1
|
Yang J, Hu LL, Liu LY, Zhao LY, Hou N, Ni L, Li ZF, Wang AY, Song TS, Huang C. Proteomics reveals intersexual differences in the rat brain hippocampus. Anat Rec (Hoboken) 2013; 296:462-9. [PMID: 23381953 DOI: 10.1002/ar.22651] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Accepted: 11/29/2012] [Indexed: 11/05/2022]
Abstract
It is widely accepted that intersexual differences occur in cognitive domains, e.g., in spatial learning and memory. The hippocampus plays important roles in the consolidation of information from short-term memory to long-term memory and spatial navigation. However, it still remains unknown whether the hippocampal proteomic profiling differs between males and females. In this study, we investigated the intersexual differences in protein expression of hippocampi using the two-dimensional electrophoresis analysis. In all, 33 differentially expressed proteins were characterized by matrix-assisted laser desorption and ionization time-of-flight mass spectrometry and validated by Western-blotting analysis. In line with Western-blotting validation, the proteomic identification revealed the overexpression of glial fibrillary acidic protein in female rats' hippocampi, and the overexpression of both creatine kinase B-type and DRP-2 in male rats' hippocampi. The intersexual differences in hippocampal proteomic profiling are probably closely related to those in spatial learning and memory abilities.
Collapse
Affiliation(s)
- Juan Yang
- Department of Genetics and Molecular Biology, Medical School, Xi'an Jiaotong University, 76 Western Yanta Road, Xi'an, Shaanxi, 710061, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Chen J, Sun Y, Mao X, Liu Q, Wu H, Chen Y. RANKL up-regulates brain-type creatine kinase via poly(ADP-ribose) polymerase-1 during osteoclastogenesis. J Biol Chem 2010; 285:36315-21. [PMID: 20837480 DOI: 10.1074/jbc.m110.157743] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Receptor activator of nuclear factor κB ligand (RANKL) is the key regulator for osteoclast formation and function. During osteoclastogenesis, RANKL-stimulated signals differentially modulate expression of a large number of proteins. Using proteomics approaches, we identified that brain-type cytoplasmic creatine kinase (Ckb) was greatly induced in mature osteoclasts. Ckb has been shown to contribute to osteoclast function. However, the mechanisms of Ckb regulation and the contribution of other isoforms of creatine kinase during RANKL-induced osteoclastogenesis are unknown. We found that Ckb was the predominant isoform of creatine kinase during osteoclastogenesis. Real-time PCR confirmed that RANKL induced ckb mRNA expression by over 40-fold in primary mouse bone marrow macrophages and Raw 264.7 cells. The RANKL-responsive region was identified within the -0.4- to -0.2-kb 5'-flanking region of the ckb gene. Affinity binding purification followed by mass spectrometry analysis revealed that poly(ADP-ribose) polymerase-1 (PARP-1) bound to the -0.4/-0.2-kb fragment that negatively regulated expression of ckb in response to RANKL stimulation. Electrophoretic mobility shift assays with PARP-1-specific antibody located the binding site of PARP-1 to the TTCCCA consensus sequence. The expression of PARP-1 was reduced during RANKL-induced osteoclastogenesis, concurrently with increased expression of Ckb. Consistently, knockdown of PARP-1 by lentivirus-delivered shRNA enhanced ckb mRNA expression. The activity of PARP-1 was determined to be required for its inhibitory effect on the ckb expression. In summary, we have demonstrated that PARP-1 is a negative regulator of the ckb expression. Down-regulation of PARP-1 is responsible for the up-regulation of ckb during RANKL-induced osteoclastogenesis.
Collapse
Affiliation(s)
- Jianfeng Chen
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | | | | | | | | | | |
Collapse
|
3
|
Willis D, Zhang Y, Molloy GR. Transcription of brain creatine kinase in U87-MG glioblastoma is modulated by factor AP2. ACTA ACUST UNITED AC 2005; 1728:18-33. [PMID: 15777731 DOI: 10.1016/j.bbaexp.2005.01.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2004] [Revised: 01/14/2005] [Accepted: 01/19/2005] [Indexed: 11/28/2022]
Abstract
Our previous studies established in U87-MG glioblastoma cells that elevated cAMP increased transcription of the endogenous as well as a transiently-transfected brain creatine kinase (CKB) gene, despite the absence of a cAMP response element (CRE) in the CKB proximal promoter. This report employed transfection to show that the transcription of CKB in U87 cells is induced by transcription factor AP2alpha, which is known to be activated by cAMP. Dominant-negative forms of AP2alpha not only prevented the AP2alpha-mediated activation of CKB but also blocked the cAMP-mediated increase in CKB transcription caused by forskolin treatment. The mutation of the four potential AP2 elements within the CKB proximal promoter showed that induction of CKB by AP2 was mediated principally through the AP2 element located at -50 bp in the promoter. Electromobility shift assays revealed a protein in U87 nuclear extracts that bound to a consensus AP2alpha element as well as to the (-50) AP2 element in CKB. Interestingly, the CKB (-50) AP2 element contains GCCAATGGG which also bound NF-Y, the CCAAT-binding protein, suggesting that interplay between AP2 and NF-Y may modulate CKB transcription. This is the first report of a role for AP2 in the regulation of CKB transcription and of an AP2 element within which an NF-Y site is located.
Collapse
Affiliation(s)
- Dianna Willis
- Department of Biological Sciences, University of Delaware, 117 Wolf Hall, Newark, DE 19716, USA
| | | | | |
Collapse
|
4
|
Ramírez O, Jiménez E. Sexual dimorphism in rat cerebrum and cerebellum: different patterns of catalytically active creatine kinase isoenzymes during postnatal development and aging. Int J Dev Neurosci 2002; 20:627-39. [PMID: 12526893 DOI: 10.1016/s0736-5748(02)00102-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
During postnatal development, maturation and aging the Wistar rat cerebrum and cerebellum synthesize, in a different sex-dependent manner, catalytically active dimeric cytosolic (c) muscle-type (MM) and heart-type (MB) creatine kinase (CK), besides the supposedly sole type brain-specific (BB) CK. In both sexes, typical and atypical neuromuscular cCK isoenzymes were present during the study for 26 months. As in rat heart, females showed more cerebral cCK variants (41%) in comparison to males. Female rats exhibited about 93% more cerebellar variants of cCK isoenzymes as compared to males. The male cerebellum showed predominantly BB- and MB-CK during the whole study in comparison to the female one that contained all neuromuscular cCK variants. Only female rats showed decreases and increases of cerebral CK specific activity. In contrast to males, coinciding with the weaning period, cerebral female CK activity decreased 45% from 14 to 21 days and increased about 3-fold in female rats and only 1.3-fold in males from 21 to 45 days of age. Contrary to the remarkable 4-fold increase of chicken brain CK specific activity exhibited at old age, the rat did not show another cerebral CK activity increase during senescence in either sex. However, sex differences of CK specific activity appeared in the cerebellum at all ages. From the sex-specific plateau phase at 45-60 days until 2.2 years of age, about a 41% independent increase of cerebellar CK specific activity was observed in both sexes. After puberty, the differential cerebellum-cerebrum values of CK specific activity were higher for female rats than males during youth, adulthood and senescence. The present work shows that in rat cerebrum and cerebellum, production of ATP through anaerobic transphosphorylation by the CK/PC system is sex-and age-specific, especially in the cerebellum, when glycolysis and the Krebs cycle lose capacity. As in rat heart, under physiological conditions at all ages the several cCK isoenzymes do participate in a gender-specific manner, in favor of females, in diverse functions of the different cell compartments of glial and neuronal cells with regard to their high and fluctuating energy demands not completely covered by anaerobic and aerobic glycolysis.
Collapse
Affiliation(s)
- Oscar Ramírez
- Departamento de Bioquímica, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Avenida Instituto Politécnico Nacional 2508, México DF 07340, Mexico.
| | | |
Collapse
|
5
|
Ramírez O, Jiménez E. Opposite transitions of chick brain catalytically active cytosolic creatine kinase isoenzymes during development. Int J Dev Neurosci 2000; 18:815-23. [PMID: 11154851 DOI: 10.1016/s0736-5748(00)00045-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Postnatally the rat brain synthesizes catalytic forms of muscle type (MM) and heart type (MB) creatine kinase (CK), besides the supposedly sole type vertebrate brain-specific (BB) CK. We intended to demonstrate that in Rhode Island chicken brain, cytosolic (c) CK isoenzymatic transitions. (for example BB-CK is followed by the appearance of MB-CK and MM-CK during muscle differentiation), can also occur during development and aging. Cytosolic post 125000 x g, mitochondrial CK-free, brain samples were obtained for zone electrophoresis separation and identification of catalytically active cCK isoforms. BB-CK was never found during chicken brain ontogeny. Against the accepted view, an opposite isoenzyme transition pattern from MM through BB-CK was found in the chicken embryonic brain from the very early stages of development up to day 2 post-hatching. At very early stages of chicken brain ontogeny constitutive MM- and MB-CK isoenzymes were present before the advent of creatine. It seems to be that typical and atypical brain MM- and MB-CK could be working as ATPases in the absence of creatine before embryonic stage 28 (day 5.5) and/or such CK isoforms may begin to form part of the slow component b in developing early neurons and later in the nuclei of glial cells to be used by the CK/phosphocreatine (PC) system as the neural tissues mature. The post-hatching transition pattern showed simultaneous expression of more than one CK isoenzyme within the same neural sample as in post-natal rat brain, presumably due to regional differential transphosphorylation requirements. Strain-dependent enzymatic specific activities have been reported in several species. Since equivalent values of brain CK specific activity were obtained previously from the embryonic plateau phase of CK activity during White Leghorn development, and those from Rhode Island brain neurons cultured 11 days, we compared if, in vivo, a similar brain CK specific activity pattern was physiologically equivalent during Rhode Island and White Leghorn chicken ontogeny. We found quantitatively different strain-specific CK specific activity patterns during this period. Rhode Island brain CK activity values were approximately 4.5-fold those of White Leghorn ones. This indicates that production of energy from anaerobic metabolism and transphosphorylation by the CK/PC system to synthesize ATP more efficiently is strain-specific. In Rhode Islands, there was an age-dependent increase of CK specific activity, mostly in older animals (440% above the value found during the embryonic plateau), when the Krebs cycle and glycolysis lose capacity. During adult life and aging, under physiological conditions, the three CK isoenzymes may participate in diverse functions of the different cell compartments of brain glia and neurons with regard to their high and fluctuating energy demands that are not completely covered by anaerobic and aerobic glycolisis.
Collapse
Affiliation(s)
- O Ramírez
- Departamento de Bioquímica, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico, DF, Mexico.
| | | |
Collapse
|
6
|
Willis D, Parameswaran B, Shen W, Molloy GR. Conditions providing enhanced transfection efficiency in rat pheochromocytoma PC12 cells permit analysis of the activity of the far-upstream and proximal promoter of the brain creatine kinase gene. J Neurosci Methods 1999; 92:3-13. [PMID: 10595698 DOI: 10.1016/s0165-0270(99)00084-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
While brain creatine kinase (CKB) is expressed at highest levels in the brain, where it functions in regenerating ATP, the gene elements and protein factors regulating CKB transcription in neuronal and glial cells have not been identified. To investigate the regulation of CKB in neuronal cells, we examined the expression of the promoter proximal and 5' far-upstream regions of the rat CKB gene transiently transfected into rat PC12 pheochromocytoma cells. Initially, these experiments were hampered by the extremely low transfection efficiency of PC12 cells. We increased efficiency by greater than 200-fold by employing CaPO4-precipitated DNA transfection into PC12 cells which were optimized for transient transfection by: (i) culturing cells in polylysine-coated dishes to insure attachment throughout transfection; (ii) exposing cells to transfected DNA for an optimal time and employing a glycerol shock; and, most importantly, (iii) dissociating the characteristic self-adhesive clumps of PC12 into mostly single cells. Use of the plasmid expressing green fluorescent protein allowed identification of the transfected cells that averaged 10-20% of the total. Analyses of CKB promoter-CAT gene constructs showed that in PC12 cells expression of the proximal (0.2 kb) CKB promoter was low while expression of the 1.4 kb promoter was three fold higher and the 2.9 kb promoter was ten fold higher, suggesting the presence of at least two upstream cis-acting, positive regulatory elements. In agreement, the steady-state CKB mRNA level was higher in PC12 than in other neuronal cell lines examined, possibly reflecting the effects of positive upstream factors. The results are discussed in relation to how this economical and straightforward transfection procedure may be useful in identify factors regulating the transcription of CKB and other genes expressed in neuronal cells.
Collapse
Affiliation(s)
- D Willis
- Department of Biology, University of Delaware, Newark 19716-2590, USA
| | | | | | | |
Collapse
|
7
|
Kuzhikandathil EV, Molloy GR. Proximal promoter of the rat brain creatine kinase gene lacks a consensus CRE element but is essential for the cAMP-mediated increased transcription in glioblastoma cells. J Neurosci Res 1999; 56:371-85. [PMID: 10340745 DOI: 10.1002/(sici)1097-4547(19990515)56:4<371::aid-jnr5>3.0.co;2-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Our previous studies have shown that transcription of brain creatine kinase (CKB) mRNA in U87-MG glioblastoma cells is stimulated by a forskolin-mediated increase in cyclic AMP (cAMP) via a pathway involving protein kinase A (PKA) and the activation of Galphas proteins. In this report, we have employed transient transfection to investigate the rat CKB gene elements essential for the cAMP-mediated induction of rat CKB transcription in human U87 cells and have mapped the transcription start site of the induced CKB transcripts. We found that the level of induced transcription from the transfected genomic rat CKB gene was the same whether transcription was driven by 2.9 kb of CKB promoter plus 5' flanking sequence or the 0.2 kb CKB promoter, suggesting that the proximal CKB promoter was essential. Also, the level of induced transcription of the chloramphenicol acetyl transferase (CAT) reporter gene driven by the 2.9 kb CKB promoter was the same as with the 0.2 kb CKB promoter. Analyses of a series of 5' deletions of the 0.2 kb proximal CKB promoter showed that the sequences between -80 bp and +1 bp were essential for the cAMP-mediated induction of CKB transcription, despite the absence of a consensus cAMP response element (CRE) sequence in that region. In agreement, gel mobility shift assays showed that nuclear extracts from U87 cells contained a protein(s) which bound specifically to a [32P]CKB DNA probe containing the -60 bp to +1 bp sequence. Mapping the 5' end of the CKB transcripts showed that the initiation of the cAMP-induced transcription occurred almost exclusively from the downstream transcription start site, apparently under the initiation direction of the nonconsensus (-28) TTAA element and not the consensus (-60) TATAAATA element. The results are discussed with regard to nuclear protein factors which may be involved, and the possible cAMP-mediated increase in CKB transcription during myelinogenesis, since the differentiation of oligodendrocytes has previously been shown to be accelerated by increased intracellular cAMP.
Collapse
|
8
|
Ilyin SE, Sonti G, Molloy G, Plata-Salamán CR. Creatine kinase-B mRNA levels in brain regions from male and female rats. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1996; 41:50-6. [PMID: 8883933 DOI: 10.1016/0169-328x(96)00065-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The creatine kinase-B (CKB) enzyme is proposed to have a pivotal role in the regeneration of ATP in the nervous system. In the present study, the steady-state levels of CKB mRNA were determined by RNase protection assay in seventeen separate brain regions obtained from rats during the initial interval of the light period or period of inactivity in rats. The antisense probe used specifically hybridizes to CKB mRNA and discriminates CKB from CKM mRNA. The results show that brain regions from Wistar rats differ in CKB mRNA content. Highest levels of CKB mRNA were detected in the male and female cerebellum. High levels of CKB mRNA were observed in the spinal cord, brain stem and its structures (medulla, pons and midbrain) and olfactory bulb of the male rats. Female rats also contained high levels of CKB mRNA in the brain stem. In both male and female rats, the frontal cortex, occipital cortex, hippocampus and striatum exhibited lower levels of CKB mRNA relative to the complete brain. Statistical analyses demonstrated a significant difference between the male and female CKB mRNA profiles. However, CKB mRNA levels in brain regions with estrogen receptors (hypothalamus, hippocampus) were similar in male and female rats. Differential CKB mRNA levels in various brain regions may suggest diverse physiological significance of the CKB system in the regulation of brain energy metabolism.
Collapse
Affiliation(s)
- S E Ilyin
- School of Life and Health Sciences, University of Delaware, Newark 19716, USA
| | | | | | | |
Collapse
|
9
|
Kuzhikandathil EV, Molloy GR. Prostaglandin E1, E2, and cholera toxin increase transcription of the brain creatine kinase gene in human U87 glioblastoma cells. Glia 1995; 15:471-9. [PMID: 8926040 DOI: 10.1002/glia.440150410] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The creatine kinase isoenzymes play an important role in maintaining ATP levels in some cell types during times of high energy demand. We have previously shown in primary cell cultures from rat brain that glial cells express much higher levels of brain creatine kinase (CKB) mRNA than neurons. In a separate earlier study we observed that transcription of CKB mRNA in glial cells can be stimulated by a forskolin-mediated increase in cAMP via a pathway involving protein kinase A (PKA). In this report, we show that the level of CKB mRNA in human U87 glioblastoma cells can be increased by either prostaglandin E1 (PGE1), prostaglandin E2 (PGE2), or cholera toxin (an activator of G alpha s proteins). The induction of CKB mRNA occurs rapidly (with maximal induction after 6 h), is at the level of transcription, and is mediated specifically through PKA. In addition, the results indicate that both PGE1 and PGE2 use the same or related signal transduction pathways to increase CKB transcription. These results suggest that in glial cells CKB mRNA can be regulated by extracellular signals acting through G-protein-coupled receptors. This study may contribute to an understanding of the mechanisms underlying the previously-reported, early postnatal increase in CKB enzyme activity in rat brain. The results are also discussed with regard to the potential involvement of the expression of prostaglandins and CKB during hypoxia and ischemia.
Collapse
|
10
|
Zhang JN, Wilks JE, Billadello JJ. Characterization of a nuclear protein that interacts with regulatory elements in the human B creatine kinase gene. J Biol Chem 1995; 270:16134-9. [PMID: 7608177 DOI: 10.1074/jbc.270.27.16134] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The B creatine kinase gene is regulated by an array of positive and negative cis-elements in the 5'-flanking DNA that function in both muscle and nonmuscle cells. In C2C12 myogenic cells M and B creatine kinase mRNAs are coordinately up-regulated in the early stages of myogenesis and then undergo distinct regulatory programs. The B creatine kinase gene is down-regulated in the late stages of myogenesis as M creatine kinase becomes the predominant species in mature myotubes. Sequences between -92 and +80 of the B creatine kinase gene confer a regulated pattern of expression to chimeric plasmids that closely resembles the time-course of expression of the endogenous B creatine kinase gene in C2C12 cells undergoing differentiation. We show that sequences within the first exon of the B creatine kinase gene are important for the development regulation of the gene in C2C12 cells and that these sequences bind a nuclear protein that shows a similar tissue-specific distribution and developmentally regulated expression to that of the endogenous B creatine kinase gene.
Collapse
Affiliation(s)
- J N Zhang
- Cardiovascular Division, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | |
Collapse
|
11
|
Shrivastava A, Calame K. Association with c-Myc: an alternated mechanism for c-Myc function. Curr Top Microbiol Immunol 1995; 194:273-82. [PMID: 7895499 DOI: 10.1007/978-3-642-79275-5_32] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- A Shrivastava
- Department of Biochemistry and Molecular Biophysics, Columbia University College of Physicians and Surgeons, New York, NY 10032
| | | |
Collapse
|
12
|
Kuzhikandathil EV, Molloy GR. Transcription of the brain creatine kinase gene in glial cells is modulated by cyclic AMP-dependent protein kinase. J Neurosci Res 1994; 39:70-82. [PMID: 7528818 DOI: 10.1002/jnr.490390110] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The brain creatine kinase (CKB) gene is expressed in a variety of tissues with highest expression seen in the brain. We have previously shown in primary rat brain cell cultures that CKB mRNA levels are high in oligodendrocytes and astrocytes and low in neurons (Molloy et al.: J Neurochem 59:1925-1932, 1992). In this report we show that treatment of human U87 glioblastoma cells with forskolin and IBMX, to elevate intracellular cAMP, induces expression of CKB mRNA from the transiently transfected rat CKB gene by 14-fold and also increases expression from the endogenous human CKB gene. This induction of CKB mRNA i) is due to increased transcription; ii) occurs rapidly (with maximal induction after 6 hr; iii) requires the activity of protein kinase A (PKA), but iv) does not require de novo protein synthesis and, in fact, is superinduced in the presence of cycloheximide. Given the role of oligodendrocytes in the energy-demanding process of myelination and of astrocytes in ion transport, these results have physiological significance, since they suggest that changes in cellular energy requirements in the brain during events, such as glial cell differentiation and increased neuronal activity, may in part be met by a cAMP-mediated modulation of CKB gene expression. Of particular importance is the possible modulation of CKB gene expression during myelinogenesis, since oligodendrocyte differentiation has been shown previously to be stimulated by increases in cAMP.
Collapse
|
13
|
Transcriptional and posttranscriptional mechanisms modulate creatine kinase expression during differentiation of osteoblastic cells. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)42172-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
14
|
Wilson CD, Parameswaran B, Molloy GR. Expression of the rat brain creatine kinase gene in C6 glioma cells. J Neurosci Res 1993; 35:92-102. [PMID: 8510186 DOI: 10.1002/jnr.490350111] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We have recently shown that while brain creatine kinase (CKB) mRNA was detectable in RNA from cultured primary rat brain neurons, CKB mRNA was about 15-fold higher in primary astrocytes and 17-fold higher in oligodendrocytes (Molloy et al., J Neurochem 59:1925-1932, 1992). To begin to understand the molecular mechanisms responsible for brain glial cells containing the highest levels of CKB mRNA in the body, we have examined the expression of rat CKB mRNA in established C6 glioma cells. RNase-protection analysis showed the endogenous CKB mRNA levels in exponentially growing C6 were high and measured 50% of that in total RNA from rat brain lysate and 60% of that in cultured primary astrocytes and oligodendrocytes. The 5' and 3' ends of CKB mRNA in C6 were mapped to the same nucleotides as CKB mRNA from rat brain, indicating that the sites of in vivo transcription initiation and termination/polyadenylation of CKB mRNA in C6 are the same as in total rat brain RNA. The level of CKB enzyme activity in C6 whole cell lysates was among the highest of the glial cell lines which we measured. All creatine kinase enzyme activity present in C6 was found in the dimeric CKB isoform (BB), which is characteristic of CKB expression in the brain. A 2.9 kb gene fragment containing the basal CKB promoter and far-upstream 5' sequences was cloned upstream of the chloramphenicol acetyltransferase (CAT) gene and transfected into C6 cells. CAT activity was readily detectable in C6 and mapping of the 5' end of the CAT mRNA showed that transcription was directed from the correct initiation site. Since we found C6 cells were difficult to transfect, conditions were established which both maximized transfection efficiency and maintained normal C6 cell morphology. These results should permit the future identification of the nuclear trans-acting factors and the cognate cis-acting regulatory elements responsible for high CKB mRNA expression in brain glial cells.
Collapse
Affiliation(s)
- C D Wilson
- University of Delaware, School of Life and Health Sciences, Newark 19716
| | | | | |
Collapse
|
15
|
Identification of a transcriptional initiator element in the cytochrome c oxidase subunit Vb promoter which binds to transcription factors NF-E1 (YY-1, delta) and Sp1. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)53596-1] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
16
|
Mitchell M, Benfield P. TATA box-mediated in vitro transcription by RNA polymerase III. Evidence for TATA-binding protein in a polymerase III type complex. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)54052-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
17
|
Molloy GR, Wilson CD, Benfield P, de Vellis J, Kumar S. Rat brain creatine kinase messenger RNA levels are high in primary cultures of brain astrocytes and oligodendrocytes and low in neurons. J Neurochem 1992; 59:1925-32. [PMID: 1402931 DOI: 10.1111/j.1471-4159.1992.tb11028.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Rat brain creatine kinase (CKB) gene expression is highest in the brain but is also detectable at lower levels in some other tissues. In the brain, the CKB enzyme is thought to be involved in the regeneration of ATP necessary for transport of ions and neurotransmitters. To understand the molecular events that lead to high CKB expression in the brain, we have determined the steady-state levels of CKB mRNA in homogeneous cultures of primary rat brain astrocytes, oligodendrocytes, and neurons. Northern blot analysis showed that whereas the 1.4-kb CKB mRNA was detectable in neurons, the level was about 17-fold higher in oligodendrocytes and 15-fold higher in astrocytes. The blots were hybridized with a CKB-specific 32P-antisense RNA probe, complementary to the 3' untranslated sequence of CKB, which hybridizes to CKB mRNA but not CKM mRNA. Also, the 5' and 3' ends of CKB mRNA from the glial cells were mapped, using exon-specific antisense probes in the RNase-protection assay, and were found to be the same in astrocytes and oligodendrocytes. This indicated that (a) the site of in vivo transcription initiation in astrocytes and oligodendrocytes was directed exclusively by the downstream, nonconcensus TTAA sequence at -25 bp in the CKB promoter that is also utilized by all other cell types that express CKB and (b) the 3' end of mature CKB mRNA was the same in astrocytes and oligodendrocytes. In addition, there was no detectable alternate splicing in exon 1, 2, or 8 of CKB mRNA in rat astrocytes and oligodendrocytes.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- G R Molloy
- School of Life and Health Sciences, University of Delaware, Newark 19716
| | | | | | | | | |
Collapse
|
18
|
Roberts S, Purton T, Bentley DL. A protein-binding site in the c-myc promoter functions as a terminator of RNA polymerase II transcription. Genes Dev 1992; 6:1562-74. [PMID: 1644297 DOI: 10.1101/gad.6.8.1562] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Termination of transcription not only allows polymerases that have completed RNA synthesis to recycle, but it also has important functions in transcriptional regulation and in preventing promoter interference. The molecular basis for termination by RNA polymerase II (pol II) is unclear, however. We have identified a termination site in the promoter region of the c-myc gene, whose function correlates with DNA binding by a nuclear factor. When the c-myc gene was transcribed in injected Xenopus oocytes or a HeLa nuclear extract, a fraction of RNA initiated at the first promoter, P1, terminated at two positions, T1A and T1B, which flank the TATA box of the second promoter, P2. T1B is a T-rich sequence that resembles previously identified attenuation sites, but T1A appears to represent a different class of termination site. T1A is situated approximately 10 bases upstream of an element that overlaps the P2 TATA box. Mutagenesis of this element affected both the efficiency and the position at which termination occurred. A 28-base sequence including this element caused a low level of termination when inserted into the alpha-globin gene in either orientation. This sequence bound a factor called TBF I (terminator-binding factor), whose binding specificity correlated with T1A terminator function. We suggest that TBF I may function as a pol II termination factor.
Collapse
Affiliation(s)
- S Roberts
- Imperial Cancer Research Fund, Lincoln's Inn Fields, London, UK
| | | | | |
Collapse
|
19
|
Mitchell MT, Hobson GM, Benfield PA. TATA box-mediated polymerase III transcription in vitro. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)46045-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|