1
|
Sharifian S, Homaei A, Hemmati R, B Luwor R, Khajeh K. The emerging use of bioluminescence in medical research. Biomed Pharmacother 2018; 101:74-86. [PMID: 29477474 DOI: 10.1016/j.biopha.2018.02.065] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 02/13/2018] [Accepted: 02/15/2018] [Indexed: 01/01/2023] Open
Abstract
Bioluminescence is the light produced by a living organism and is commonly emitted by sea life with Ca2+-regulated photoproteins being the most responsible for bioluminescence emission. Marine coelenterates provide important functions involved in essential purposes such as defense, feeding, and breeding. In this review, the main characteristics of marine photoproteins including aequorin, clytin, obelin, berovin, pholasin and symplectin from different marine organisms will be discussed. We will focused on the recent use of recombinant photoproteins in different biomedical research fields including the measurement of Ca2+ in different intracellular compartments of animal cells, as labels in the design and development of binding assays. This review will also outline how bioluminescent photoproteins have been used in a plethora of analytical methods including ultra-sensitive assays and in vivo imaging of cellular processes. Due to their unique properties including elective intracellular distribution, wide dynamic range, high signal-to-noise ratio and low Ca2+-buffering effect, recombinant photoproteins represent a promising future analytical tool in several in vitro and in vivo experiments.
Collapse
Affiliation(s)
- Sana Sharifian
- Department of Marine Biology, Faculty of Sciences, University of Hormozgan, Bandar Abbas, Iran
| | - Ahmad Homaei
- Department of Biochemistry, Faculty of Sciences, University of Hormozgan, Bandar Abbas, Iran.
| | - Roohullah Hemmati
- Department of Biology, Faculty of Basic Sciences, Shahrekord University, Shahrekord, Iran
| | - Rodney B Luwor
- Department of Surgery, Level 5, Clinical Sciences Building, The University of Melbourne, The Royal Melbourne Hospital, Grattan Street, Parkville, VIC 3050, Australia
| | - Khosro Khajeh
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
2
|
Fine structure of the luminous spines and luciferase detection in the brittle star Amphiura filiformis. ZOOL ANZ 2017. [DOI: 10.1016/j.jcz.2017.05.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
3
|
CdTe quantum dots with green fluorescence generated by bioluminescence resonance energy transfer from aequorin. Mikrochim Acta 2016. [DOI: 10.1007/s00604-016-2057-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
4
|
Namkung Y, Le Gouill C, Lukashova V, Kobayashi H, Hogue M, Khoury E, Song M, Bouvier M, Laporte SA. Monitoring G protein-coupled receptor and β-arrestin trafficking in live cells using enhanced bystander BRET. Nat Commun 2016; 7:12178. [PMID: 27397672 PMCID: PMC4942582 DOI: 10.1038/ncomms12178] [Citation(s) in RCA: 209] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 06/08/2016] [Indexed: 12/14/2022] Open
Abstract
Endocytosis and intracellular trafficking of receptors are pivotal to maintain physiological functions and drug action; however, robust quantitative approaches are lacking to study such processes in live cells. Here we present new bioluminescence resonance energy transfer (BRET) sensors to quantitatively monitor G protein-coupled receptors (GPCRs) and β-arrestin trafficking. These sensors are based on bystander BRET and use the naturally interacting chromophores luciferase (RLuc) and green fluorescent protein (rGFP) from Renilla. The versatility and robustness of this approach are exemplified by anchoring rGFP at the plasma membrane or in endosomes to generate high dynamic spectrometric BRET signals on ligand-promoted recruitment or sequestration of RLuc-tagged proteins to, or from, specific cell compartments, as well as sensitive subcellular BRET imaging for protein translocation visualization. These sensors are scalable to high-throughput formats and allow quantitative pharmacological studies of GPCR trafficking in real time, in live cells, revealing ligand-dependent biased trafficking of receptor/β-arrestin complexes. Cellular signaling processes often involve trafficking of receptors and other proteins between subcellular compartments. Here the authors demonstrate a method based on the concept of Enhanced bystander Bioluminescence Resonance Energy Transfer (EbBRET) that allows efficient real time monitoring of endocytosis and trafficking.
Collapse
Affiliation(s)
- Yoon Namkung
- Department of Medicine, Research Institute of the McGill University Health Center (RI-MUHC), McGill University, Montréal, Québec, Canada H4A 3J1
| | - Christian Le Gouill
- Department of Biochemistry and Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montréal, Québec, Canada H3C 1J4
| | - Viktoria Lukashova
- Department of Biochemistry and Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montréal, Québec, Canada H3C 1J4
| | - Hiroyuki Kobayashi
- Department of Biochemistry and Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montréal, Québec, Canada H3C 1J4
| | - Mireille Hogue
- Department of Biochemistry and Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montréal, Québec, Canada H3C 1J4
| | - Etienne Khoury
- Department of Medicine, Research Institute of the McGill University Health Center (RI-MUHC), McGill University, Montréal, Québec, Canada H4A 3J1
| | - Mideum Song
- Department of Medicine, Research Institute of the McGill University Health Center (RI-MUHC), McGill University, Montréal, Québec, Canada H4A 3J1
| | - Michel Bouvier
- Department of Biochemistry and Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montréal, Québec, Canada H3C 1J4
| | - Stéphane A Laporte
- Department of Medicine, Research Institute of the McGill University Health Center (RI-MUHC), McGill University, Montréal, Québec, Canada H4A 3J1.,Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada H3G 1Y6.,Department of Anatomy and Cell Biology, McGill University, Montréal, Québec, Canada H3A 0C7
| |
Collapse
|
5
|
Prudkovsky AA, Ivanenko VN, Nikitin MA, Lukyanov KA, Belousova A, Reimer JD, Berumen ML. Green Fluorescence of Cytaeis Hydroids Living in Association with Nassarius Gastropods in the Red Sea. PLoS One 2016; 11:e0146861. [PMID: 26840497 PMCID: PMC4739711 DOI: 10.1371/journal.pone.0146861] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 12/21/2015] [Indexed: 11/26/2022] Open
Abstract
Green Fluorescent Proteins (GFPs) have been reported from a wide diversity of medusae, but only a few observations of green fluorescence have been reported for hydroid colonies. In this study, we report on fluorescence displayed by hydroid polyps of the genus Cytaeis Eschscholtz, 1829 (Hydrozoa: Anthoathecata: Filifera) found at night time in the southern Red Sea (Saudi Arabia) living on shells of the gastropod Nassarius margaritifer (Dunker, 1847) (Neogastropoda: Buccinoidea: Nassariidae). We examined the fluorescence of these polyps and compare with previously reported data. Intensive green fluorescence with a spectral peak at 518 nm was detected in the hypostome of the Cytaeis polyps, unlike in previous reports that reported fluorescence either in the basal parts of polyps or in other locations on hydroid colonies. These results suggest that fluorescence may be widespread not only in medusae, but also in polyps, and also suggests that the patterns of fluorescence localization can vary in closely related species. The fluorescence of polyps may be potentially useful for field identification of cryptic species and study of geographical distributions of such hydroids and their hosts.
Collapse
Affiliation(s)
- Andrey A. Prudkovsky
- Department of Invertebrate Zoology, Biological Faculty, Lomonosov Moscow State University, Moscow, Russia
| | - Viatcheslav N. Ivanenko
- Department of Invertebrate Zoology, Biological Faculty, Lomonosov Moscow State University, Moscow, Russia
| | - Mikhail A. Nikitin
- A.N. Belozersky Institute of Physico-chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | | | - Anna Belousova
- Department of Invertebrate Zoology, Biological Faculty, Lomonosov Moscow State University, Moscow, Russia
| | - James D. Reimer
- Molecular Invertebrate Systematics and Ecology Laboratory, Department of Biology, Chemistry, and Marine Sciences, Faculty of Science, University of the Ryukyus, Okinawa, Japan
- Tropical Biosphere Research Center, University of the Ryukyus, Okinawa, Japan
| | - Michael L. Berumen
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| |
Collapse
|
6
|
Bio-optimized energy transfer in densely packed fluorescent protein enables near-maximal luminescence and solid-state lasers. Nat Commun 2014; 5:5722. [PMID: 25483850 DOI: 10.1038/ncomms6722] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2014] [Accepted: 10/31/2014] [Indexed: 11/08/2022] Open
Abstract
Bioluminescent organisms are likely to have an evolutionary drive towards high radiance. As such, bio-optimized materials derived from them hold great promise for photonic applications. Here, we show that biologically produced fluorescent proteins retain their high brightness even at the maximum density in solid state through a special molecular structure that provides optimal balance between high protein concentration and low resonance energy transfer self-quenching. Dried films of green fluorescent protein show low fluorescence quenching (-7 dB) and support strong optical amplification (gnet=22 cm(-1); 96 dB cm(-1)). Using these properties, we demonstrate vertical cavity surface emitting micro-lasers with low threshold (<100 pJ, outperforming organic semiconductor lasers) and self-assembled all-protein ring lasers. Moreover, solid-state blends of different proteins support efficient Förster resonance energy transfer, with sensitivity to intermolecular distance thus allowing all-optical sensing. The design of fluorescent proteins may be exploited for bio-inspired solid-state luminescent molecules or nanoparticles.
Collapse
|
7
|
Cytological changes during luminescence production in lanternshark (Etmopterus spinax Linnaeus, 1758) photophores. ZOOMORPHOLOGY 2014. [DOI: 10.1007/s00435-014-0235-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
8
|
Fourrage C, Swann K, Gonzalez Garcia JR, Campbell AK, Houliston E. An endogenous green fluorescent protein-photoprotein pair in Clytia hemisphaerica eggs shows co-targeting to mitochondria and efficient bioluminescence energy transfer. Open Biol 2014; 4:130206. [PMID: 24718596 PMCID: PMC4043110 DOI: 10.1098/rsob.130206] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Green fluorescent proteins (GFPs) and calcium-activated photoproteins of the aequorin/clytin family, now widely used as research tools, were originally isolated from the hydrozoan jellyfish Aequora victoria. It is known that bioluminescence resonance energy transfer (BRET) is possible between these proteins to generate flashes of green light, but the native function and significance of this phenomenon is unclear. Using the hydrozoan Clytia hemisphaerica, we characterized differential expression of three clytin and four GFP genes in distinct tissues at larva, medusa and polyp stages, corresponding to the major in vivo sites of bioluminescence (medusa tentacles and eggs) and fluorescence (these sites plus medusa manubrium, gonad and larval ectoderms). Potential physiological functions at these sites include UV protection of stem cells for fluorescence alone, and prey attraction and camouflaging counter-illumination for bioluminescence. Remarkably, the clytin2 and GFP2 proteins, co-expressed in eggs, show particularly efficient BRET and co-localize to mitochondria, owing to parallel acquisition by the two genes of mitochondrial targeting sequences during hydrozoan evolution. Overall, our results indicate that endogenous GFPs and photoproteins can play diverse roles even within one species and provide a striking and novel example of protein coevolution, which could have facilitated efficient or brighter BRET flashes through mitochondrial compartmentalization.
Collapse
Affiliation(s)
- Cécile Fourrage
- Sorbonne Universités, UPMC Univ Paris 06, Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV), Observatoire Océanologique, 06230 Villefranche-sur-mer, France
| | | | | | | | | |
Collapse
|
9
|
Renwart M, Delroisse J, Claes JM, Mallefet J. Ultrastructural organization of lantern shark (Etmopterus spinax Linnaeus, 1758) photophores. ZOOMORPHOLOGY 2014. [DOI: 10.1007/s00435-014-0230-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
Titushin MS, Feng Y, Lee J, Vysotski ES, Liu ZJ. Protein-protein complexation in bioluminescence. Protein Cell 2012; 2:957-72. [PMID: 22231355 DOI: 10.1007/s13238-011-1118-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2011] [Accepted: 11/07/2011] [Indexed: 12/01/2022] Open
Abstract
In this review we summarize the progress made towards understanding the role of protein-protein interactions in the function of various bioluminescence systems of marine organisms, including bacteria, jellyfish and soft corals, with particular focus on methodology used to detect and characterize these interactions. In some bioluminescence systems, protein-protein interactions involve an "accessory protein" whereby a stored substrate is efficiently delivered to the bioluminescent enzyme luciferase. Other types of complexation mediate energy transfer to an "antenna protein" altering the color and quantum yield of a bioluminescence reaction. Spatial structures of the complexes reveal an important role of electrostatic forces in governing the corresponding weak interactions and define the nature of the interaction surfaces. The most reliable structural model is available for the protein-protein complex of the Ca(2+)-regulated photoprotein clytin and green-fluorescent protein (GFP) from the jellyfish Clytia gregaria, solved by means of Xray crystallography, NMR mapping and molecular docking. This provides an example of the potential strategies in studying the transient complexes involved in bioluminescence. It is emphasized that structural studies such as these can provide valuable insight into the detailed mechanism of bioluminescence.
Collapse
Affiliation(s)
- Maxim S Titushin
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | | | | | | | | |
Collapse
|
11
|
Titushin MS, Feng Y, Stepanyuk GA, Li Y, Markova SV, Golz S, Wang BC, Lee J, Wang J, Vysotski ES, Liu ZJ. NMR-derived topology of a GFP-photoprotein energy transfer complex. J Biol Chem 2010; 285:40891-900. [PMID: 20926380 DOI: 10.1074/jbc.m110.133843] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Förster resonance energy transfer within a protein-protein complex has previously been invoked to explain emission spectral modulation observed in several bioluminescence systems. Here we present a spatial structure of a complex of the Ca(2+)-regulated photoprotein clytin with its green-fluorescent protein (cgGFP) from the jellyfish Clytia gregaria, and show that it accounts for the bioluminescence properties of this system in vitro. We adopted an indirect approach of combining x-ray crystallography determined structures of the separate proteins, NMR spectroscopy, computational docking, and mutagenesis. Heteronuclear NMR spectroscopy using variously (15)N,(13)C,(2)H-enriched proteins enabled assignment of backbone resonances of more than 94% of the residues of both proteins. In a mixture of the two proteins at millimolar concentrations, complexation was inferred from perturbations of certain (1)H-(15)N HSQC-resonances, which could be mapped to those residues involved at the interaction site. A docking computation using HADDOCK was employed constrained by the sites of interaction, to deduce an overall spatial structure of the complex. Contacts within the clytin-cgGFP complex and electrostatic complementarity of interaction surfaces argued for a weak protein-protein complex. A weak affinity was also observed by isothermal titration calorimetry (K(D) = 0.9 mM). Mutation of clytin residues located at the interaction site reduced the degree of protein-protein association concomitant with a loss of effectiveness of cgGFP in color-shifting the bioluminescence. It is suggested that this clytin-cgGFP structure corresponds to the transient complex previously postulated to account for the energy transfer effect of GFP in the bioluminescence of aequorin or Renilla luciferase.
Collapse
Affiliation(s)
- Maxim S Titushin
- National Laboratory of Biomacromolecules, Institute of Biophysics Chinese Academy of Sciences, Datun Road 15, Beijing 100101, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Cofactor-independent oxidases and oxygenases. Appl Microbiol Biotechnol 2010; 86:791-804. [DOI: 10.1007/s00253-010-2455-0] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Revised: 01/14/2010] [Accepted: 01/14/2010] [Indexed: 10/19/2022]
|
13
|
Teranishi K, Shimomura O. Bioluminescence of the arm light organs of the luminous squid Watasenia scintillans. Biochim Biophys Acta Gen Subj 2008; 1780:784-92. [PMID: 18294462 DOI: 10.1016/j.bbagen.2008.01.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2007] [Revised: 01/23/2008] [Accepted: 01/24/2008] [Indexed: 10/22/2022]
Abstract
The squid Watasenia scintillans emits blue light from numerous photophores. According to Tsuji [F.I. Tsuji, Bioluminescence reaction catalyzed by membrane-bound luciferase in the "firefly squid", Watasenia scintillans, Biochim. Biophys. Acta 1564 (2002) 189-197.], the luminescence from arm light organs is caused by an ATP-dependent reaction involving Mg2+, coelenterazine disulfate (luciferin), and an unstable membrane-bound luciferase. We stabilized and partially purified the luciferase in the presence of high concentrations of sucrose, and obtained it as particulates (average size 0.6-2 microm). The ATP-dependent luminescence reaction of coelenterazine disulfate catalyzed by the particulate luciferase was investigated in detail. Optimum temperature of the luminescence reaction is about 5 degrees C. Coelenterazine disulfate is a strictly specific substrate in this luminescence system; any modification of its structure resulted in a very heavy loss in its light emission capability. The light emitter is the excited state of the amide anion form of coelenteramide disulfate. The quantum yield of coelenterazine disulfate is calculated at 0.36. ATP could be replaced by ATP-gamma-S, but not by any other analogues tested. The amount of AMP produced in the luminescence reaction was much smaller than that of coelenteramide disulfate, suggesting that the reaction mechanism of the Watasenia bioluminescence does not involve the formation of adenyl luciferin as an intermediate.
Collapse
|
14
|
Molinari P, Casella I, Costa T. Functional complementation of high-efficiency resonance energy transfer: a new tool for the study of protein binding interactions in living cells. Biochem J 2007; 409:251-61. [PMID: 17868039 DOI: 10.1042/bj20070803] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Green bioluminescence in Renilla species is generated by a ∼100% efficient RET (resonance energy transfer) process that is caused by the direct association of a blue-emitting luciferase [Rluc (Renilla luciferase)] and an RGFP (Renilla green fluorescent protein). Despite the high efficiency, such a system has never been evaluated as a potential reporter of protein–protein interactions. To address the question, we compared and analysed in mammalian cells the bioluminescence of Rluc and RGFP co-expressed as free native proteins, or as fused single-chain polypeptides and tethered partners of self-assembling coiled coils. Here, we show that: (i) no spontaneous interactions generating detectable BRET (bioluminescence RET) signals occur between the free native proteins; (ii) high-efficiency BRET similar to that observed in Renilla occurs in both fusion proteins and self-interacting chimaeras, but only if the N-terminal of RGFP is free; (iii) the high-efficiency BRET interaction is associated with a dramatic increase in light output when the luminescent reaction is triggered by low-quantum yield coelenterazine analogues. Here, we propose a new functional complementation assay based on the detection of the high-efficiency BRET signal that is generated when the reporters Rluc and RGFP are brought into close proximity by a pair of interacting proteins to which they are linked. To demonstrate its performance, we implemented the assay to measure the interaction between GPCRs (G-protein-coupled receptors) and β-arrestins. We show that complementation-induced BRET allows detection of the GPCR–β-arrestin interaction in a simple luminometric assay with high signal-to-noise ratio, good dynamic range and rapid response.
Collapse
Affiliation(s)
- Paola Molinari
- Dipartimento del Farmaco, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161 Roma, Italy
| | | | | |
Collapse
|
15
|
Loening AM, Fenn TD, Gambhir SS. Crystal structures of the luciferase and green fluorescent protein from Renilla reniformis. J Mol Biol 2007; 374:1017-28. [PMID: 17980388 DOI: 10.1016/j.jmb.2007.09.078] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2007] [Revised: 09/08/2007] [Accepted: 09/26/2007] [Indexed: 11/15/2022]
Abstract
Due to its ability to emit light, the luciferase from Renilla reniformis (RLuc) is widely employed in molecular biology as a reporter gene in cell culture experiments and small animal imaging. To accomplish this bioluminescence, the 37-kDa enzyme catalyzes the degradation of its substrate coelenterazine in the presence of molecular oxygen, resulting in the product coelenteramide, carbon dioxide, and the desired photon of light. We successfully crystallized a stabilized variant of this important protein (RLuc8) and herein present the first structures for any coelenterazine-using luciferase. These structures are based on high-resolution data measured to 1.4 A and demonstrate a classic alpha/beta-hydrolase fold. We also present data of a coelenteramide-bound luciferase and reason that this structure represents a secondary conformational form following shift of the product out of the primary active site. During the course of this work, the structure of the luciferase's accessory green fluorescent protein (RrGFP) was also determined and shown to be highly similar to that of Aequorea victoria GFP.
Collapse
Affiliation(s)
- Andreas Markus Loening
- Molecular Imaging Program at Stanford, Department of Radiology and Bio-X Program, The James H. Clark Center, Stanford University School of Medicine, 318 Campus Drive, Clark E150, Stanford, CA 94305-5427, USA
| | | | | |
Collapse
|
16
|
Inouye S. Expression, purification and characterization of calcium-triggered luciferin-binding protein of Renilla reniformis. Protein Expr Purif 2006; 52:66-73. [PMID: 16997571 DOI: 10.1016/j.pep.2006.07.028] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2006] [Revised: 07/27/2006] [Accepted: 07/28/2006] [Indexed: 11/19/2022]
Abstract
The Ca2+-triggered luciferin-binding protein of Renilla reniformis (RLBP) is a non-covalent complex of apoprotein (apoRLBP) and coelenterazine (luciferin). The gene encoding apoRLBP with 552 nucleotides has been synthesized by assembly PCR methods with synthetic oligonucleotides, and the histidine-tagged apoRLBP expressed as a soluble form in the periplasmic space of Escherichia coli cells. The apoRLBP was purified by nickel chelate chromatography and the procedure yielded 18.2mg of recombinant apoRLBP from 80 ml of cultured cells with purity greater than 95%. The purified apoRLBP was converted to RLBP by incubation with coelenterazine in the presence of dithiothreitol and the purity of recombinant RLBP was estimated to be over 95% by comparison with the absorption spectral data of native RLBP. When RLBP mixed with Ca2+, coelenterazine was dissociated from RLBP and was utilized for the luminescence reaction of Renilla luciferase. Also semi-synthetic RLBPs with h-, e-, and Bis-coelenterazines were prepared and characterized.
Collapse
Affiliation(s)
- Satoshi Inouye
- Yokohama Research Center, Chisso Corporation, 5-1 Okawa, Yokohama 236-8605, Japan.
| |
Collapse
|
17
|
Deo SK, Mirasoli M, Daunert S. Bioluminescence resonance energy transfer from aequorin to a fluorophore: an artificial jellyfish for applications in multianalyte detection. Anal Bioanal Chem 2005; 381:1387-94. [PMID: 15731912 DOI: 10.1007/s00216-005-3081-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2004] [Revised: 01/18/2005] [Accepted: 01/19/2005] [Indexed: 10/25/2022]
Abstract
In nature, the green light emission observed in the jellyfish Aequorea victoria is a result of a non-radiative energy transfer from the excited-state aequorin to the green fluorescent protein. In this work, we have modified the photoprotein aequorin by attaching selected fluorophores at a unique site on the protein. This will allow for in vitro transfer of bioluminescent energy from aequorin to the fluorophore thus creating an "artificial jellyfish". The fluorophores are selected such that the excitation spectrum of the fluorophore overlaps with the emission spectrum of aequorin. By modifying aequorin with different fluorophores, bioluminescent labels with different emission maxima are produced, which will allow for the simultaneous detection of multiple analytes. By examining the X-ray crystal structure of the protein, four different sites for introduction of the unique cysteine residue were evaluated. Two fluorophores with differing emission maxima were attached individually to the mutants through the sulfhydryl group of the cysteine molecule. Two of the fluorophore-labeled mutants showed a peak corresponding to fluorophore emission thus indicating resonance energy transfer from aequorin to the fluorophore.
Collapse
Affiliation(s)
- Sapna K Deo
- Department of Chemistry, University of Kentucky, Lexington, KY 40506-0055, USA
| | | | | |
Collapse
|
18
|
Abstract
Unlike enzyme markers, green fluorescent protein can be visualized at high resolution in living cells using confocal microscopy. The images are not prone to fixation or staining artifacts, and can be of exceptional clarity. Moreover, the activities of living cells, such as cytoplasmic streaming, are clearly evident during microscopy. Ordinarily, movement within a sample is a nuisance, placing constraints on the use of sometimes lengthy techniques for noise reduction during confocal microscopy, such as frame averaging. However, it is possible to monitor dynamic events by time-lapse confocal microscopy, and this combination of a vital fluorescent reporter with high-resolution optical techniques shows much promise for use in cell biological and physiological experiments. Genetic systems such as that of Arabidopsis provide a large resource of potentially informative mutants, and there has been much recent improvement in techniques for determining the molecular basis of a particular phenotype. The use of fluorescent proteins will provide further tools for examining the biology of mutant cells. The precision with which particular cellular structures can be decorated with GFP and the ease with which subcellular traffic can be monitored indicate that this approach will be very useful for cell biological and physiological observations, particularly for detailed examination of plant mutant phenotypes.
Collapse
Affiliation(s)
- J Haseloff
- MRC Laboratory of Molecular Biology, Cambridge, England
| |
Collapse
|
19
|
Abstract
Bioluminescence has evolved independently many times; thus the responsible genes are unrelated in bacteria, unicellular algae, coelenterates, beetles, fishes, and others. Chemically, all involve exergonic reactions of molecular oxygen with different substrates (luciferins) and enzymes (luciferases), resulting in photons of visible light (approximately 50 kcal). In addition to the structure of luciferan, several factors determine the color of the emissions, such as the amino acid sequence of the luciferase (as in beetles, for example) or the presence of accessory proteins, notably GFP, discovered in coelenterates and now used as a reporter of gene expression and a cellular marker. The mechanisms used to control the intensity and kinetics of luminescence, often emitted as flashes, also vary. Bioluminescence is credited with the discovery of how some bacteria, luminous or not, sense their density and regulate specific genes by chemical communication, as in the fascinating example of symbiosis between luminous bacteria and squid.
Collapse
Affiliation(s)
- T Wilson
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA.
| | | |
Collapse
|
20
|
Removal of the polar lobe leads to the formation of functionally deficient photocytes in the annelidChaetopterus variopedatus. ACTA ACUST UNITED AC 1989; 198:129-136. [DOI: 10.1007/bf02438937] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/1989] [Accepted: 07/04/1989] [Indexed: 10/24/2022]
|
21
|
Luminescent activity and ultrastructural characterization of photocytes dissociated from the coelenterate Renilla köllikeri. Tissue Cell 1988; 20:701-20. [PMID: 18620241 DOI: 10.1016/0040-8166(88)90017-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/1988] [Indexed: 11/23/2022]
|
22
|
|
23
|
Fresneau C, Hill M, Lescure N, Arrio B, Dupaix A, Volfin P. Dinoflagellate luminescence: purification of a NAD(P)H-dependent reductase and of its substrate. Arch Biochem Biophys 1986; 251:495-503. [PMID: 3800380 DOI: 10.1016/0003-9861(86)90357-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The soluble enzymatic luminescent system of the dinoflagellate Pyrocystis lunula (luciferase-luciferin) is coupled with an enzymatic NAD(P)H-dependent reaction. The enzyme is a soluble reductase (Mr 47,000) which catalyzes, in the presence of NAD(P)H, the reduction of a molecule called P630. Reduced P630 has the same spectral characteristics as the purified luciferin. The luciferase can oxidize this reduced molecule with a light emission at 480 nm. These observations suggest that reduced P630 is a luciferin molecule. The oxidized form seems, in these conditions, to be the precursor of luciferin.
Collapse
|
24
|
Nicolas MT, Bassot JM, Shimomura O. POLYNOIDIN: A MEMBRANE PHOTOPROTEIN ISOLATED FROM THE BIOLUMINESCENT SYSTEM OF SCALE-WORMS. Photochem Photobiol 1982. [DOI: 10.1111/j.1751-1097.1982.tb03832.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
25
|
Intracellular Source of Bioluminescence. ACTA ACUST UNITED AC 1980. [DOI: 10.1016/s0074-7696(08)62310-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
26
|
Charbonneau H, Cormier M. Ca2+-induced bioluminescence in Renilla reniformis. Purification and characterization of a calcium-triggered luciferin-binding protein. J Biol Chem 1979. [DOI: 10.1016/s0021-9258(17)37872-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
27
|
Henry JP, Ninio M. Control of the Ca2+-triggered bioluminescence of Veretillum cynomorium lumisomes. BIOCHIMICA ET BIOPHYSICA ACTA 1978; 504:40-59. [PMID: 30480 DOI: 10.1016/0005-2728(78)90005-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Calcium ions can trigger an emission of light from Veretillum cynomorium lumisomes (bioluminescent vesicles) under conditions where they are not lysed. This process does not require a metabolically-linked source of energy, but is dependent upon the nature of the ions present inside and outside the vesicles. The Ca2+-triggered bioluminescence is stimulated by an asymmetrical distribution of cations or anions. Either high internal sodium or high external chloride is required for the maximal effect. When sodium is present outside the structure and potassium inside, the slow inward diffusion of calcium is decreased. Unbalanced diffusion of internal cations also stimulates the bioluminescence, suggesting control of the calcium influx by an electrochemical gradient. It is assumed that rapid outward diffusion of sodium or inward diffusion of chloride generates an electrical potential difference (inside negative) which drives the Ca2+-influx. With purified lumisomes it has been shown that Ca2+-triggered bioluminescence and calcium uptake (presumably net uptake) were correlated. In two instances uptake of the lipophilic cation dibenzyldimethylammonium has given direct evidence for the existence of a potential difference. With NaCl-loaded vesicles, it has not been possible to demonstrate an uptake of lipophilic cations but experiments with 22Na and 42D indicated a higher rate of sodium efflux, in accord with the proposed hypothesis.
Collapse
|
28
|
Henry JP, Michelson AM. Bioluminescence: physiological control and regulation at the molecular level. Photochem Photobiol 1978; 28:293-310. [PMID: 43986 DOI: 10.1111/j.1751-1097.1978.tb07711.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
29
|
Anderson JM, Cormier MJ. Sodium gradient dependent calcium transport in Renilla lumisomes. Biochem Biophys Res Commun 1978; 81:114-21. [PMID: 26341 DOI: 10.1016/0006-291x(78)91637-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
30
|
|
31
|
|
32
|
Anderson JM, Cormier MJ. Transductive coupling in bioluminescence: effects of monovalent cations and ionophores on the calcium-triggered luminescence of Renilla lumisomes. Biochem Biophys Res Commun 1976; 68:1234-41. [PMID: 5079 DOI: 10.1016/0006-291x(76)90329-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
33
|
Henry JP. Control of the Ca2+ dependent luminescence of lumisomes by monovalent cations. Biochem Biophys Res Commun 1975; 62:253-9. [PMID: 234226 DOI: 10.1016/s0006-291x(75)80131-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
34
|
|
35
|
Cormier MJ, Hori K, Anderson JM. Bioluminescence in coelenterates. BIOCHIMICA ET BIOPHYSICA ACTA 1974; 346:137-64. [PMID: 4154104 DOI: 10.1016/0304-4173(74)90007-x] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
36
|
Morise H, Shimomura O, Johnson FH, Winant J. Intermolecular energy transfer in the bioluminescent system of Aequorea. Biochemistry 1974; 13:2656-62. [PMID: 4151620 DOI: 10.1021/bi00709a028] [Citation(s) in RCA: 266] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
37
|
Anderson JM, Charbonneau H, Cormier MJ. Mechanism of calcium induction of Renilla bioluminescence. Involvement of a calcium-triggered luciferin binding protein. Biochemistry 1974; 13:1195-200. [PMID: 4149963 DOI: 10.1021/bi00703a602] [Citation(s) in RCA: 36] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|