cells and resulted in only a slight reduction in root growth at concentrations up to 10 mM. Furthermore, the BB-CK expressing tobacco plants and cell suspension cultures were able to convert creatine into phosphocreatine.
Collapse
|
12
|
Liu Z, Kim S, Kucuktas H, Karsi A. Multiple isoforms and an unusual cathodic isoform of creatine kinase from channel catfish (Ictalurus punctatus). Gene 2001; 275:207-15. [PMID: 11587847 DOI: 10.1016/s0378-1119(01)00679-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In vertebrates, the creatine kinase (CK) family consists of two cytosolic and two mitochondrial isoforms. The two cytosolic isoforms are the muscle type (M-CK) and the brain type (B-CK). Here we report multiple CK isoenzymes in the diploid channel catfish (Ictalurus punctatus) with one unusual cathodic isoform that was previously found only in pathological situations in human. The cathodic CK isoform existed only in the channel catfish stomach, ovary, and spleen, but not in any other species analyzed such as tilapia, smallmouth bass, chicken, or rat. Two genes encode the multiple forms of the channel catfish M-CK cDNAs. M-CK1 has three alleles, M-CK1.1, M-CK1.2, and M-CK1.3, while M-CK2 has just one allele as determined by analysis of 17 cDNA clones and by allele-specific PCR. M-CK1 encodes a protein of 381 amino acids and the M-CK2 cDNA encodes a protein of 380 amino acids. The two cDNAs shared an 86% identity and both have the nine diagnostic boxes for cytosolic CKs and thus are of cytosolic origin. The M-CK1 gene was isolated, sequenced, and characterized and its promoter should be useful for transgenic research for muscle-specific expression.
Collapse
Affiliation(s)
- Z Liu
- The Fish Molecular Genetics and Biotechnology Laboratory, Department of Fisheries and Allied Aquacultures and Program of Cell and Molecular Biosciences, Auburn University, Auburn, AL 36849, USA.
| | | | | | | |
Collapse
|
13
|
Ramírez O, Jiménez E. Opposite transitions of chick brain catalytically active cytosolic creatine kinase isoenzymes during development. Int J Dev Neurosci 2000; 18:815-23. [PMID: 11154851 DOI: 10.1016/s0736-5748(00)00045-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Postnatally the rat brain synthesizes catalytic forms of muscle type (MM) and heart type (MB) creatine kinase (CK), besides the supposedly sole type vertebrate brain-specific (BB) CK. We intended to demonstrate that in Rhode Island chicken brain, cytosolic (c) CK isoenzymatic transitions. (for example BB-CK is followed by the appearance of MB-CK and MM-CK during muscle differentiation), can also occur during development and aging. Cytosolic post 125000 x g, mitochondrial CK-free, brain samples were obtained for zone electrophoresis separation and identification of catalytically active cCK isoforms. BB-CK was never found during chicken brain ontogeny. Against the accepted view, an opposite isoenzyme transition pattern from MM through BB-CK was found in the chicken embryonic brain from the very early stages of development up to day 2 post-hatching. At very early stages of chicken brain ontogeny constitutive MM- and MB-CK isoenzymes were present before the advent of creatine. It seems to be that typical and atypical brain MM- and MB-CK could be working as ATPases in the absence of creatine before embryonic stage 28 (day 5.5) and/or such CK isoforms may begin to form part of the slow component b in developing early neurons and later in the nuclei of glial cells to be used by the CK/phosphocreatine (PC) system as the neural tissues mature. The post-hatching transition pattern showed simultaneous expression of more than one CK isoenzyme within the same neural sample as in post-natal rat brain, presumably due to regional differential transphosphorylation requirements. Strain-dependent enzymatic specific activities have been reported in several species. Since equivalent values of brain CK specific activity were obtained previously from the embryonic plateau phase of CK activity during White Leghorn development, and those from Rhode Island brain neurons cultured 11 days, we compared if, in vivo, a similar brain CK specific activity pattern was physiologically equivalent during Rhode Island and White Leghorn chicken ontogeny. We found quantitatively different strain-specific CK specific activity patterns during this period. Rhode Island brain CK activity values were approximately 4.5-fold those of White Leghorn ones. This indicates that production of energy from anaerobic metabolism and transphosphorylation by the CK/PC system to synthesize ATP more efficiently is strain-specific. In Rhode Islands, there was an age-dependent increase of CK specific activity, mostly in older animals (440% above the value found during the embryonic plateau), when the Krebs cycle and glycolysis lose capacity. During adult life and aging, under physiological conditions, the three CK isoenzymes may participate in diverse functions of the different cell compartments of brain glia and neurons with regard to their high and fluctuating energy demands that are not completely covered by anaerobic and aerobic glycolisis.
Collapse
Affiliation(s)
- O Ramírez
- Departamento de Bioquímica, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico, DF, Mexico.
| | | |
Collapse
|
14
|
Eder M, Schlattner U, Becker A, Wallimann T, Kabsch W, Fritz-Wolf K. Crystal structure of brain-type creatine kinase at 1.41 A resolution. Protein Sci 1999; 8:2258-69. [PMID: 10595529 PMCID: PMC2144193 DOI: 10.1110/ps.8.11.2258] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Excitable cells and tissues like muscle or brain show a highly fluctuating consumption of ATP, which is efficiently regenerated from a large pool of phosphocreatine by the enzyme creatine kinase (CK). The enzyme exists in tissue--as well as compartment-specific isoforms. Numerous pathologies are related to the CK system: CK is found to be overexpressed in a wide range of solid tumors, whereas functional impairment of CK leads to a deterioration in energy metabolism, which is phenotypic for many neurodegenerative and age-related diseases. The crystal structure of chicken cytosolic brain-type creatine kinase (BB-CK) has been solved to 1.41 A resolution by molecular replacement. It represents the most accurately determined structure in the family of guanidino kinases. Except for the N-terminal region (2-12), the structures of both monomers in the biological dimer are very similar and closely resemble those of the other known structures in the family. Specific Ca2+-mediated interactions, found between two dimers in the asymmetric unit, result in structurally independent heterodimers differing in their N-terminal conformation and secondary structure. The high-resolution structure of BB-CK presented in this work will assist in designing new experiments to reveal the molecular basis of the multiple isoform-specific properties of CK, especially regarding different subcellular locations and functional interactions with other proteins. The rather similar fold shared by all known guanidino kinase structures suggests a model for the transition state complex of BB-CK analogous to the one of arginine kinase (AK). Accordingly, we have modeled a putative conformation of CK in the transition state that requires a rigid body movement of the entire N-terminal domain by rms 4 A from the structure without substrates.
Collapse
Affiliation(s)
- M Eder
- Institute of Cell Biology, Swiss Federal Institute of Technology, ETH Zurich, Switzerland
| | | | | | | | | | | |
Collapse
|
15
|
Abstract
To determine the role of the nerve in regulating the accumulation of cytoplasmic creatine kinase (CK) mRNAs in hindleg muscles of the developing mouse, the lumbosacral spinal cords of 14-day gestation mice (E14) were laser ablated, and the accumulation of muscle CK (MCK) and brain CK (BCK) mRNAs was evaluated just prior to birth with in situ hybridization. Numbers of molecules of each of these transcripts/ng total RNA in the soleus and extensor digitorum longus (EDL) muscles were determined with competitive PCR and compared to transcripts found in innervated crural muscles. Data suggest that: 1) the level of BCK mRNA accumulation in innervated hindlimb muscles peaks at E16.5 and remains at fetal levels until the second month postnatal, when it falls to the level found in the adult. Given that MCK transcripts meet or exceed adult levels by day 28 postnatal, the "down-regulation" of the BCK gene and the "up-regulation" of the MCK gene are not tightly coupled; 2) the developmental switch from BCK to MCK, as the dominant cytoplasmic CK mRNA, occurs in innervated and aneural leg muscles between E14 and E16.5, indicating this switch is not nerve dependent; 3) the absence of innervation has no effect on BCK mRNA accumulation. MCK transcripts/ng total RNA continue to increase in aneural muscle throughout the late fetal period, but from E16.5-E19.5 the MCK transcript levels in aneural muscles become progressively lower than in age-matched innervated muscles. Thus, the accumulation of the muscle specific cytoplasmic CK, but not BCK, transcripts is affected by the absence of innervation during the fetal period. Dev Dyn 1999;215:285-296.
Collapse
MESH Headings
- Age Factors
- Animals
- Brain/anatomy & histology
- Brain/embryology
- Brain/enzymology
- Creatine Kinase/genetics
- Down-Regulation
- Gene Expression Regulation, Developmental
- Hindlimb/embryology
- Hindlimb/innervation
- In Situ Hybridization
- Mice
- Muscle, Skeletal/anatomy & histology
- Muscle, Skeletal/embryology
- Muscle, Skeletal/enzymology
- Muscle, Skeletal/innervation
- Muscle, Smooth/anatomy & histology
- Muscle, Smooth/embryology
- Muscle, Smooth/enzymology
- Muscle, Smooth/innervation
- Polymerase Chain Reaction
- RNA, Messenger/metabolism
- Spinal Cord/embryology
- Spinal Cord/physiology
- Time Factors
- Transcription, Genetic
- Up-Regulation
Collapse
Affiliation(s)
- C H Washabaugh
- Department of Cell Biology and Physiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| | | | | | | |
Collapse
|
16
|
Sun HW, Hui CF, Wu JL. Cloning, characterization, and expression in Escherichia coli of three creatine kinase muscle isoenzyme cDNAs from carp (Cyprinus carpio) striated muscle. J Biol Chem 1998; 273:33774-80. [PMID: 9837966 DOI: 10.1074/jbc.273.50.33774] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In vertebrates, the creatine kinase isoenzyme family consists of four types of isoforms: cytosolic muscle type (M-CK), cytosolic brain type (B-CK), mitochondrial ubiquitous, acidic type (Miu-CK), and mitochondrial sarcomeric, basic type (Mis-CK). Until recently, the existence of more than one subisoform of CK isoenzyme has been demonstrated only in fishes by starch gel electrophoresis. We report herein the isolation of three full-length cDNAs that correspond to three closely related creatine kinase M-CK genes from common carp (Cyprinus carpio), designated the M1-CK, M2-CK, and M3-CK genes. Using oligonucleotide probes that correspond to the same region but with the most variable sequences, different restricted genomic hybridization patterns have been obtained. These Southern blot results indicate that the three cDNAs come from different genes. Northern blot analysis using probes that correspond to the 3'-untranslated regions further show that all three subisoforms are expressed specifically in carp muscle. The deduced amino acid sequences of these three subisoforms of carp M-CK show about 85% identity to mammalian M-CK isoenzyme. Finally, the three cDNAs have been expressed in Escherichia coli with a molecular mass of approximately 43,000 Da, and these recombinant proteins exhibit creatine kinase activity. All of these data suggest that the M-CK isoenzymes have at least three subisoforms in carp.
Collapse
Affiliation(s)
- H W Sun
- Laboratory of Marine Molecular Biology and Biotechnology, Institute of Zoology, Academia Sinica, Nankang, Taipei 115, Taiwan, Republic of China
| | | | | |
Collapse
|
17
|
Tulko JS, Korotkov EV, Phoenix DA. MIRs are present in coding regions of human genes. DNA SEQUENCE : THE JOURNAL OF DNA SEQUENCING AND MAPPING 1998; 8:31-8. [PMID: 9522118 DOI: 10.3109/10425179709020882] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
By using a weighted function and the method of enlarged similarity a search has been performed to identify mammalian interspersed repeats (MIRs) in DNA sequences from the EMBL data bank. The existence of MIRs is shown in coding regions of human genes and also in chicken and duck genomes. It is possible to conclude from the results obtained that MIRs were established in the coding regions of some genes and may have taken part in gene evolution. Furthermore, MIRs may have been amplified in vertebrate genomes before the origin of mammals.
Collapse
Affiliation(s)
- J S Tulko
- Bioengineering Center, Russian Academy of Sciences, Moscow, Russia
| | | | | |
Collapse
|
18
|
Ingwall JS. Energetics of the Normal and Failing Human Heart: Focus on the Creatine Kinase Reaction. ACTA ACUST UNITED AC 1998. [DOI: 10.1016/s1569-2590(08)60083-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
19
|
Rajpurohit R, Koch CJ, Tao Z, Teixeira CM, Shapiro IM. Adaptation of chondrocytes to low oxygen tension: relationship between hypoxia and cellular metabolism. J Cell Physiol 1996; 168:424-32. [PMID: 8707878 DOI: 10.1002/(sici)1097-4652(199608)168:2<424::aid-jcp21>3.0.co;2-1] [Citation(s) in RCA: 172] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
In endochondral bone, the growth cartilage is the site of rapid growth. Since the vascular supply to the cartilage is limited, it is widely assumed that cells of the cartilage are hypoxic and that limitations in the oxygen supply regulate the energetic state of the maturing cells. In this report, we evaluate the effects of oxygen tension on chondrocyte energy metabolism, thiol status, and expression of transcription elements, HIF and AP-1. Imposition of an hypoxic environment on cultured chondrocytes caused a proportional increase in glucose utilization and elevated levels of lactate synthesis. Although we observed a statistical increase in the activities of phosphofructokinase, pyruvate kinase, lactate dehydrogenase, and creatine kinase after exposure to lowered oxygen concentrations, the effect was small. The cultured cells exhibited a decreased utilization of glutamine, possibly due to down regulation of mitochondrial function and inhibition of oxidative deamination. With respect to total energy generation, we noted that these cells are quite capable of maintaining the energy charge of the cell at low oxygen tensions. Indeed, no changes in the absolute quantity of adenine nucleotides or the energy charge ratio was observed. Hypoxia caused a decrease in the glutathione content of cultured chondrocytes and a concomitant rise in cell and medium cysteine levels. It is likely that the fall in cell glutathione level is due to decreased synthesis of the tripeptide under reduced oxygen stress and the limited supply of glutamate. The observed rise in cellular and medium cysteine levels probably reflects an increase in the rate of degradation of glutathione and a decrease in synthesis of the peptide. To explore how cells transduce these metabolic effects, gel retardation assays were used to study chondrocyte HIF and AP-1 binding activities. Chondrocyte nuclear preparations bound an HIF-oligonucleotide; however, at low oxygen tensions, no increase in HIF binding was observed. In addition, we found that AP-1 binding activities in chondrocytes exposed to low oxygen tensions was elevated, although the response was lower than that exhibited by fibroblasts exposed to the same range of oxygen concentrations. We compared these results to HIF and AP-1 binding by cells in the growth plate. There was strong HIF and AP-1 binding throughout the plate, but no evidence of selective binding to any one zone. The results of the study lend strong support to the view that chondrocytes are very well adapted to low oxygen tensions; thus, under hypoxic conditions, there is a high level of expression of both HIF and AP-1, and energy conservation appears to be near-maximum.
Collapse
Affiliation(s)
- R Rajpurohit
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, Philadelphia 19104-6003, USA
| | | | | | | | | |
Collapse
|
20
|
Mühlebach SM, Wirz T, Brändle U, Perriard JC. Evolution of the creative kinases. The chicken acidic type mitochondrial creatine kinase gene as the first nonmammalian gene. J Biol Chem 1996; 271:11920-9. [PMID: 8662608 DOI: 10.1074/jbc.271.20.11920] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
In both mammals and birds, the creatine kinase (CK) family consists of four types of genes: cytosolic brain type (B-CK); cytosolic muscle type (M-CK); mitochondrial ubiquitous, acidic type (Mia-CK); and mitochondrial sarcomeric, basic type (Mib-CK). We report here the cloning of the chicken Mia-CK cDNA and its gene. Amino acid sequences of the mature chicken Mi-CK proteins show about 90% identity to the homologous mammalian isoforms. The leader peptides, however, which are isoenzyme-specifically conserved among the mammalian Mi-CKs, are quite different in the chicken with amino acid identity values compared with the mammalian leader peptides of 38.5-51.3%. The chicken Mia-CK gene spans about 7.6 kilobases and contains 9 exons. The region around exon 1 shows a peculiar base composition, with more than 80% GC, and has the characteristics of a CpG island. The upstream sequences lack TATA or CCAAT boxes and display further properties of housekeeping genes. Several transcription factor binding sites known from mammalian Mi-CK genes are absent from the chicken gene. Although the promoter structure suggests a ubiquitous range of expression, analysis of Mia-CK transcripts in chicken tissues shows a restricted pattern and therefore does not fulfill all criteria of a housekeeping enzyme.
Collapse
Affiliation(s)
- S M Mühlebach
- Swiss Federal Institute of Technology, Institute for Cell Biology, Zürich, Switzerland
| | | | | | | |
Collapse
|
21
|
Smith EJ, Cheng HH, Vallejo RL. Mapping functional chicken genes: an alternative approach. Poult Sci 1996; 75:642-7. [PMID: 8722913 DOI: 10.3382/ps.0750642] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Functional genes were selected for linkage analysis mapping using the East Lansing (EL) reference population ¿[Jungle Fowl (JF) x White Leghorn (WL)] x WL¿. The approach used was based on the identification of DNA sequence polymorphisms in the introns of those genes found in JF and WL. Deoxyribonucleic acid sequence analysis revealed single base substitutions in introns of six Type I marker genes: adenylate kinase 1 (AK1), aldolase B (ALDOB), a lysosomal membrane protein gene (LAMP1), vitellogenin 2 (VTG2), apolipoprotein A1 (APOA1), and creatine kinase B (CKB). Transitions or transversions were found in introns of AK1, ALDOB, LAMP1, VTG2, APOA1, and CKB. A transversion in the intron of the JF allele of AK1 generated a unique BspHI cleavage site. The design of polymerase chain reaction (PCR) primers based on the site of base substitution led to the specific amplification of the JF allele in the remaining five genes. A size polymorphism in the PCR production derived from iron response element binding protein (IREBP) distinguished the JF from the WL allele. Linkage analysis of the EL reference population revealed that these candidate genes were located in the following EL linkage groups (E) or chromosomes (Chrom) of the chicken genome: AK1 (E41), VTG2 (E43), APOA1 (E49), CKB (E07), LAMP1 (E01), ALDOB (Chrom Z), and IREBP (Chrom Z). Provided that a base substitution can be found in the parents of the reference population, this PCR-based approach can be used to map any cloned candidate gene. This approach will lead to further information on synteny of the chicken genome with cognate genes of mammalian species.
Collapse
Affiliation(s)
- E J Smith
- USDA, Agricultural Research Service, Avian Disease and Oncology Laboratory, East Lansing, Michigan 48823, USA
| | | | | |
Collapse
|
22
|
Hemmer W, Furter-Graves EM, Frank G, Wallimann T, Furter R. Autophosphorylation of creatine kinase: characterization and identification of a specifically phosphorylated peptide. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1251:81-90. [PMID: 7669815 DOI: 10.1016/0167-4838(95)00083-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We report that several different chicken and rabbit creatine kinase (CK)1 isoenzymes showed an incorporation of 32P when incubated with [gamma-32P]ATP in an autophosphorylation assay. This modification was was shown to be of covalent nature and resulted from an intramolecular phosphorylation reaction that was not dependent on the CK enzymatic activity. By limited proteolysis and sequence analysis of the resulting peptides, the autophosphorylation sites of chicken brain-type CK could be localized within the primary sequence of the enzyme to a 4.5 kDa peptide, spanning a region that is very likely an essential part of the active site of creatine kinase. Homologous peptides were found to be autophosphorylated in chicken muscle-type CK and a mitochondrial CK isoform. Phosphopeptide as well as mutant enzyme analysis provided evidence that threonine-282(2), threonine-289 and serine-285 are involved in the autophosphorylation of CK. Thr-282 and Ser-285 are located close to the reactive cysteine-283. Thr-289 is located within a conserved glycine-rich region highly homologous to the glycine-rich loop of protein kinases, which is known to be important for ATP binding. Thus, it seems likely that the described region constitutes an essential part of the active site of CK.
Collapse
Affiliation(s)
- W Hemmer
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla 92093-0654, USA
| | | | | | | | | |
Collapse
|
23
|
Mitchell MA, Sandercock DA. Creatine kinase isoenzyme profiles in the plasma of the domestic fowl (Gallus domesticus): effects of acute heat stress. Res Vet Sci 1995; 59:30-4. [PMID: 8525081 DOI: 10.1016/0034-5288(95)90026-8] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Creatine kinase isoenzyme activities in extracts of plasma, skeletal muscle, heart and brain tissue of domestic fowls were separated by anion exchange chromatography and tissue specific distributions of the isoenzyme designated MM-CK, BB-CK1 and BB-CK2 were demonstrated. The muscle isoenzyme (MM-CK) was the predominant form in plasma (99 per cent) and its activity increased in response to an episode of acute heat stress.
Collapse
|
24
|
Eppenberger HM. A brief summary of the history of the detection of creatine kinase isoenzymes. Mol Cell Biochem 1994; 133-134:9-11. [PMID: 7808468 DOI: 10.1007/bf01267944] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- H M Eppenberger
- Institute for Cell Biology, ETH-Hönggerberg, Zürich, Switzerland
| |
Collapse
|
25
|
Mühlebach SM, Gross M, Wirz T, Wallimann T, Perriard JC, Wyss M. Sequence homology and structure predictions of the creatine kinase isoenzymes. Mol Cell Biochem 1994; 133-134:245-62. [PMID: 7808457 DOI: 10.1007/bf01267958] [Citation(s) in RCA: 127] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Comparisons of the protein sequences and gene structures of the known creatine kinase isoenzymes and other guanidino kinases revealed high homology and were used to determine the evolutionary relationships of the various guanidino kinases. A 'CK framework' is defined, consisting of the most conserved sequence blocks, and 'diagnostic boxes' are identified which are characteristic for anyone creatine kinase isoenzyme (e.g. for vertebrate B-CK) and which may serve to distinguish this isoenzyme from all others (e.g. from M-CKs and Mi-CKs). Comparison of the guanidino kinases by near-UV and far-UV circular dichroism further indicates pronounced conservation of secondary structure as well as of aromatic amino acids that are involved in catalysis.
Collapse
Affiliation(s)
- S M Mühlebach
- Institute for Cell Biology, ETH Hönggerberg, Zürich, Switzerland
| | | | | | | | | | | |
Collapse
|
26
|
Hemmer W, Skarli M, Perriard JC, Wallimann T. Effect of okadaic acid on protein phosphorylation patterns of chicken myogenic cells with special reference to creatine kinase. FEBS Lett 1993; 327:35-40. [PMID: 8392945 DOI: 10.1016/0014-5793(93)81034-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Okadaic acid and other agents affecting cellular phosphorylation and dephosphorylation processes profoundly changed the phosphoprotein pattern of 32Pi-labelled chicken embryonic skeletal muscle cells. The phosphorylation states of proteins in the lower molecular weight range were especially increased. Immunoprecipitation of cellular extracts with anti-creatine kinase antibodies enabled us to identify creatine kinase (CK) phosphoproteins. B-CK was phosphorylated after treating the cultures with 1-oleoyl-2-acetyl-sn-glycerol, dibutyryl-cAMP, okadiac acid and combinations thereof, but not with 1,2-dioleoyl-sn-glycerol. M-CK was also shown to be phosphorylated. The results indicated that in vivo, CK isoforms in muscle are subjected to control mediated by phosphorylation and dephosphorylation processes.
Collapse
Affiliation(s)
- W Hemmer
- Institute for Cell Biology, ETH-Hönggerberg, Zürich, Switzerland
| | | | | | | |
Collapse
|
27
|
Molloy GR, Wilson CD, Benfield P, de Vellis J, Kumar S. Rat brain creatine kinase messenger RNA levels are high in primary cultures of brain astrocytes and oligodendrocytes and low in neurons. J Neurochem 1992; 59:1925-32. [PMID: 1402931 DOI: 10.1111/j.1471-4159.1992.tb11028.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Rat brain creatine kinase (CKB) gene expression is highest in the brain but is also detectable at lower levels in some other tissues. In the brain, the CKB enzyme is thought to be involved in the regeneration of ATP necessary for transport of ions and neurotransmitters. To understand the molecular events that lead to high CKB expression in the brain, we have determined the steady-state levels of CKB mRNA in homogeneous cultures of primary rat brain astrocytes, oligodendrocytes, and neurons. Northern blot analysis showed that whereas the 1.4-kb CKB mRNA was detectable in neurons, the level was about 17-fold higher in oligodendrocytes and 15-fold higher in astrocytes. The blots were hybridized with a CKB-specific 32P-antisense RNA probe, complementary to the 3' untranslated sequence of CKB, which hybridizes to CKB mRNA but not CKM mRNA. Also, the 5' and 3' ends of CKB mRNA from the glial cells were mapped, using exon-specific antisense probes in the RNase-protection assay, and were found to be the same in astrocytes and oligodendrocytes. This indicated that (a) the site of in vivo transcription initiation in astrocytes and oligodendrocytes was directed exclusively by the downstream, nonconcensus TTAA sequence at -25 bp in the CKB promoter that is also utilized by all other cell types that express CKB and (b) the 3' end of mature CKB mRNA was the same in astrocytes and oligodendrocytes. In addition, there was no detectable alternate splicing in exon 1, 2, or 8 of CKB mRNA in rat astrocytes and oligodendrocytes.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- G R Molloy
- School of Life and Health Sciences, University of Delaware, Newark 19716
| | | | | | | | | |
Collapse
|
28
|
Waites G, Graham I, Jackson P, Millake D, Patel B, Blanchard A, Weller P, Eperon I, Critchley D. Mutually exclusive splicing of calcium-binding domain exons in chick alpha-actinin. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)42690-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
29
|
Wegmann G, Huber R, Zanolla E, Eppenberger HM, Wallimann T. Differential expression and localization of brain-type and mitochondrial creatine kinase isoenzymes during development of the chicken retina: Mi-CK as a marker for differentiation of photoreceptor cells. Differentiation 1991; 46:77-87. [PMID: 2065867 DOI: 10.1111/j.1432-0436.1991.tb00868.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The expression and the cellular- as well as subcellular-distribution of brain-type B-CK and mitochondrial Mi-CK during development of the chicken retina was studied by immunoblotting, immunofluorescence and immunogold methods. B-CK expression and accumulation in retina was high from early stages of embryonic development on, decreased slightly around hatching and remained high again during adulthood. At early stages of development (days 2-5), B-CK was more or less evenly distributed over the entire retina with the exception of ganglion cells, which were stained more strongly for B-CK than other retinal precursor cells. Then, at around day 10, the beginning of stratified immunostaining by anti-B-CK antibody was noted concomitant with progressing differentiation. Finally, a dramatic increase in staining of the differentiating photoreceptor cells was seen before hatching (day 18) with weaker staining of other cell types. At hatching, as in the adult state, most of the B-CK was localized within rods and cones. Thus, during retinal development marked changes in the immunostaining pattern for B-CK were evident. By contrast, Mi-CK expression was low during development in ovo and rose just before hatching with a predominant accumulation of this isoenzyme within the ellipsoid portion of the inner photoreceptor cell segments. Mi-CK accumulation in the retina coincided with functional maturation of photoreceptors and therefore represents a good marker for terminal differentiation of these cells. B-CK, present from early stages of retina development, seems to be relevant for the energetics of retinal cell proliferation, migration and differentiation, whereas the simultaneous expression of both B- and Mi-CK around the time of hatching indicates a coordinated function of the two CK isoforms as constituents of a PCr-circuit involved in the energetics of vision, which, in autophagous birds, has to be operational at this point in time.
Collapse
Affiliation(s)
- G Wegmann
- Institute of Cell Biology, Swiss Federal Institute of Technology ETH-Hönggerberg, Zürich, Switzerland
| | | | | | | | | |
Collapse
|