1
|
Turina P. Modulation of the H +/ATP coupling ratio by ADP and ATP as a possible regulatory feature in the F-type ATP synthases. Front Mol Biosci 2022; 9:1023031. [PMID: 36275634 PMCID: PMC9583940 DOI: 10.3389/fmolb.2022.1023031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
F-type ATP synthases are transmembrane enzymes, which play a central role in the metabolism of all aerobic and photosynthetic cells and organisms, being the major source of their ATP synthesis. Catalysis occurs via a rotary mechanism, in which the free energy of a transmembrane electrochemical ion gradient is converted into the free energy of ATP phosphorylation from ADP and Pi, and vice versa. An ADP, tightly bound to one of the three catalytic sites on the stator head, is associated with catalysis inhibition, which is relieved by the transmembrane proton gradient and by ATP. By preventing wasteful ATP hydrolysis in times of low osmotic energy and low ATP/ADP ratio, such inhibition constitutes a classical regulatory feedback effect, likely to be an integral component of in vivo regulation. The present miniview focuses on an additional putative regulatory phenomenon, which has drawn so far little attention, consisting in a substrate-induced tuning of the H+/ATP coupling ratio during catalysis, which might represent an additional key to energy homeostasis in the cell. Experimental pieces of evidence in support of such a phenomenon are reviewed.
Collapse
Affiliation(s)
- Paola Turina
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| |
Collapse
|
2
|
Wakai S, Ohmori A, Kanao T, Sugio T, Kamimura K. Purification and biochemical characterization of the F1-ATPase from Acidithiobacillus ferrooxidans NASF-1 and analysis of the atp operon. Biosci Biotechnol Biochem 2006; 69:1884-91. [PMID: 16244438 DOI: 10.1271/bbb.69.1884] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
ATPase was purified 51-fold from a chemoautotrophic, obligately acidophilic iron-oxidizing bacterium, Acidithiobacillus ferrooxidans NASF-1. The purified ATPase showed the typical subunit pattern of the F1-ATPase on a polyacrylamide gel containing sodium dodecyl sulfate, with 5 subunits of apparent molecular masses of 55, 50, 33, 20, and 18 kDa. The enzyme hydrolyzed ATP, GTP, and ITP, but neither UTP nor ADP. The K(m) value for ATP was 1.8 mM. ATPase activity was optimum at pH 8.5 at 45 degrees C, and was activated by sulfite. Azide strongly inhibited the enzyme activity, whereas the enzyme was relatively resistant to vanadate, nitrate, and N,N'-dicyclohexylcarbodiimide. The genes encoding the subunits for the F1F(O)-ATPase from A. ferrooxidans NASF-1 were cloned as three overlapping fragments by PCR cloning and sequenced. The molecular masses of the alpha, beta, gamma, delta, and epsilon subunits of the F1 portion were deduced from the amino acid sequences to be 55.5, 50.5, 33.1, 19.2, and 15.1 kDa, respectively.
Collapse
Affiliation(s)
- Satoshi Wakai
- Department of Botany and Microbiology, Division of Bioscience, Graduate School of Natural Science and Technology, Okayama University, Tsushima-Naka, Japan
| | | | | | | | | |
Collapse
|
3
|
Lodeyro AF, Calcaterra NB, Roveri OA. Inhibition of steady-state mitochondrial ATP synthesis by bicarbonate, an activating anion of ATP hydrolysis. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1506:236-43. [PMID: 11779557 DOI: 10.1016/s0005-2728(01)00221-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Bicarbonate, an activating anion of ATP hydrolysis, inhibited ATP synthesis coupled to succinate oxidation in beef heart submitochondrial particles but diminished the lag time and increased the steady-state velocity of the (32)Pi-ATP exchange reaction. The latter effects exclude the possibility that bicarbonate is inducing an intrinsic uncoupling between ATP hydrolysis and proton translocation at the level of F(1)F(o) ATPase. The inhibition of ATP synthesis was competitive with respect to ADP at low fixed [Pi], mixed at high [Pi] and non-competitive towards Pi at any fixed [ADP]. From these results we can conclude that (i) bicarbonate does not bind to a Pi site in the mitochondrial F(1); (ii) it competes with the binding of ADP to a low-affinity site, likely the low-affinity non-catalytic nucleotide binding site. It is postulated that bicarbonate stimulates ATP hydrolysis and inhibits ATP synthesis by modulating the relative affinities of the catalytic site for ATP and ADP.
Collapse
Affiliation(s)
- A F Lodeyro
- Departamento de Química Biológica, Area Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, (S2002LRK) Rosario, Argentina
| | | | | |
Collapse
|
4
|
Müller ML, Jensen M, Taiz L. The vacuolar H+-ATPase of lemon fruits is regulated by variable H+/ATP coupling and slip. J Biol Chem 1999; 274:10706-16. [PMID: 10196141 DOI: 10.1074/jbc.274.16.10706] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Lemon fruit tonoplasts, unlike those of seedling epicotyls, contain nitrate-insensitive H+-ATPase activity (Müller, M. L., Irkens-Kiesecker, U., Rubinstein, B., and Taiz, L. (1996) J. Biol. Chem. 271, 1916-1924). However, the degree of nitrate-insensitivity fluctuates during the course of the year with a seasonal frequency. Nitrate uncouples H+ pumping from ATP hydrolysis both in epicotyls and in nitrate-sensitive fruit V-ATPases. Neither bafilomycin nor oxidation cause uncoupling. The initial rate H+/ATP coupling ratios of epicotyl and the nitrate-sensitive fruit proton pumping activities are the same. However, the H+/ATP coupling ratio of the nitrate-insensitive fruit H+ pumping activity is lower than that of nitrate-sensitive and epicotyl V-ATPases. Several properties of the nitrate-insensitive H+-ATPase of the fruit indicate that it is a modified V-ATPase rather than a P-ATPase: 1) insensitivity to low concentrations of vanadate; 2) it is initially strongly uncoupled by nitrate, but regains coupling as catalysis proceeds; 3) both the nitrate-sensitive and nitrate-insensitive fruit H+-pumps have identical Km values for MgATP, and show similar pH-dependent slip and proton leakage rates. We conclude that the ability of the juice sac V-ATPase to build up steep pH gradients involves three factors: variable coupling, i.e. the ability to regain coupling under conditions that initially induce uncoupling; a low pH-dependent slip rate; the low proton permeability of the membrane.
Collapse
Affiliation(s)
- M L Müller
- Biology Department, Sinsheimer Laboratories, University of California, Santa Cruz, California 95064, USA
| | | | | |
Collapse
|
5
|
Vasilyeva E, Forgac M. Interaction of the clathrin-coated vesicle V-ATPase with ADP and sodium azide. J Biol Chem 1998; 273:23823-9. [PMID: 9726993 DOI: 10.1074/jbc.273.37.23823] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The kinetics of adenosine triphosphate (ATP)-dependent proton transport into clathrin-coated vesicles from bovine brain have been studied. We observe that the vacuolar proton-translocating ATPase (V-ATPase) from clathrin-coated vesicles is subject to two different types of inhibition by ADP. The first is competitive inhibition with respect to ATP, with a Ki for ADP of 11 microM. The second type of inhibition occurs after preincubation of the V-ATPase in the presence of ADP and Mg2+, which results in inhibition of the initial rate of proton transport followed by reactivation over the course of several minutes. The second effect is observed at ADP concentrations as low as 0.1-0.2 microM, indicating that a high affinity inhibitory complex is formed between ADP and the V-ATPase and is only slowly dissociated after the addition of ATP. We have further investigated the effect of sodium azide, an inhibitor of the F-ATPases that has been shown to stabilize an inactive complex between ADP and the F1-F0-ATP synthase (F-ATPase). We observed that azide inhibited ATP-dependent proton transport by the purified, reconstituted V-ATPase with a K0.5 of 0.2-0.4 mM but had no effect on ATP hydrolysis. Azide was shown not to increase the passive proton permeability of reconstituted vesicles and did not stimulate ATP hydrolysis by the reconstituted enzyme, in contrast with CCCP, which both abolished the proton gradient and stimulated hydrolysis. Thus, azide does not appear to act as a simple uncoupler of proton transport and ATP hydrolysis. Rather, azide may have some more direct effect on V-ATPase activity. Possible mechanisms by which azide could exert this effect on the V-ATPase and the contrasting effects of azide on the F- and V-ATPases are discussed.
Collapse
Affiliation(s)
- E Vasilyeva
- Department of Cellular and Molecular Physiology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | | |
Collapse
|
6
|
Yokoyama K, Muneyuki E, Amano T, Mizutani S, Yoshida M, Ishida M, Ohkuma S. V-ATPase of Thermus thermophilus is inactivated during ATP hydrolysis but can synthesize ATP. J Biol Chem 1998; 273:20504-10. [PMID: 9685406 DOI: 10.1074/jbc.273.32.20504] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The ATP hydrolysis of the V1-ATPase of Thermus thermophilus have been investigated with an ATP-regenerating system at 25 degreesC. The ratio of ATPase activity to ATP concentration ranged from 40 to 4000 microM; from this, an apparent Km of 240 +/- 24 microM and a Vmax of 5.2 +/- 0.5 units/mg were deduced. An apparent negative cooperativity, which is frequently observed in case of F1-ATPases, was not observed for the V1-ATPase. Interestingly, the rate of hydrolysis decayed rapidly during ATP hydrolysis, and the ATP hydrolysis finally stopped. Furthermore, the inactivation of the V1-ATPase was attained by a prior incubation with ADP-Mg. The inactivated V1-ATPase contained 1.5 mol of ADP/mol of enzyme. Difference absorption spectra generated from addition of ATP-Mg to the isolated subunits revealed that the A subunit can bind ATP-Mg, whereas the B subunit cannot. The inability to bind ATP-Mg is consistent with the absence of Walker motifs in the B subunit. These results indicate that the inactivation of the V1-ATPase during ATP hydrolysis is caused by entrapping inhibitory ADP-Mg in a catalytic site. Light-driven ATP synthesis by bacteriorhodopsin-VoV1-ATPase proteoliposomes was observed, and the rate of ATP synthesis was approximately constant. ATP synthesis occurred in the presence of an ADP-Mg of which concentration was high enough to induce complete inactivation of ATP hydrolysis of VoV1-ATPase. This result indicates that the ADP-Mg-inhibited form is not produced in ATP synthesis reaction.
Collapse
Affiliation(s)
- K Yokoyama
- Department of Biochemistry, Faculty of Pharmaceutical Science, Kanazawa University, Takara-machi 13-1, Kanazawa, Ishikawa 920, Japan.
| | | | | | | | | | | | | |
Collapse
|
7
|
Oluwatosin YE, Kane PM. Mutations in the yeast KEX2 gene cause a Vma(-)-like phenotype: a possible role for the Kex2 endoprotease in vacuolar acidification. Mol Cell Biol 1998; 18:1534-43. [PMID: 9488470 PMCID: PMC108868 DOI: 10.1128/mcb.18.3.1534] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Mutants of Saccharomyces cerevisiae that lack vacuolar proton-translocating ATPase (V-ATPase) activity show a well-defined set of Vma- (stands for vacuolar membrane ATPase activity) phenotypes that include pH-conditional growth, increased calcium sensitivity, and the inability to grow on nonfermentable carbon sources. By screening based on these phenotypes and the inability of vma mutants to accumulate the lysosomotropic dye quinacrine in their vacuoles, five new vma complementation groups (vma41 to vma45) were identified. The VMA45 gene was cloned by complementation of the pH-conditional growth of the vma45-1 mutant strain and shown to be allelic to the previously characterized KEX2 gene, which encodes a serine endoprotease localized to the late Golgi compartment. Both vma45-1 mutants and kex2 null mutants exhibit the full range of Vma- growth phenotypes and show no vacuolar accumulation of quinacrine, indicating loss of vacuolar acidification in vivo. However, immunoprecipitation of the V-ATPase from both strains under nondenaturing conditions revealed no defect in assembly of the enzyme, vacuolar vesicles isolated from a kex2 null mutant showed levels of V-ATPase activity and proton pumping comparable to those of wild-type cells, and the V-ATPase complex purified from kex2 null mutants was structurally indistinguishable from that of wild-type cells. The results suggest that kex2 mutations exert an inhibitory effect on the V-ATPase in the intact cell but that the ATPase is present in the mutant strains in a fully assembled state, potentially capable of full enzymatic activity. This is the first time a mutation of this type has been identified.
Collapse
Affiliation(s)
- Y E Oluwatosin
- Department of Biochemistry and Molecular Biology, SUNY Health Science Center at Syracuse, New York 13210, USA
| | | |
Collapse
|
8
|
Abstract
The vacuolar (H+)-ATPases (or V-ATPases) function in the acidification of intracellular compartments in eukaryotic cells. The V-ATPases are multisubunit complexes composed of two functional domains. The peripheral V1 domain, a 500-kDa complex responsible for ATP hydrolysis, contains at least eight different subunits of molecular weight 70-13 (subunits A-H). The integral V0 domain, a 250-kDa complex, functions in proton translocation and contains at least five different subunits of molecular weight 100-17 (subunits a-d). Biochemical and genetic analysis has been used to identify subunits and residues involved in nucleotide binding and hydrolysis, proton translocation, and coupling of these activities. Several mechanisms have been implicated in the regulation of vacuolar acidification in vivo, including control of pump density, regulation of assembly of V1 and V0 domains, disulfide bond formation, activator or inhibitor proteins, and regulation of counterion conductance. Recent information concerning targeting and regulation of V-ATPases has also been obtained.
Collapse
Affiliation(s)
- T H Stevens
- Institute of Molecular Biology, University of Oregon, Eugene 97403-1229, USA.
| | | |
Collapse
|
9
|
MacLeod KJ, Vasilyeva E, Baleja JD, Forgac M. Mutational analysis of the nucleotide binding sites of the yeast vacuolar proton-translocating ATPase. J Biol Chem 1998; 273:150-6. [PMID: 9417059 DOI: 10.1074/jbc.273.1.150] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
To further define the structure of the nucleotide binding sites on the vacuolar proton-translocating ATPase (V-ATPase), the role of aromatic residues at the catalytic sites was probed using site-directed mutagenesis of the VMA1 gene that encodes the A subunit in yeast. Substitutions were made at three positions (Phe452, Tyr532, and Phe538) that correspond to residues observed in the crystal structure of the homologous beta subunit of the bovine mitochondrial F-ATPase to be in proximity to the adenine ring of bound ATP. Although conservative substitutions at these positions had relatively little effect on V-ATPase activity, replacement with nonaromatic residues (such as alanine or serine) caused either a complete loss of activity (F452A) or a decrease in the affinity for ATP (Y532S and F538A). The F452A mutation also appeared to reduce stability of the V-ATPase complex. These results suggest that aromatic or hydrophobic residues at these positions are essential to maintain activity and/or high affinity binding to the catalytic sites of the V-ATPase. Site-directed mutations were also made at residues (Phe479 and Arg483) that are postulated to be contributed by the A subunit to the noncatalytic nucleotide binding sites. Generally, substitutions at these positions led to decreases in activity ranging from 30 to 70% relative to wild type as well as modest decreases in Km for ATP. Interestingly, the R483E and R483Q mutants showed a time-dependent increase in ATPase activity following addition of ATP, suggesting that events at the noncatalytic sites may modulate the catalytic activity of the enzyme.
Collapse
Affiliation(s)
- K J MacLeod
- Departments of Cellular and Molecular Physiology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | | | | | | |
Collapse
|
10
|
Oluwatosin YE, Kane PM. Mutations in the CYS4 gene provide evidence for regulation of the yeast vacuolar H+-ATPase by oxidation and reduction in vivo. J Biol Chem 1997; 272:28149-57. [PMID: 9346971 DOI: 10.1074/jbc.272.44.28149] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The vma41-1 mutant was identified in a genetic screen designed to identify novel genes required for vacuolar H+-ATPase activity in Saccharomyces cerevisiae. The VMA41 gene was cloned and shown to be allelic to the CYS4 gene. The CYS4 gene encodes the first enzyme in cysteine biosynthesis, and in addition to cysteine auxotrophy, cys4 mutants have much lower levels of intracellular glutathione than wild-type cells. cys4 mutants display the pH-dependent growth phenotypes characteristic of vma mutants and are unable to accumulate quinacrine in the vacuole, indicating loss of vacuolar acidification in vivo. The vacuolar proton-translocating ATPases (V-ATPase) is synthesized at normal levels and assembled at the vacuolar membrane in cys4 mutants, but its specific activity is reduced (47% of wild type) and the activity is unstable. Addition of reduced glutathione to the growth medium complements the pH-dependent growth phenotype, partially restores vacuolar acidification, and restores wild type levels of ATPase activity. The CYS4 gene was deleted in a strain in which the catalytic site cysteine residue implicated in oxidative inhibition of the yeast V-ATPase has been mutagenized (Liu, Q., Leng, X.-H., Newman, P., Vasilyeva, E., Kane, P. M., and Forgac, M. (1997) J. Biol. Chem. 272, 11750-11756). This catalytic site point mutation suppresses the effects of the cys4 mutation. The data indicate that the acidification defect of cys4 mutants arises from inactivation of the vacuolar ATPase in the less reducing cytosol resulting from loss of Cys4p activity and provide the first evidence for the modulation of V-ATPase activity by the redox state of the environment in vivo.
Collapse
Affiliation(s)
- Y E Oluwatosin
- Department of Biochemistry and Molecular Biology, State University of New York Health Science Center at Syracuse, Syracuse, New York 13210, USA
| | | |
Collapse
|
11
|
Liu J, Kane PM. Mutational analysis of the catalytic subunit of the yeast vacuolar proton-translocating ATPase. Biochemistry 1996; 35:10938-48. [PMID: 8718887 DOI: 10.1021/bi9608065] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
In order to generate a set of tools for probing structure-function relationships in the catalytic subunit of the yeast vacuolar H(+)-ATPase, the gene encoding this subunit (VMA1) was randomly mutagenized. Mutant plasmids unable to complement the growth defects of yeast cells lacking an intact VMA1 gene were isolated and sequenced. Eight different mutant alleles of VMA1 were examined for levels of the catalytic subunit and other subunits of the enzyme, assembly of the ATPase complex, targeting to the vacuolar membrane, and concanamycin A-sensitive ATPase activity. The mutations S811P and E740D resulted in mutant enzymes that assembled fully but were incapable of ATP hydrolysis, and the mutation E785G generated a similar but somewhat less severe phenotype (17% of the ATPase activity of wild-type vacuoles). When MgATP-dependent stripping of the peripheral subunits by 100 mM KNO3 was examined in these three mutants, only the E785G mutant exhibited significant stripping, suggesting that ATP hydrolysis, even at relatively low levels, generates a conformation susceptible to dissociation. Plasmids containing the mutations E751G and F752S partially complemented the growth defects and resulted in partial defects in ATPase activity that appear to reflect reduced catalytic efficiency. Partial defects in growth and ATPase activity were also seen in the Y797H mutant, but this mutation caused an assembly defect manifested as a preferential loss of two of the peripheral subunits of the enzyme. The phenotypes of these mutants are interpreted in the context of homologies with other V-type and F-type ATPases.
Collapse
Affiliation(s)
- J Liu
- Department of Biochemistry and Molecular Biology, State University of New York, Syracuse 13210, USA
| | | |
Collapse
|
12
|
Parra KJ, Kane PM. Wild-type and mutant vacuolar membranes support pH-dependent reassembly of the yeast vacuolar H+-ATPase in vitro. J Biol Chem 1996; 271:19592-8. [PMID: 8702654 DOI: 10.1074/jbc.271.32.19592] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Treatment of the yeast vacuolar proton-translocating ATPase (H+-ATPase) with 300 mM KI in the presence of 5 mM MgATP results in a 90% inhibition of ATPase activity accompanied by removal of at least five of the peripheral subunits of the enzyme from the membrane. Functional reassembly of the enzyme, as indicated by reattachment of the peripheral subunits and a partial (30-70%) recovery of ATPase activity, could be achieved by dialysis of the stripped wild-type membranes to remove the KI and MgATP, but proved to be strongly pH-dependent, with optimal reassembly and recovery of activity occurring after dialysis at pH 5.5. Vacuolar membranes isolated from vma2Delta mutants, which lack one of the peripheral subunits of the enzyme, do not contain any of the peripheral subunits but are shown to contain assembled membrane (Vo) complexes. The vma2Delta mutant vacuoles are demonstrated to be competent for attachment of KI-stripped peripheral subunits and reactivation of ATPase activity. The results indicate that previously assembled Vo complexes are capable of inducing assembly of the peripheral subunits, both with each other and with the membrane subunits, and of activating the ATPase activity that resides in the peripheral subunits in a pH-dependent manner.
Collapse
Affiliation(s)
- K J Parra
- Department of Biochemistry and Molecular Biology, State University of New York Health Science Center at Syracuse, Syracuse, New York 13210, USA
| | | |
Collapse
|
13
|
Venema K, Palmgren MG. Metabolic modulation of transport coupling ratio in yeast plasma membrane H(+)-ATPase. J Biol Chem 1995; 270:19659-67. [PMID: 7642655 DOI: 10.1074/jbc.270.33.19659] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The plasma membrane proton pump (H(+)-ATPase) of yeast energizes solute uptake by secondary transporters and regulates cytoplasmic pH. The addition of glucose to yeast cells stimulates proton efflux mediated by the H(+)- ATPase. A > 50-fold increase in proton extrusion from yeast cells is observed in vivo, whereas the ATPase activity of purified plasma membranes is increased maximally 8-fold after glucose treatment (Serrano, R. (1983) FEBS Lett. 156, 11-14). The low capacity of yeast cells for proton extrusion in the absence of glucose can be explained by the finding that, in H(+)-ATPase isolated from glucose-starved cells, ATP hydrolysis is essentially uncoupled from proton pumping. The number of protons transported per ATP hydrolyzed is significantly increased after glucose activation. We suggest that intrinsic uncoupling is an important mechanism for regulation of pump activity.
Collapse
Affiliation(s)
- K Venema
- Department of Plant Biology, Royal Veterinary and Agricultural University, Frederiksberg, Copenhagen, Denmark
| | | |
Collapse
|
14
|
Dschida WJ, Bowman BJ. The vacuolar ATPase: sulfite stabilization and the mechanism of nitrate inactivation. J Biol Chem 1995; 270:1557-63. [PMID: 7829484 DOI: 10.1074/jbc.270.4.1557] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Using vacuolar membranes from Neurospora crassa, we observed that sulfite prevented the loss of vacuolar ATPase activity that otherwise occurred during 36 h at room temperature. Sulfite neither activated nor changed the kinetic behavior of the enzyme. Further, in the presence of sulfite, the vacuolar ATPase was not inhibited by nitrate. We tested the hypothesis that sulfite acts as a reducing agent to stabilize the enzyme, while nitrate acts as an oxidizing agent, inhibiting the enzyme by promoting the formation of disulfide bonds. All reducing agents tested, dithionite, selenite, thiophosphate, dithiothreitol and glutathione, prevented the loss of ATPase activity. On the other hand, all oxidizing agents tested, bromate, iodate, arsenite, perchlorate, and hydrogen peroxide, were potent inhibitors of ATPase activity. The inhibitory effect of the oxidizing agents was specific for the vacuolar ATPase. The mitochondrial ATPase, assayed under identical conditions, was not inhibited by any of the oxidizing agents. Analysis of proteins with two-dimensional gel electrophoresis indicated that nitrate can promote the formation of disufide bonds between proteins in the vacuolar membrane. These data suggest a mechanism to explain why nitrate specifically inhibits vacuolar ATPases, and they support the proposal by Feng and Forgac (Feng, Y., and Forgac, M. (1994) J. Biol. Chem. 269, 13244-13230) that oxidation and reduction of critical cysteine residues may regulate the activity of vacuolar ATPases in vivo.
Collapse
Affiliation(s)
- W J Dschida
- Department of Biology, Sinsheimer Laboratories, University of California, Santa Cruz 95064
| | | |
Collapse
|
15
|
Abstract
ATP synthase is regulated so as to prevent futile hydrolysis of ATP when the transmembrane proton electrochemical gradient, delta mu H+, falls. Mitochondria and chloroplasts have different mechanisms for inhibition of ATP synthase: by binding an inhibitor protein, and by stabilization of the ADP-inhibited state by making an intramolecular disulphide bond, respectively. The recently determined structure of bovine F1-ATPase is locked in a conformation that probably represents the ADP-inhibited state of the enzyme.
Collapse
Affiliation(s)
- J E Walker
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| |
Collapse
|
16
|
Taiz L, Nelson H, Maggert K, Morgan L, Yatabe B, Taiz SL, Rubinstein B, Nelson N. Functional analysis of conserved cysteine residues in the catalytic subunit of the yeast vacuolar H(+)-ATPase. BIOCHIMICA ET BIOPHYSICA ACTA 1994; 1194:329-34. [PMID: 7918545 DOI: 10.1016/0005-2736(94)90315-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The A subunit of the yeast vacuolar ATPase contains three highly conserved cysteines: Cys-261, Cys-284, and Cys-538. Cys-261 is located within the nucleotide-binding P-loop. Each of the conserved cysteines, and one nonconserved cysteine, Cys-254, were altered to serine by site-directed mutagenesis, and the effects on growth at pH 7.5 were determined. The Cys-254-->Ser, Cys-261-->Ser and the double mutants all grew at pH 7.5 and contained nitrate- and bafilomycin-sensitive ATPase activity. However, the ATPase activities of the Cys-261-->Ser and the double mutants were insensitive to the sulfhydryl group inhibitor, N-ethylmaleimide, demonstrating that Cys-261 is the site of inhibition by N-ethylmaleimide. Changing either Cys-284 or Cys-538 to serine prevented growth at pH 7.5. Cys-284 and Cys-538 thus appear to be essential cysteine residues which are required either for assembly or catalysis.
Collapse
Affiliation(s)
- L Taiz
- Biology Department, Sinsheimer Laboratories, University of California, Santa Cruz 95064
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Mueller DM, Indyk V, McGill L. ATPase kinetics for wild-type Saccharomyces cerevisiae F1-ATPase and F1-ATPase with the beta-subunit Thr197-->Ser mutation. EUROPEAN JOURNAL OF BIOCHEMISTRY 1994; 222:991-9. [PMID: 8026510 DOI: 10.1111/j.1432-1033.1994.tb18950.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Unisite ATPase kinetic constants were measured for wild-type yeast Saccharomyces cerevisiae F1-ATPase and F1-ATPase with the Thr197-->Ser mutation in the beta subunit. Under unisite conditions, the concentration of ATP is greater than that of the enzyme, ATP hydrolysis is slow and the affinity of the enzyme for ATP and ADP is high. The Thr197-->Ser mutation in the yeast F1-ATPase increases the specific activity of ATP hydrolysis threefold and makes the enzyme much less sensitive to azide and oxyanions [Mueller, D. M. (1989) J. Biol. Chem. 264, 16552-16556]. A unifying hypothesis is that the affinity of F1-ATPase for ADP is altered by azide, oxyanions and the Thr197-->Ser mutation. To address this hypothesis, kinetic and thermodynamic constants were measured for the wild-type and mutant enzymes in the absence and presence of azide and oxyanions. The results indicate that sulfite and azide do not significantly alter unisite thermodynamic binding constants of either enzyme for ADP at the catalytic site. The mutation Thr197-->Ser has little effect on the binding constant for ADP, or on other unisite kinetic constants of the enzyme, in the presence or absence of azide or oxyanions. However, the binding of ADP to the enzyme was affected by oxyanions and the Thr197-->Ser mutation as measured by determining the KiADP values for multisite ATPase activity (saturating ATP). The Ki for ADP on ATPase activity was measured for the wild-type and mutant enzymes in the presence and absence of sulfite under multisite conditions. Sulfite increases the KiADP values for ATP hydrolysis under multisite conditions approximately threefold for the wild-type and mutant enzymes and the Thr197-->Ser mutation increases KiADP ninefold. The effect of sulfite on KiADP is additive to the effect of the Thr197-->Ser mutation, suggesting that these are distinct effects. These results indicate that the effects of azide, oxyanions, and the Thr197-->Ser mutation on the biochemistry of F1-ATPase are limited primarily to multisite conditions. Both sulfite and the Thr197-->Ser mutation decrease the affinity of the enzyme for ADP, as measured by the increase in the Ki values. Furthermore, the mechanisms of activation by sulfite and the Thr197-->Ser mutations are different. This difference occurs despite their common biochemical consequences on the apparent affinity for ADP.
Collapse
Affiliation(s)
- D M Mueller
- Chicago Medical School, Department of Biological Chemistry, IL 60064
| | | | | |
Collapse
|