1
|
Bigdelou P, Vahedi A, Kiosidou E, Farnoud AM. Loss of membrane asymmetry alters the interactions of erythrocytes with engineered silica nanoparticles. Biointerphases 2020; 15:041001. [PMID: 32600052 PMCID: PMC7326500 DOI: 10.1116/6.0000246] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/30/2020] [Accepted: 06/11/2020] [Indexed: 11/17/2022] Open
Abstract
Disruption of plasma membrane integrity is a primary mechanism of nanoparticle toxicity in cells. Mechanistic studies on nanoparticle-induced membrane damage have been commonly performed using model membranes with a focus on symmetric bilayers, overlooking the fact that the membrane has an asymmetric phospholipid composition. In this study, erythrocytes with normal and scrambled membrane asymmetry were utilized to examine how the loss of membrane asymmetry and the resulting alterations in the outer leaflet lipid composition affect nanoparticle-membrane interactions. Unmodified, amine-modified, and carboxyl-modified silica (30 nm) were used as nanoparticle models. Loss of membrane asymmetry was achieved by induction of eryptosis, using a calcium ionophore. Erythrocyte membrane disruption (hemolysis) by unmodified silica nanoparticles was significantly reduced in eryptotic compared to healthy cells. Amine- and carboxyl-modified particles did not cause hemolysis in either cell. In agreement, a significant reduction in the binding of unmodified silica nanoparticles to the membrane was observed upon loss of membrane asymmetry. Unmodified silica particles also caused significant cell deformation, changing healthy erythrocytes into a spheroid shape. In agreement with findings in the cells, unmodified particles disrupted vesicles mimicking the erythrocyte outer leaflet lipid composition. The degree of disruption and nanoparticle binding to the membrane was reduced in vesicles mimicking the composition of scrambled membranes. Cryo-electron microscopy revealed the presence of lipid layers on particle surfaces, pointing to lipid adsorption as the mechanism for vesicle damage. Together, findings indicate an important role for the lipid composition of the membrane outer leaflet in nanoparticle-induced membrane damage in both vesicles and erythrocytes.
Collapse
Affiliation(s)
- Parnian Bigdelou
- Biomedical Engineering Program, Ohio University, Athens, Ohio 45701
| | - Amid Vahedi
- Department of Chemical and Biomolecular Engineering, Ohio University, Athens, Ohio 45701
| | - Evangelia Kiosidou
- Department of Chemical and Biomolecular Engineering, Ohio University, Athens, Ohio 45701
| | - Amir M Farnoud
- Biomedical Engineering Program, Ohio University, Athens, Ohio 45701
| |
Collapse
|
2
|
Yao CX, Li WY, Zhang SF, Zhang SF, Zhang HF, Zang MX. Effects of Doxorubicin and Fenofibrate on the activities of NADH oxidase and citrate synthase in mice. Basic Clin Pharmacol Toxicol 2011; 109:452-6. [PMID: 21711451 DOI: 10.1111/j.1742-7843.2011.00748.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Doxorubicin (Dox) has widely been used as an anticancer drug, but its use is limited by serious toxicity to the heart, kidney and liver. Mitochondrial dysfunction is one of the potential mechanisms of toxicity but not fully understood. Fenofibrate, one of the peroxisome proliferator-activated receptor-alpha (PPARα) ligands, is involved in lipid metabolism which takes place primarily in the mitochondria, so mitochondrial function may be affected by fenofibrate. Therefore, we investigated the effects of DOX and fenofibrate on activities of both mitochondrial citrate synthase and NADH oxidase, which are marker enzymes in the tricarboxylic acid (TCA) cycle and a measure of the complex I-III-IV activity in electron transport chain, respectively. Dox (15 mg/kg) and/or fenofibrate (100 mg/kg/day) were administered to mice for 3 or 14 days, and the activities of citrate synthase and NADH oxidase were measured. Our study showed that Dox significantly inhibits the activity of citrate synthase while fenofibrate induces the activity. Similar to citrate synthase, NADH oxidase activity was also induced by fenofibrate except in spleen but inhibited by Dox except in the heart and liver. Furthermore, fenofibrate not only protects citrate synthase activity from Dox-induced toxicity in the ventricle but also significantly rescues NADH oxidase activity in the kidney. These results reveal the actions of fenofibrate and Dox on the mitochondria, and the underlying mechanism may be related to the toxicity of Dox, which has clinical implications in the side effects of Dox treatment by modulation of mitochondrial function.
Collapse
Affiliation(s)
- Chun-Xia Yao
- Department of Biochemistry & Molecular Biology, School of Basic Medical Sciences, Zhengzhou University, Henan, China
| | | | | | | | | | | |
Collapse
|
3
|
Ragno R, Simeoni S, Valente S, Massa S, Mai A. 3-D QSAR Studies on Histone Deacetylase Inhibitors. A GOLPE/GRID Approach on Different Series of Compounds. J Chem Inf Model 2006; 46:1420-30. [PMID: 16711762 DOI: 10.1021/ci050556b] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Docking simulation and three-dimensional quantitative structure-activity relationships (3D-QSARs) analyses were conducted on four series of HDAC inhibitors. The studies were performed using the GRID/GOLPE combination using structure-based alignment. Twelve 3-D QSAR models were derived and discussed. Compared to previous studies on similar inhibitors, the present 3-D QSAR investigation proved to be of higher statistical value, displaying for the best global model r2, q2, and cross-validated SDEP values of 0.94, 0.83, and 0.41, respectively. A comparison of the 3-D QSAR maps with the structural features of the binding site showed good correlation. The results of 3D-QSAR and docking studies validated each other and provided insight into the structural requirements for anti-HDAC activity. To our knowledge this is the first 3-D QSAR application on a broad molecular diversity training set of HDACIs.
Collapse
Affiliation(s)
- Rino Ragno
- Istituto Pasteur - Fondazione Cenci Bolognetti, Dipartimento di Studi Farmaceutici, Università degli Studi di Roma La Sapienza, P.le A. Moro 5, 00185 Roma, Italy.
| | | | | | | | | |
Collapse
|
4
|
Dyall SD, Koehler CM, Delgadillo-Correa MG, Bradley PJ, Plümper E, Leuenberger D, Turck CW, Johnson PJ. Presence of a member of the mitochondrial carrier family in hydrogenosomes: conservation of membrane-targeting pathways between hydrogenosomes and mitochondria. Mol Cell Biol 2000; 20:2488-97. [PMID: 10713172 PMCID: PMC85448 DOI: 10.1128/mcb.20.7.2488-2497.2000] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A number of microaerophilic eukaryotes lack mitochondria but possess another organelle involved in energy metabolism, the hydrogenosome. Limited phylogenetic analyses of nuclear genes support a common origin for these two organelles. We have identified a protein of the mitochondrial carrier family in the hydrogenosome of Trichomonas vaginalis and have shown that this protein, Hmp31, is phylogenetically related to the mitochondrial ADP-ATP carrier (AAC). We demonstrate that the hydrogenosomal AAC can be targeted to the inner membrane of mitochondria isolated from Saccharomyces cerevisiae through the Tim9-Tim10 import pathway used for the assembly of mitochondrial carrier proteins. Conversely, yeast mitochondrial AAC can be targeted into the membranes of hydrogenosomes. The hydrogenosomal AAC contains a cleavable, N-terminal presequence; however, this sequence is not necessary for targeting the protein to the organelle. These data indicate that the membrane-targeting signal(s) for hydrogenosomal AAC is internal, similar to that found for mitochondrial carrier proteins. Our findings indicate that the membrane carriers and membrane protein-targeting machinery of hydrogenosomes and mitochondria have a common evolutionary origin. Together, they provide strong evidence that a single endosymbiont evolved into a progenitor organelle in early eukaryotic cells that ultimately give rise to these two distinct organelles and support the hydrogen hypothesis for the origin of the eukaryotic cell.
Collapse
Affiliation(s)
- S D Dyall
- Department of Microbiology and Immunology, University of California, Los Angeles, California 90095, USA
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Kirkovsky L, Mukherjee A, Yin D, Dalton JT, Miller DD. Chiral nonsteroidal affinity ligands for the androgen receptor. 1. Bicalutamide analogues bearing electrophilic groups in the B aromatic ring. J Med Chem 2000; 43:581-90. [PMID: 10691684 DOI: 10.1021/jm990027x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A series of chiral analogues of bicalutamide bearing electrophilic groups (isothiocyanate, N-chloroacetyl, and N-bromoacetyl) on aromatic ring B of the parent molecule were synthesized. These compounds were designed as affinity ligands for the androgen receptor (AR). We prepared the (R)- and (S)-optical isomers of these compounds as pure enantiomers. The AR binding affinities of these compounds were measured in a competitive binding assay with the radiolabeled high-affinity AR ligand, [(3)H]mibolerone. In accordance with our previous results for the enantiomers of bicalutamide, we found that all (R)-isomers demonstrated much higher binding affinity to the AR as compared to their corresponding (S)-isomers. The para-substituted affinity ligands in ring B bound the AR with higher affinities than the corresponding meta-substituted analogues. Oxidation of thioester affinity ligands to their sulfonyl analogues for the para-substituted compounds decreased AR binding affinities and similar modification increased binding affinities for corresponding meta-analogues. The least potent para-substituted sulfonyl compounds had higher AR binding affinities than the most potent meta-substituted sulfonyl compounds. Overall, the para-substituted unoxidized molecules demonstrated the highest AR binding affinity. Subsequent research using AR exchange assays and Scatchard analyses showed that the isothiocyanate affinity ligands (R)-7, (R)-9, and (R)-10 reported herein are the first specific chemoaffinity ligands for the AR.
Collapse
Affiliation(s)
- L Kirkovsky
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee-Memphis, Memphis, Tennessee 38163, USA
| | | | | | | | | |
Collapse
|
6
|
Davis AJ, Ryan KR, Jensen RE. Tim23p contains separate and distinct signals for targeting to mitochondria and insertion into the inner membrane. Mol Biol Cell 1998; 9:2577-93. [PMID: 9725913 PMCID: PMC25530 DOI: 10.1091/mbc.9.9.2577] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/1998] [Accepted: 06/23/1998] [Indexed: 11/11/2022] Open
Abstract
The Tim23 protein is an essential inner membrane (IM) component of the yeast mitochondrial protein import pathway. Tim23p does not carry an amino-terminal presequence; therefore, the targeting information resides within the mature protein. Tim23p is anchored in the IM via four transmembrane segments and has two positively charged loops facing the matrix. To identify the import signal for Tim23p, we have constructed several altered versions of the Tim23 protein and examined their function and import in yeast cells, as well as their import into isolated mitochondria. We replaced the positively charged amino acids in one or both loops with alanine residues and found that the positive charges are not required for import into mitochondria, but at least one positively charged loop is required for insertion into the IM. Furthermore, we find that the signal to target Tim23p to mitochondria is carried in at least two of the hydrophobic transmembrane segments. Our results suggest that Tim23p contains separate import signals: hydrophobic segments for targeting Tim23p to mitochondria, and positively charged loops for insertion into the IM. We therefore propose that Tim23p is imported into mitochondria in at least two distinct steps.
Collapse
Affiliation(s)
- A J Davis
- Department of Cell Biology and Anatomy, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | |
Collapse
|
7
|
Kerscher O, Holder J, Srinivasan M, Leung RS, Jensen RE. The Tim54p-Tim22p complex mediates insertion of proteins into the mitochondrial inner membrane. J Cell Biol 1997; 139:1663-75. [PMID: 9412462 PMCID: PMC2132641 DOI: 10.1083/jcb.139.7.1663] [Citation(s) in RCA: 160] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/1997] [Revised: 10/15/1997] [Indexed: 02/05/2023] Open
Abstract
We have identified a new protein, Tim54p, located in the yeast mitochondrial inner membrane. Tim54p is an essential import component, required for the insertion of at least two polytopic proteins into the inner membrane, but not for the translocation of precursors into the matrix. Several observations suggest that Tim54p and Tim22p are part of a protein complex in the inner membrane distinct from the previously characterized Tim23p-Tim17p complex. First, multiple copies of the TIM22 gene, but not TIM23 or TIM17, suppress the growth defect of a tim54-1 temperature-sensitive mutant. Second, Tim22p can be coprecipitated with Tim54p from detergent-solubilized mitochondria, but Tim54p and Tim22p do not interact with either Tim23p or Tim17p. Finally, the tim54-1 mutation destabilizes the Tim22 protein, but not Tim23p or Tim17p. Our results support the idea that the mitochondrial inner membrane carries two independent import complexes: one required for the translocation of proteins across the inner membrane (Tim23p-Tim17p), and the other required for the insertion of proteins into the inner membrane (Tim54p-Tim22p).
Collapse
Affiliation(s)
- O Kerscher
- Department of Cell Biology and Anatomy, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | | | |
Collapse
|
8
|
Steenaart NA, Shore GC. Alteration of a mitochondrial outer membrane signal anchor sequence that permits its insertion into the inner membrane. Contribution of hydrophobic residues. J Biol Chem 1997; 272:12057-61. [PMID: 9115273 DOI: 10.1074/jbc.272.18.12057] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Tom70p is targeted and inserted into the mitochondrial outer membrane in the Nin-Ccyto orientation, via an NH2-terminal signal anchor sequence. The signal anchor is comprised of two domains: an NH2-terminal hydrophilic region which is positively charged (amino acids 1-10) followed by the predicted transmembrane segment (amino acids 11-29). Substitution of the NH2-terminal domain with a matrix-targeting signal caused the signal anchor to adopt the reverse orientation in the outer membrane (Ncyto-Cin) or, if presented to mitoplasts, to arrest protein translocation at the inner membrane without insertion. Physically separating the transmembrane segment from the matrix-targeting signal by moving it downstream within the protein resulted in a failure to arrest in either membrane, and consequently the protein was imported to the matrix. However, if the mean hydrophobicity of the Tom70p transmembrane segment was increased in these constructs, the protein inserted into the inner membrane with an Nin-Cout orientation. Therefore we have determined conditions that allow the Tom70p transmembrane domain to insert in either membrane, pass through both membranes, or arrest without insertion in the inner membrane. These results identify the mean hydrophobicity of potential transmembrane domains within bitopic proteins as an important determinant for insertion into the mitochondrial inner membrane.
Collapse
Affiliation(s)
- N A Steenaart
- Department of Biochemistry, McIntyre Medical Sciences Building, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | | |
Collapse
|
9
|
Aigner A, Wolf S, Gassen HG. Transport und Entgiftung: Grundlagen, Ansätze und Perspektiven für die Erforschung der Blut-Hirn-Schranke. Angew Chem Int Ed Engl 1997. [DOI: 10.1002/ange.19971090105] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
10
|
Abstract
Mitochondria import many hundreds of different proteins that are encoded by nuclear genes. These proteins are targeted to the mitochondria, translocated through the mitochondrial membranes, and sorted to the different mitochondrial subcompartments. Separate translocases in the mitochondrial outer membrane (TOM complex) and in the inner membrane (TIM complex) facilitate recognition of preproteins and transport across the two membranes. Factors in the cytosol assist in targeting of preproteins. Protein components in the matrix partake in energetically driving translocation in a reaction that depends on the membrane potential and matrix-ATP. Molecular chaperones in the matrix exert multiple functions in translocation, sorting, folding, and assembly of newly imported proteins.
Collapse
Affiliation(s)
- W Neupert
- Institut für Physiologische Chemie der Universität München, Germany
| |
Collapse
|
11
|
Shore GC, McBride HM, Millar DG, Steenaart NA, Nguyen M. Import and insertion of proteins into the mitochondrial outer membrane. EUROPEAN JOURNAL OF BIOCHEMISTRY 1995; 227:9-18. [PMID: 7851447 DOI: 10.1111/j.1432-1033.1995.tb20354.x] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Nuclear-encoded proteins destined for insertion into the mitochondrial outer membrane, follow the same general pathway for import as proteins that are translocated to interior compartments within the organelle. This observation is true both for beta-barrel-type proteins and for proteins that contain hydrophobic alpha-helical transmembrane segments. In this review, we describe what is known about the various steps leading to protein insertion into the outer membrane, and discuss the energetics that favor vectorial translocation into and across this membrane. The selection of the outer membrane during import may involve a lateral release of the translocating polypeptide from the import machinery so that the appropriate domains of the protein become embedded in the lipid bilayer. One type of topogenic domain that can guarantee such selection of the outer membrane is a signal-anchor sequence of the type characterized for the bitopic protein Mas70p. It is suggested that a signal-anchor sequence selective for the mitochondrial outer membrane causes abrogation of polypeptide translocation and triggers the release of the transmembrane segment into the surrounding lipid bilayer, prior to any possibility for the commitment of translocation to the interior of the organelle. Specific structural features of the signal-anchor sequence specify its orientation in the membrane, and can confer on this sequence the ability to form homo-oligomers and hetero-oligomers. Strategies other than a signal-anchor sequence may be employed by other classes of proteins for selection of the outer-membrane. Of note is the ability of the outer-membrane import machinery to catalyze integration of the correct set of proteins into the outer-membrane bilayer, while allowing proteins that are destined for integration into the bilayer of the inner membrane to pass through unimpeded. Again, however, different proteins may employ different strategies. One model proposes that this can be accomplished by a combination of a matrix-targeting signal and a distal stop-transfer sequence. In this model, the formation of contact sites, which is triggered when the matrix-targeting signal engages the import machinery of the inner membrane, may prevent the outer-membrane translocon from recognizing and responding to the downstream stop-transfer domain. This allows the transmembrane segment to pass across the outer-membrane, and subsequently integrate into the inner membrane.
Collapse
Affiliation(s)
- G C Shore
- Department of Biochemistry, McGill University, Montreal, Canada
| | | | | | | | | |
Collapse
|
12
|
Affiliation(s)
- E M Ellis
- Biomedical Research Centre, University of Dundee, Ninewells Hospital and Medical School, Scotland
| | | |
Collapse
|
13
|
Dietmeier K, Zara V, Palmisano A, Palmieri F, Voos W, Schlossmann J, Moczko M, Kispal G, Pfanner N. Targeting and translocation of the phosphate carrier/p32 to the inner membrane of yeast mitochondria. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(19)74480-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
14
|
Ferreira GC, Pedersen PL. Phosphate transport in mitochondria: past accomplishments, present problems, and future challenges. J Bioenerg Biomembr 1993; 25:483-92. [PMID: 8132488 DOI: 10.1007/bf01108405] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The requirement of inorganic phosphate (Pi) for oxidative phosphorylation in eukaryotic cells is fulfilled through specific Pi transport systems. The mitochondrial proton/phosphate symporter (Pic) is a membrane-embedded protein which translocates Pi from the cytosol into the mitochondrial matrix. Pic is responsible for the very rapid transport of most of the Pi used in ATP synthesis. During the past five years there have been advances on several fronts. Genomic and cDNA clones for yeast, bovine, rat, and human Pic have been isolated and sequenced. Functional expression of yeast Pic in yeast strains deficient in Pi transport and expression in Escherichia coli of a chimera protein involving Pic and ATP synthase alpha subunit have been accomplished. Pic, in contrast to other members of the family of transporters involved in energy metabolism, was demonstrated to have a presequence, which optimizes the import of the precursor protein into mitochondria. Six transmembrane segments appear to be a structural feature shared between Pic and other mitochondrial anion carriers, and recent-site directed mutagenesis studies implicate structure-functional relationships to bacteriorhodopsin. These recent advances on Pic will be assessed in light of a more global interpretation of transport mechanism across the inner mitochondrial membrane.
Collapse
Affiliation(s)
- G C Ferreira
- Department of Biochemistry and Molecular Biology, College of Medicine, University of South Florida, Tampa 33612
| | | |
Collapse
|
15
|
Zara V, Palmieri F, Mahlke K, Pfanner N. The cleavable presequence is not essential for import and assembly of the phosphate carrier of mammalian mitochondria but enhances the specificity and efficiency of import. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)49808-6] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
16
|
Li JM, Shore GC. Protein sorting between mitochondrial outer and inner membranes. Insertion of an outer membrane protein into the inner membrane. BIOCHIMICA ET BIOPHYSICA ACTA 1992; 1106:233-41. [PMID: 1596503 DOI: 10.1016/0005-2736(92)90001-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The amino terminal 29 amino acids of the outer mitochondrial membrane protein of yeast, OMM70 (MAS70), consisting of the targeting and membrane anchor domains, has been fused to a reporter protein, dihydrofolate reductase. The hybrid protein, designated pOMD29, was efficiently imported into the outer membrane of rat heart mitochondria by a process dependent on ATP and proteinase-sensitive components on the surface of the organelle, and in which the orientation of the native protein was retained. To determine if the protein translocation machinery of the inner membrane is also capable of recognizing and inserting pOMD29, direct access to the intermembrane space was provided to pOMD29 by selectively rupturing the mitochondrial outer membrane by osmotic shock. In this system, the outer membrane binding site for matrix-destined precursor proteins can be bypassed, and efficient import restored to proteinase-pretreated mitochondria. pOMD29 was imported into the inner membrane of osmotically-shocked mitochondria, mediated by protein components. The outer membrane orientation of pOMD29 was conserved when inserted into the inner membrane but, unlike the outer membrane, import into the inner membrane required delta psi. We conclude that the protein translocation machinery of the mitochondrial inner membrane is capable of recognizing and inserting a protein whose topogenic information otherwise results in insertion of the protein to the outer membrane. The significance of these findings for sorting of proteins between the mitochondrial inner and outer membranes is discussed.
Collapse
Affiliation(s)
- J M Li
- Department of Biochemistry, McGill University, Montreal, Canada
| | | |
Collapse
|
17
|
Gavel Y, von Heijne G. The distribution of charged amino acids in mitochondrial inner-membrane proteins suggests different modes of membrane integration for nuclearly and mitochondrially encoded proteins. EUROPEAN JOURNAL OF BIOCHEMISTRY 1992; 205:1207-15. [PMID: 1577002 DOI: 10.1111/j.1432-1033.1992.tb16892.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We have analyzed the amino acid distribution in seven nuclearly encoded and five mitochondrially encoded inner membrane proteins with experimentally well characterized topologies. The mitochondrially encoded proteins conform to the 'positive inside' rule, i.e. they have many more positively charged residues in their non-translocated as compared to translocated domains. However, most of the nuclearly encoded proteins do not show such a bias but instead have a surprisingly skewed distribution of Glu residues with an almost ten times higher frequency in the intermembrane space than in the matrix domains. These findings suggest that some, but possibly not all, nuclearly encoded inner membrane proteins may insert into the membrane by a mechanism that does not depend on the distribution of positively charged amino acids.
Collapse
Affiliation(s)
- Y Gavel
- Department of Theoretical Physics, Royal Institute of Technology, Stockholm, Sweden
| | | |
Collapse
|
18
|
Chapter 17 The uncoupling protein thermogenin and mitochondrial thermogenesis. MOLECULAR MECHANISMS IN BIOENERGETICS 1992. [DOI: 10.1016/s0167-7306(08)60185-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
19
|
|
20
|
Klaus S, Casteilla L, Bouillaud F, Ricquier D. The uncoupling protein UCP: a membraneous mitochondrial ion carrier exclusively expressed in brown adipose tissue. THE INTERNATIONAL JOURNAL OF BIOCHEMISTRY 1991; 23:791-801. [PMID: 1773883 DOI: 10.1016/0020-711x(91)90062-r] [Citation(s) in RCA: 230] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- S Klaus
- Centre de Recherche sur la Nutrition-CNRS, Meudon-Bellevue, France
| | | | | | | |
Collapse
|
21
|
Loncar D. Immunoelectron microscopical studies on synthesis and localization of uncoupling protein in brown adipocytes: evidence for cotranslational transport of uncoupling protein into mitochondria. J Struct Biol 1990; 105:133-45. [PMID: 2129216 DOI: 10.1016/1047-8477(90)90107-n] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Through the use of the immunoelectron microscopical technique, uncoupling protein (UCP) was analyzed in the brown adipocytes of room temperature- and cold-acclimated rats, in rat brown adipocytes developed in vitro, and in the brown adipocytes of mice, hamsters, and hedgehogs. Using rat anti-UCP-antibody, it is shown that UCP is located in the cristae of brown adipocytes mitochondria (UC-mitochondria) of all analyzed species, whereas mitochondria of nonadipose cells, i.e., C-mitochondria of endothelium, fibrocytes, smooth muscle cells, Schwann cells, axons of neural cells, and white blood cells, do not contain UCP. Cold stress in rats exposed to temperatures of +4 and -20 degrees C caused the amount of UCP per 1 micron 2 of mitochondria to more than double compared with room temperature-acclimated rats. This increase was especially dramatic on the outer mitochondrial membrane: fourfold more UCP molecules compared to the control rats. The ground cytoplasm of adipocytes showed very intensive labeling with RNase-gold complex, indicating that cytoplasm was an active site for protein synthesis, while the absence of UCP-labeling in ground cytoplasm was interpreted to mean that ground cytoplasm did not serve as a site for UCP synthesis. On the other hand, the protrusions of the outer mitochondrial membrane covered with ribosomes, clusters of UCP molecules, and clusters of RNase-gold particles supported the idea that UCP was one of the mitochondrial proteins synthesized on the ribosomes which were in contact with the outer mitochondrial membrane. After being synthesized there, UCP, which could be either extruded into intermembranous space or directed by lateral movement to intermembranous contact sites, was incorporated into inner mitochondrial membrane. Thus, UCP is imported using the so-called "cotranslational transport system."
Collapse
Affiliation(s)
- D Loncar
- Wenner-Gren Institute, University of Stockholm, Sweden
| |
Collapse
|
22
|
Mahlke K, Pfanner N, Martin J, Horwich AL, Hartl FU, Neupert W. Sorting pathways of mitochondrial inner membrane proteins. EUROPEAN JOURNAL OF BIOCHEMISTRY 1990; 192:551-5. [PMID: 2145157 DOI: 10.1111/j.1432-1033.1990.tb19260.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Two distinct pathways of sorting and assembly of nuclear-encoded mitochondrial inner membrane proteins are described. In the first pathway, precursor proteins that carry amino-terminal targeting signals are initially translocated via contact sites between both mitochondrial membranes into the mitochondrial matrix. They become proteolytically processed, interact with the 60-kDa heat-shock protein hsp60 in the matrix and are retranslocated to the inner membrane. The sorting of subunit 9 of Neurospora crassa F0-ATPase has been studied as an example. F0 subunit 9 belongs to that class of nuclear-encoded mitochondrial proteins which are evolutionarily derived from a prokaryotic ancestor according to the endosymbiont hypothesis. We suggest that after import into mitochondria, these proteins follow the ancestral sorting and assembly pathways established in prokaryotes (conservative sorting). On the other hand, ADP/ATP carrier was found not to require interaction with hsp60 for import and assembly. This agrees with previous findings that the ADP/ATP carrier possesses non-amino-terminal targeting signals and uses a different import receptor to other mitochondrial precursor proteins. It is proposed that the ADP/ATP carrier represents a class of mitochondrial inner membrane proteins which do not have a prokaryotic equivalent and thus appear to follow a non-conservative sorting pathway.
Collapse
Affiliation(s)
- K Mahlke
- Institut für Physiologische Chemie, Universität München, Federal Republic of Germany
| | | | | | | | | | | |
Collapse
|