1
|
Wang B, Said N, Hilal T, Finazzo M, Wahl MC, Artsimovitch I. Nucleotide-induced hyper-oligomerization inactivates transcription termination factor ρ. Nat Commun 2025; 16:1653. [PMID: 39952913 PMCID: PMC11829017 DOI: 10.1038/s41467-025-56824-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/31/2025] [Indexed: 02/17/2025] Open
Abstract
Bacterial RNA helicase ρ is a genome sentinel that terminates the synthesis of damaged and junk RNAs that are not translated by the ribosome. It is unclear how ρ is regulated during dormancy or stress, when translation is inefficient and RNAs are vulnerable to ρ-mediated release. We use cryogenic electron microscopy, biochemical, and genetic approaches to show that substitutions of residues in the connector between two ρ domains or ADP promote the formation of extended Escherichia coli ρ filaments. By contrast, (p)ppGpp induces the formation of transient ρ dodecamers. Our results demonstrate that ADP and (p)ppGpp nucleotides bound at subunit interfaces inhibit ρ ring closure that underpins the hexamer activation, thus favoring the assembly of inactive higher-order oligomers. Connector substitutions and antibiotics that inhibit RNA and protein syntheses trigger ρ aggregation in the cell. These and other recent data implicate aggregation as a widespread strategy to tune ρ activity.
Collapse
Affiliation(s)
- Bing Wang
- Department of Microbiology and Center for RNA Biology, The Ohio State University, Columbus, OH, USA
| | - Nelly Said
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Laboratory of Structural Biochemistry, Takustr. 6, Berlin, Germany
| | - Tarek Hilal
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Laboratory of Structural Biochemistry, Takustr. 6, Berlin, Germany
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Research Center of Electron Microscopy and Core Facility BioSupraMol, Fabeckstr. 36a, Berlin, Germany
| | - Mark Finazzo
- Department of Microbiology and Center for RNA Biology, The Ohio State University, Columbus, OH, USA
| | - Markus C Wahl
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Laboratory of Structural Biochemistry, Takustr. 6, Berlin, Germany.
- Helmholtz-Zentrum Berlin für Materialien und Energie, Macromolecular Crystallography, Albert-Einstein-Str. 15, Berlin, Germany.
| | - Irina Artsimovitch
- Department of Microbiology and Center for RNA Biology, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
2
|
Murayama Y, Ehara H, Aoki M, Goto M, Yokoyama T, Sekine SI. Structural basis of the transcription termination factor Rho engagement with transcribing RNA polymerase from Thermus thermophilus. SCIENCE ADVANCES 2023; 9:eade7093. [PMID: 36753546 PMCID: PMC9908020 DOI: 10.1126/sciadv.ade7093] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 01/11/2023] [Indexed: 06/18/2023]
Abstract
Transcription termination is an essential step in transcription by RNA polymerase (RNAP) and crucial for gene regulation. For many bacterial genes, transcription termination is mediated by the adenosine triphosphate-dependent RNA translocase/helicase Rho, which causes RNA/DNA dissociation from the RNAP elongation complex (EC). However, the structural basis of the interplay between Rho and RNAP remains obscure. Here, we report the cryo-electron microscopy structure of the Thermus thermophilus RNAP EC engaged with Rho. The Rho hexamer binds RNAP through the carboxyl-terminal domains, which surround the RNA exit site of RNAP, directing the nascent RNA seamlessly from the RNA exit to its central channel. The β-flap tip at the RNA exit is critical for the Rho-dependent RNA release, and its deletion causes an alternative Rho-RNAP binding mode, which is irrelevant to termination. The Rho binding site overlaps with the binding sites of other macromolecules, such as ribosomes, providing a general basis of gene regulation.
Collapse
Affiliation(s)
- Yuko Murayama
- Laboratory for Transcription Structural Biology, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Haruhiko Ehara
- Laboratory for Transcription Structural Biology, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Mari Aoki
- Laboratory for Transcription Structural Biology, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Mie Goto
- Laboratory for Transcription Structural Biology, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Takeshi Yokoyama
- Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - Shun-ichi Sekine
- Laboratory for Transcription Structural Biology, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| |
Collapse
|
3
|
Pietrzyk-Brzezinska AJ, Absmeier E, Klauck E, Wen Y, Antelmann H, Wahl MC. Crystal Structure of the Escherichia coli DExH-Box NTPase HrpB. Structure 2018; 26:1462-1473.e4. [PMID: 30174149 DOI: 10.1016/j.str.2018.07.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 06/27/2018] [Accepted: 07/25/2018] [Indexed: 10/28/2022]
Abstract
Eukaryotic DExH-box proteins are important post-transcriptional gene regulators, many of which employ RNA-stimulated nucleoside triphosphatase activity to remodel RNAs or ribonucleoprotein complexes. However, bacterial DExH-box proteins are structurally and functionally poorly characterized. We report the crystal structure of the Escherichia coli DExH-box protein HrpB. A globular head is composed of dual RecA, winged-helix, helical bundle and oligonucleotide/oligosaccharide-binding domains, resembling a compact version of eukaryotic DExH-box proteins. Additionally, HrpB harbors a C-terminal region not found in proteins with known structure, which bestows the protein with unique interaction potential. Interaction and activity assays showed that the protein binds RNA but not DNA, hydrolyzes all nucleoside triphosphates in an RNA-stimulated manner, but does not unwind diverse model RNAs in vitro. These observations can be rationalized by detailed comparisons with structurally characterized eukaryotic DExH-box proteins. Comparative phenotypic analyses of an E. coli hrpB knockout mutant suggested diverse functions of HrpB homologs in different bacteria.
Collapse
Affiliation(s)
| | - Eva Absmeier
- Freie Universität Berlin, Laboratory of Structural Biochemistry, 14195 Berlin, Germany
| | - Eberhard Klauck
- Freie Universität Berlin, Institute for Biology - Microbiology, 14195 Berlin, Germany
| | - Yanlin Wen
- Freie Universität Berlin, Institute for Biology - Microbiology, 14195 Berlin, Germany
| | - Haike Antelmann
- Freie Universität Berlin, Institute for Biology - Microbiology, 14195 Berlin, Germany
| | - Markus C Wahl
- Freie Universität Berlin, Laboratory of Structural Biochemistry, 14195 Berlin, Germany; Helmholtz-Zentrum Berlin für Materialien und Energie, Macromolecular Crystallography, 12489 Berlin, Germany.
| |
Collapse
|
4
|
Learning from the Leaders: Gene Regulation by the Transcription Termination Factor Rho. Trends Biochem Sci 2016; 41:690-699. [PMID: 27325240 DOI: 10.1016/j.tibs.2016.05.012] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 05/18/2016] [Accepted: 05/25/2016] [Indexed: 01/23/2023]
Abstract
The RNA helicase Rho triggers 20-30% of transcription termination events in bacteria. While Rho is associated with most transcription elongation complexes, it only promotes termination of a subset. Recent studies of individual Rho-dependent terminators located within the 5' leader regions of bacterial mRNAs have identified novel mechanisms that govern Rho target specificity and have revealed unanticipated physiological functions for Rho. In particular, the multistep nature of Rho-dependent termination enables regulatory input from determinants beyond the sequence of the Rho loading site, and allows a given Rho-dependent terminator to respond to multiple signals. Further, the unique position of Rho as a sensor of cellular translation has been exploited to regulate the transcription of genes required for protein synthesis, including those specifying Mg(2+) transporters.
Collapse
|
5
|
Olson KE, Dolan GF, Müller UF. In vivo evolution of a catalytic RNA couples trans-splicing to translation. PLoS One 2014; 9:e86473. [PMID: 24466112 PMCID: PMC3900562 DOI: 10.1371/journal.pone.0086473] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 12/09/2013] [Indexed: 12/17/2022] Open
Abstract
How does a non-coding RNA evolve in cells? To address this question experimentally we evolved a trans-splicing variant of the group I intron ribozyme from Tetrahymena over 21 cycles of evolution in E.coli cells. Sequence variation was introduced during the evolution by mutagenic and recombinative PCR, and increasingly active ribozymes were selected by their repair of an mRNA mediating antibiotic resistance. The most efficient ribozyme contained four clustered mutations that were necessary and sufficient for maximum activity in cells. Surprisingly, these mutations did not increase the trans-splicing activity of the ribozyme. Instead, they appear to have recruited a cellular protein, the transcription termination factor Rho, and facilitated more efficient translation of the ribozyme’s trans-splicing product. In addition, these mutations affected the expression of several other, unrelated genes. These results suggest that during RNA evolution in cells, four mutations can be sufficient to evolve new protein interactions, and four mutations in an RNA molecule can generate a large effect on gene regulation in the cell.
Collapse
Affiliation(s)
- Karen E. Olson
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, United States of America
| | - Gregory F. Dolan
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, United States of America
| | - Ulrich F. Müller
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
6
|
Mutagenesis-based evidence for an asymmetric configuration of the ring-shaped transcription termination factor Rho. J Mol Biol 2010; 405:497-518. [PMID: 21059356 DOI: 10.1016/j.jmb.2010.11.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Revised: 09/16/2010] [Accepted: 11/01/2010] [Indexed: 11/20/2022]
Abstract
Transcription termination factor Rho is an ATP-dependent ring-shaped molecular motor that tracks along RNA to dissociate RNA-DNA duplexes and transcription complexes in its path. The Rho hexamer contains two distinct sites for interaction with RNA. The primary binding site is composed of pyrimidine-specific binding clefts that are located in the N-terminal domains and anchor Rho to transcripts at C-rich Rut (Rho utilization) sites. Components of the secondary binding site (SBS) in the C-terminal domains directly couple RNA binding to ATP hydrolysis in order to translocate RNA through the Rho ring. Published crystal structures of RNA-bound Rho display distinct architectures ('trimer-of-dimers' or asymmetric hexamer) and SBS-RNA interaction networks that suggested conflicting models of RNA "handoff" or "escort" by the Rho subunits. To probe the mechanism of mechanochemical transduction in Rho, we have mutated into alanines (or glycines) the residues that make SBS contacts with RNA in the 'trimer-of-dimers' structure supporting the "handoff" model. We find that the resulting single-point mutants have similar RNA binding affinities but exhibit significantly different ATP hydrolysis, transcription termination, and RNA-DNA unwinding activities that are more compatible with the asymmetric Rho structure than with the 'trimer-of-dimers' structure and the resulting "handoff" model. We discuss our findings in connection with specific features of the asymmetric Rho structure yet argue that a simple RNA "escort" model is insufficient to account for all experimental evidence.
Collapse
|
7
|
Lee SJ, Richardson CC. Molecular basis for recognition of nucleoside triphosphate by gene 4 helicase of bacteriophage T7. J Biol Chem 2010; 285:31462-71. [PMID: 20688917 DOI: 10.1074/jbc.m110.156067] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The translocation of DNA helicases on single-stranded DNA and the unwinding of double-stranded DNA are fueled by the hydrolysis of nucleoside triphosphates (NTP). Although most helicases use ATP in these processes, the DNA helicase encoded by gene 4 of bacteriophage T7 uses dTTP most efficiently. To identify the structural requirements of the NTP, we determined the efficiency of DNA unwinding by T7 helicase using a variety of NTPs and their analogs. The 5-methyl group of thymine was critical for the efficient unwinding of DNA, although the presence of a 3'-ribosyl hydroxyl group partially overcame this requirement. The NTP-binding pocket of the protein was examined by randomly substituting amino acids for several amino acid residues (Thr-320, Arg-504, Tyr-535, and Leu-542) that the crystal structure suggests interact with the nucleotide. Although positions 320 and 542 required aliphatic residues of the appropriate size, an aromatic side chain was necessary at position 535 to stabilize NTP for efficient unwinding. A basic side chain of residue 504 was essential to interact with the 4-carbonyl of the thymine base of dTTP. Replacement of this residue with a small aliphatic residue allowed the accommodation of other NTPs, resulting in the preferential use of dATP and the use of dCTP, a nucleotide not normally used. Results from this study suggest that the NTP must be stabilized by specific interactions within the NTP-binding site of the protein to achieve efficient hydrolysis. These interactions dictate NTP specificity.
Collapse
Affiliation(s)
- Seung-Joo Lee
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
8
|
Rabhi M, Rahmouni AR, Boudvillain M. Transcription Termination Factor Rho: A Ring-Shaped RNA Helicase from Bacteria. RNA HELICASES 2010. [DOI: 10.1039/9781849732215-00243] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Makhlouf Rabhi
- Centre de Biophysique Moléculaire (UPR4301) CNRS rue Charles Sadron 45071 Orléans cedex 2 France
- Ecole doctorale Sciences et Technologies, Université d’Orléans France
| | - A. Rachid Rahmouni
- Centre de Biophysique Moléculaire (UPR4301) CNRS rue Charles Sadron 45071 Orléans cedex 2 France
| | - Marc Boudvillain
- Centre de Biophysique Moléculaire (UPR4301) CNRS rue Charles Sadron 45071 Orléans cedex 2 France
| |
Collapse
|
9
|
Schwartz A, Margeat E, Rahmouni AR, Boudvillain M. Transcription termination factor rho can displace streptavidin from biotinylated RNA. J Biol Chem 2007; 282:31469-76. [PMID: 17724015 DOI: 10.1074/jbc.m706935200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
In Escherichia coli, binding of the hexameric Rho protein to naked C-rich Rut (Rho utilization) regions of nascent RNA transcripts initiates Rho-dependent termination of transcription. Although the ring-shaped Rho factor exhibits in vitro RNA-dependent ATPase and directional RNA-DNA helicase activities, the actual molecular mechanisms used by Rho to disrupt the intricate network of interactions that cement the ternary transcription complex remain elusive. Here, we show that Rho is a molecular motor that can apply significant disruptive forces on heterologous nucleoprotein assemblies such as streptavidin bound to biotinylated RNA molecules. ATP-dependent disruption of the biotin-streptavidin interaction demonstrates that Rho is not mechanistically limited to the melting of nucleic acid base pairs within molecular complexes and confirms that specific interactions with the roadblock target are not required for Rho to operate properly. We also show that Rho-induced streptavidin displacement depends significantly on the identity of the biotinylated transcript as well as on the position, nature, and length of the biotin link to the RNA chain. Altogether, our data are consistent with a "snow plough" type of mechanism of action whereby an early rearrangement of the Rho-substrate complex (activation) is rate-limiting, physical force (pulling) is exerted on the RNA chain by residues of the central Rho channel, and removal of structural obstacles from the RNA track stems from their nonspecific steric exclusion from the hexamer central hole. In this context, a simple model for the regulation of Rho-dependent termination based on the modulation of disruptive dynamic loading by secondary factors is proposed.
Collapse
Affiliation(s)
- Annie Schwartz
- CNRS UPR4301, Centre de Biophysique Moléculaire, Rue Charles Sadron, 45071 Orléans cedex 2, France
| | | | | | | |
Collapse
|
10
|
Walmacq C, Rahmouni AR, Boudvillain M. Influence of substrate composition on the helicase activity of transcription termination factor Rho: reduced processivity of Rho hexamers during unwinding of RNA-DNA hybrid regions. J Mol Biol 2004; 342:403-20. [PMID: 15327943 DOI: 10.1016/j.jmb.2004.07.026] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2004] [Revised: 07/09/2004] [Accepted: 07/13/2004] [Indexed: 10/26/2022]
Abstract
Transcription termination factor Rho forms ring-shaped hexameric structures that load onto segments of the nascent RNA transcript that are C-rich and mostly single-stranded. This interaction converts Rho hexamers into active molecular motors that use the energy resulting from their ATP hydrolase activity to move towards the transcript 3'-end. Upon translocation along the RNA chain, Rho can displace physical roadblocks, such as those formed by RNA-DNA helices, a feature that is likely central to the transcription termination mechanism. To study this "translocase" (helicase) activity, we have designed a collection of Rho substrate chimeras containing an RNA-DNA helix located at various positions with respect to a short (47 nucleotides) artificial loading site. We show that these synthetic constructs represent interesting model substrates able to engage in a productive interaction with Rho and to direct NTP-dependent [5'-->3']-translocation of the hexamers. Using both single and multiple-cycle experimental set-ups, we have also found that Rho helicase activity is strongly dependent on the substrate composition and reaction conditions. For this reason, the rate-limiting step of the helicase reaction could not be identified unambiguously. Yet, the linear dependence of the reaction rate on the hybrid length suggests that helicase action on the RNA-DNA region could be controlled by a unique slow step such as Rho activation, conformational rearrangement, or DNA release. Moreover, removal of the DNA strand occurred at a significant cost for the Rho enzyme, inducing, on average, dissociation from the substrate for every 60-80 base-pairs of hybrid unwound. These results are discussed in relation to the known requirements for Rho substrates, general features of hexameric helicases, and current models for Rho-dependent transcription termination.
Collapse
Affiliation(s)
- Céline Walmacq
- Centre de Biophysique Moléculaire (UPR4301), CNRS, rue Charles Sadron, 45071 Orléans cedex 2, France
| | | | | |
Collapse
|
11
|
Skordalakes E, Berger JM. Structure of the Rho transcription terminator: mechanism of mRNA recognition and helicase loading. Cell 2003; 114:135-46. [PMID: 12859904 DOI: 10.1016/s0092-8674(03)00512-9] [Citation(s) in RCA: 194] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In bacteria, one of the major transcriptional termination mechanisms requires a RNA/DNA helicase known as the Rho factor. We have determined two structures of Rho complexed with nucleic acid recognition site mimics in both free and nucleotide bound states to 3.0 A resolution. Both structures show that Rho forms a hexameric ring in which two RNA binding sites--a primary one responsible for target mRNA recognition and a secondary one required for mRNA translocation and unwinding--point toward the center of the ring. Rather than forming a closed ring, the Rho hexamer is split open, resembling a "lock washer" in its global architecture. The distance between subunits at the opening is sufficiently wide (12 A) to accommodate single-stranded RNA. This open configuration most likely resembles a state poised to load onto mRNA and suggests how related ring-shaped enzymes may be breached to bind nucleic acids.
Collapse
Affiliation(s)
- Emmanuel Skordalakes
- Department of Molecular and Cell Biology, University of California, Berkeley, 239 Hildebrand Hall, #3206, Berkeley, CA 94720, USA
| | | |
Collapse
|
12
|
Abstract
Transcription termination in Escherichia coli is controlled by many factors. The sequence of the DNA template, the structure of the transcript, and the actions of auxiliary proteins all play a role in determining the efficiency of the process. Termination is regulated and can be enhanced or suppressed by host and phage proteins. This complex reaction is rapidly yielding to biochemical and structural analysis of the interacting factors. Below we review and attempt to unify into basic principles the remarkable recent progress in understanding transcription termination and anti-termination.
Collapse
Affiliation(s)
- Evgeny Nudler
- Department of Biochemistry, NYU Medical Center, New York, NY 10016, USA.
| | | |
Collapse
|
13
|
Abstract
Helicases are motor proteins that couple the hydrolysis of nucleoside triphosphate (NTPase) to nucleic acid unwinding. The hexameric helicases have a characteristic ring-shaped structure, and all, except the eukaryotic minichromosomal maintenance (MCM) helicase, are homohexamers. Most of the 12 known hexameric helicases play a role in DNA replication, recombination, and transcription. A human genetic disorder, Bloom's syndrome, is associated with a defect in one member of the class of hexameric helicases. Significant progress has been made in understanding the biochemical properties, structures, and interactions of these helicases with DNA and nucleotides. Cooperativity in nucleotide binding was observed in many, and sequential NTPase catalysis has been observed in two proteins, gp4 of bacteriophage T7 and rho of Escherichia coli. The crystal structures of the oligomeric T7 gp4 helicase and the hexamer of RepA helicase show structural features that substantiate the observed cooperativity, and both are consistent with nucleotide binding at the subunit interface. Models are presented that show how sequential NTP hydrolysis can lead to unidirectional and processive translocation. Possible unwinding mechanisms based on the DNA exclusion model are proposed here, termed the wedge, torsional, and helix-destabilizing models.
Collapse
Affiliation(s)
- S S Patel
- Department of Biochemistry, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA.
| | | |
Collapse
|
14
|
Kim DE, Patel SS. The mechanism of ATP hydrolysis at the noncatalytic sites of the transcription termination factor Rho. J Biol Chem 1999; 274:32667-71. [PMID: 10551822 DOI: 10.1074/jbc.274.46.32667] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Escherichia coli transcription termination factor rho is a hexamer with three catalytic subunits that turnover ATP at a fast rate and three noncatalytic subunits that turnover ATP at a relatively slow rate. The mechanism of the ATPase reaction at the noncatalytic sites was determined and was compared with the ATPase mechanism at the catalytic sites. A sequential mechanism for ATP binding or hydrolysis that was proposed for the catalytic sites was not observed at the noncatalytic sites. Pre-steady-state pulse-chase experiments showed that three ATPs were tightly bound to the noncatalytic sites and these were simultaneously hydrolyzed at a rate of 1.8 s(-1) at 18 degrees C. The apparent bimolecular rate constant for ATP binding was determined as 5.4 x 10(5) M(-1) s(-1) in the presence of poly(C) RNA. The ATP hydrolysis products dissociated from the noncatalytic sites at 0.02 s(-1). The hydrolysis of ATP at the noncatalytic sites was at least 130 times slower, and the overall ATPase turnover was 1500 times slower than that at the catalytic sites. These results from studies of the rho protein are likely to be general to hexameric helicases. We propose that the ATPase activity at the noncatalytic site is too slow to drive translocation of the protein on the nucleic acid or to provide energy for nucleic acid unwinding.
Collapse
Affiliation(s)
- D E Kim
- Department of Biochemistry, Ohio State University, Columbus, Ohio 43210, USA
| | | |
Collapse
|
15
|
Kim DE, Shigesada K, Patel SS. Transcription termination factor Rho contains three noncatalytic nucleotide binding sites. J Biol Chem 1999; 274:11623-8. [PMID: 10206972 DOI: 10.1074/jbc.274.17.11623] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The active form of transcription termination factor rho from Escherichia coli is a homohexamer, but several studies suggest that the six subunits of the hexamer are not functionally identical. Rho has three tight and three weak ATP binding sites. Based on our findings, we propose that the tight nucleotide binding sites are noncatalytic and the weak sites are catalytic. In the presence of RNA, the rho-catalyzed ATPase rate is fast, close to 30 s-1. However, under these conditions the three tightly bound nucleotides dissociate from the rho hexamer at a slow rate of 0.02 s-1, indicating that the three tight nucleotide binding sites of rho do not participate in the fast ATPase turnover. These slowly exchanging nucleotide binding sites of rho are capable of hydrolyzing ATP, but the resulting products (ADP and Pi) bind tightly and dissociate from rho about 1500 times slower than the fast ATPase turnover. Both RNA and excess ATP in solution are necessary for stabilizing nucleotide binding at these sites. In the absence of RNA, or when solution ATP is hydrolyzed to ADP, a faster dissociation of nucleotides was observed. Based on these results, we propose that the rho hexamer is similar to the F1-ATPase and T7 DNA helicase-containing noncatalytic sites that do not participate in the fast ATPase turnover. We propose that the three tight sites on rho are the noncatalytic sites and the three weak sites are the catalytic sites.
Collapse
Affiliation(s)
- D E Kim
- Department of Biochemistry, Ohio State University, Columbus, Ohio 43210, USA
| | | | | |
Collapse
|
16
|
Walstrom KM, Dozono JM, von Hippel PH. Effects of reaction conditions on RNA secondary structure and on the helicase activity of Escherichia coli transcription termination factor Rho. J Mol Biol 1998; 279:713-26. [PMID: 9642055 DOI: 10.1006/jmbi.1998.1814] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The ATPase and helicase activities of the Escherichia coli transcription termination protein rho have been studied under a variety of reaction conditions that alter its transcription termination activity. These conditions include KCl, KOAc, or KGlu concentrations from 50 to 150 mM and Mg(OAc)2 concentrations from 1 to 5 mM (in the presence of 1 mM ATP). In higher KCl or higher Mg(OAc)2 concentrations we found that the translocation of rho hexamers along RNA was slower and less processive than the same process measured at 50 mM monovalent salt concentrations and 1 mM Mg(OAc)2. The ATPase activity of rho was also decreased under reaction conditions that slowed translocation. RNA melting experiments showed that the decreased ATPase activity of rho and the slower helicase activity at increased KCl or Mg(OAc)2 concentrations are accompanied by a concomitant increase in the secondary structure of the RNA portion of the helicase substate. In contrast, the ATPase activity of rho in the presence of poly(rC), a synthetic RNA that does not form salt-concentration-dependent secondary structure, was shown to be the same in each of the three monovalent salts. Thus, the salts do not directly affect the structure or conformation of the rho protein or the binding of rho to single-stranded RNA. However, the translocation of rho along RNA was more processive in 150 mM KOAc or KGlu than in 150 mM KCl, while the RNA secondary structure was the same in all three monovalent salts. Therefore, the monovalent salt present in the reaction may directly affect rho-RNA interactions when the RNA substrate can form secondary structure. Helicase experiments with an RNA molecule that does not contain a rho loading-site showed that rho translocates less processively along this potential helicase substrate. These results suggest that the helicase activity of rho may be significantly regulated by RNA secondary structure. In addition, one of the mechanisms to concentrate the activity of rho on transcripts containing unstructured rho loading sites may be that rho translocation along such molecules is more processive than it is along more structured RNA molecules in the cell.
Collapse
Affiliation(s)
- K M Walstrom
- Institute of Molecular Biology and Department of Chemistry, University of Oregon, Eugene, OR 97403, USA
| | | | | |
Collapse
|
17
|
Ingham CJ, Hunter IS, Smith MC. Isolation and sequencing of the rho gene from Streptomyces lividans ZX7 and characterization of the RNA-dependent NTPase activity of the overexpressed protein. J Biol Chem 1996; 271:21803-7. [PMID: 8702978 DOI: 10.1074/jbc.271.36.21803] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The gene for transcription termination factor Rho was isolated from Streptomyces lividans ZX7. It encoded a 77-kDa polypeptide (Rho 77) with considerable homology to known Rho factors. An atypical hydrophilic region of 228 residues was found within the N-terminal RNA-binding domain. Only Rho from Micrococcus luteus and Mycobacterium leprae (closely related GC-rich Gram-positive bacteria) had an analogous sequence. Rho 77 was overexpressed in Escherichia coli and purified using an N-terminal hexahistidine-tag. Rho 77 displayed a broad RNA-dependent ATPase activity, with poly(C) RNA being no more than 4-fold more effective than poly(A). This contrasts with the ATPase activity of Rho from E. coli which is stimulated primarily by poly(C) RNA. Rho 77 was a general RNA-dependent NTPase, apparent Km values for NTPs were: GTP 0.13 mM, ATP 0.17 mM, UTP 1.1 mM, and CTP >2 mM. Rho 77 poly(C)-dependent ATPase activity was inhibited by heparin, unlike the E. coli Rho. The antibiotic bicyclomycin inhibited the in vitro RNA-dependent ATPase activity of Rho 77, did not inhibit growth of streptomycetes but delayed the development of aerial mycelia. N-terminal deletion analysis to express a truncated form of Rho (Rho 72, 72 kDa) indicated that the first 42 residues of Rho 77 were not essential for RNA-dependent NTPase activity and were not the targets of inhibition by heparin or bicyclomycin.
Collapse
Affiliation(s)
- C J Ingham
- Division of Molecular Genetics, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow, G12, United Kingdom
| | | | | |
Collapse
|
18
|
Pereira S, Platt T. A mutation in the ATP binding domain of rho alters its RNA binding properties and uncouples ATP hydrolysis from helicase activity. J Biol Chem 1995; 270:30401-7. [PMID: 8530466 DOI: 10.1074/jbc.270.51.30401] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The Escherichia coli mutant rho201 was originally isolated in a genetic screen for defects in rho-dependent termination. Cloning and sequencing of this gene reveals a single phenylalanine to cysteine mutation at residue 232 in the ATP binding domain of the protein. This mutation significantly alters its RNA binding properties so that it binds trp t', RNA 100-fold weaker than the wild type protein, with a Kd of approximately 1.3 nM. Rho201 binds nonspecific RNA only 3-4-fold less tightly than it binds trp t', while the wild type differential for these same RNAs is 10-20-fold. Curiously, rho201 displays increased secondary site RNA activation, with a Km for ribo(C)10 of 0.6 microM, compared to the wild type value of 3-4 microM. Although rho201 and the wild type protein hydrolyze ATP similarly with poly(C), or trp t' RNA, as cofactors, rho201 has a higher ATPase activity when activated by nonspecific RNA. Physically, rho201 displays an abnormal conformation detectable by mild trypsin digestion. Despite effective ATP hydrolysis, the rho201 mutant is a poor RNA:DNA helicase and terminates inefficiently on trp t'. The single F232C mutation thus appears to uncouple the protein's ATPase activity from its helicase function, so rho can no longer harness available energy for use in subsequent reactions.
Collapse
Affiliation(s)
- S Pereira
- Department of Biochemistry, University of Rochester Medical Center, New York 14642, USA
| | | |
Collapse
|
19
|
Abstract
Escherichia coli Rho factor is required for termination of transcription at certain sites by RNA polymerase. Binding to unstructured cytosine-containing RNA target sites, subsequent RNA-dependent ATP hydrolysis, and an RNA-DNA helicase activity that presumably facilitates termination, are considered essential for Rho function. Yet the RNA recognition elements have remained elusive, the parameters relating RNA binding to ATPase activation have been obscure, and the mechanistic steps that integrate Rho's characteristics with its termination function in vitro and in vivo have been largely undefined. Recent work offers new insights into these interactions with results that are both surprising and satisfying in the context of Rho's emerging structure. These include the requirements for binding and ATPase activation by a variety of RNA substrates, dynamic analyses of Rho tracking, helicase and termination activity, and the participation of a new factor (NusG) that interacts with Rho. Models for Rho function are considered in the light of these recent revelations.
Collapse
Affiliation(s)
- T Platt
- Department of Biochemistry, University of Rochester Medical Center, New York 14642
| |
Collapse
|
20
|
Characterization of a new RNA helicase from nuclear extracts of HeLa cells which translocates in the 5‘ to 3‘ direction. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(19)36933-9] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
21
|
Geiselmann J, von Hippel PH. Functional interactions of ligand cofactors with Escherichia coli transcription termination factor rho. I. Binding of ATP. Protein Sci 1992; 1:850-60. [PMID: 1304371 PMCID: PMC2142155 DOI: 10.1002/pro.5560010703] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Escherichia coli transcription termination factor rho is an RNA-dependent ATPase, and ATPase activity is required for all its functions. We have characterized the binding of ATP to the physiologically relevant hexameric association state of rho in the absence of RNA and have shown that there are six ATP binding sites per rho hexamer. This stoichiometry has been verified by a number of different techniques, including ultracentrifugation, ultrafiltration, and fluorescence titration studies. We have also shown that ATP can bind to isolated monomers of rho when the hexamer is dissociated with the mild denaturant myristyltrimethylammonium bromide, demonstrating that each promoter of rho carries an ATP binding site. The six binding sites that we observe in the rho hexamer are not equivalent; the hexamer contains three strong (Ka approximately 3 x 10(6) M-1) and three weak (Ka approximately 10(5) M-1) binding sites for ATP. The binding constant of the weak binding site is just the reciprocal of the enzymatic Km for ATP as a substrate; thus these weak sites, as well as the strong sites, can, in principle, take part in the catalytic cycle. The asymmetry induced (or manifested) by ATP binding reduces the symmetry of the rho hexamer from a D3 to a pseudo-D3 state. This "breakage" of symmetry has implications for the molecular mechanism of rho, because an asymmetric structure can lead to directional helicase activity by invoking directionally distinct RNA binding and release reactions (see Geiselmann, J., Yager, T.D., & von Hippel, P.H., 1992c, Protein Sci. 1, 861-873).
Collapse
Affiliation(s)
- J Geiselmann
- Institute of Molecular Biology, University of Oregon, Eugene 97403
| | | |
Collapse
|
22
|
Luo Y, Shuman S. Antitermination of vaccinia virus early transcription: possible role of RNA secondary structure. Virology 1991; 185:432-6. [PMID: 1926785 DOI: 10.1016/0042-6822(91)90793-b] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Transcription of vaccinia early genes by the viral RNA polymerase terminates downstream of a signal sequence TTTTTNT in the nontemplate DNA strand. Signal recognition occurs at the level of the sequence UUUUUNU in nascent RNA and depends on a virus-encoded termination factor (VTF). The presence of TTTTTNT elements within protein encoding regions of some early genes requires that these 5' proximal signals be ignored in order to achieve early expression of the full-sized proteins. In the case of the A18R gene, which contains a proximal terminator that is not utilized in vivo (Pacha et al., J. Virol. 64, 3853-3863 (1990)), the TTTTTNT sequence can be folded into a potential hairpin structure such that UUUUUNU would be part of a duplex stem in the nascent RNA. We find that the A18R putative hairpin is unable to promote factor-dependent termination in a purified in vitro transcription system. Sequence manipulations that abrogate the potential to form an RNA hairpin restore the activity of the TTTTTNT motif. The in vitro studies suggest that antitermination at the proximal site of the A18R gene may be mediated by secondary structure in the nascent RNA, and that early termination involves recognition by VTF and/or RNA polymerase of the UUUUUNU sequence in single-stranded form.
Collapse
Affiliation(s)
- Y Luo
- Program in Molecular Biology, Sloan-Kettering Institute, New York, New York 10021
| | | |
Collapse
|
23
|
Brennan C, Platt T. Mutations in an RNP1 consensus sequence of Rho protein reduce RNA binding affinity but facilitate helicase turnover. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(19)47373-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
24
|
Matson SW. DNA helicases of Escherichia coli. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1991; 40:289-326. [PMID: 1851571 DOI: 10.1016/s0079-6603(08)60845-4] [Citation(s) in RCA: 66] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A great deal has been learned in the last 15 years with regard to how helicase enzymes participate in DNA metabolism and how they interact with their DNA substrates. However, many questions remain unanswered. Of critical importance is an understanding of how NTP hydrolysis and hydrogen-bond disruption are coupled. Several models exist and are being tested; none has been proven. In addition, an understanding of how a helicase disrupts the hydrogen bonds holding duplex DNA together is lacking. Recently, helicase enzymes that unwind duplex RNA and DNA.RNA hybrids have been described. In some cases, these are old enzymes with new activities. In other cases, these are new enzymes only recently discovered. The significance of these reactions in the cell remains to be clarified. However, with the availability of significant amounts of these enzymes in a highly purified state, and mutant alleles in most of the genes encoding them, the answers to these questions should be forthcoming. The variety of helicases found in E. coli, and the myriad processes these enzymes are involved in, were perhaps unexpected. It seems likely that an equally large number of helicases will be discovered in eukaryotic cells. In fact, several helicases have been identified and purified from eukaryotic sources ranging from viruses to mouse cells (4-13, 227-234). Many of these helicases have been suggested to have roles in DNA replication, although this remains to be shown conclusively. Helicases with roles in DNA repair, recombination, and other aspects of DNA metabolism are likely to be forthcoming as we learn more about these processes in eukaryotic cells.
Collapse
Affiliation(s)
- S W Matson
- Department of Biology and Curriculum in Genetics, University of North Carolina, Chapel Hill 27599
| |
Collapse
|
25
|
|