1
|
OverFlap PCR: A reliable approach for generating plasmid DNA libraries containing random sequences without a template bias. PLoS One 2022; 17:e0262968. [PMID: 35939421 PMCID: PMC9359533 DOI: 10.1371/journal.pone.0262968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 07/17/2022] [Indexed: 11/19/2022] Open
Abstract
Over the decades, practical biotechnology researchers have aimed to improve naturally occurring proteins and create novel ones. It is widely recognized that coupling protein sequence randomization with various effect screening methodologies is one of the most powerful techniques for quickly, efficiently, and purposefully acquiring these desired improvements. Over the years, considerable advancements have been made in this field. However, developing PCR-based or template-guided methodologies has been hampered by resultant template sequence biases. Here, we present a novel whole plasmid amplification-based approach, which we named OverFlap PCR, for randomizing virtually any region of plasmid DNA without introducing a template sequence bias.
Collapse
|
2
|
Divergent Effects of Peptidoglycan Carboxypeptidase DacA on Intrinsic β-Lactam and Vancomycin Resistance. Microbiol Spectr 2022; 10:e0173422. [PMID: 35758683 PMCID: PMC9430164 DOI: 10.1128/spectrum.01734-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Vancomycin and β-lactams are clinically important antibiotics that inhibit the formation of peptidoglycan cross-links, but their binding targets are different. The binding target of vancomycin is d-alanine-d-alanine (d-Ala-d-Ala), whereas that of β-lactam is penicillin-binding proteins (PBPs). In this study, we revealed the divergent effects of peptidoglycan (PG) carboxypeptidase DacA on vancomycin and β-lactam resistance in Escherichia coli and Bacillus subtilis. The deletion of DacA induced sensitivity to most β-lactams, whereas it induced strong resistance toward vancomycin. Notably, both phenotypes did not have a strong association with ld-transpeptidases, which are necessary for the formation of PG 3-3 cross-links and covalent bonds between PG and an Lpp outer membrane (OM) lipoprotein. Vancomycin resistance was induced by an increased amount of decoy d-Ala-d-Ala residues within PG, whereas β-lactam sensitivity was associated with physical interactions between DacA and PBPs. The presence of an OM permeability barrier strongly strengthened vancomycin resistance, but it significantly weakened β-lactam sensitivity. Collectively, our results revealed two distinct functions of DacA, which involved inverse modulation of bacterial resistance to clinically important antibiotics, β-lactams and vancomycin, and presented evidence for a link between DacA and PBPs. IMPORTANCE Bacterial PG hydrolases play important roles in various aspects of bacterial physiology, including cytokinesis, PG synthesis, quality control of PG, PG recycling, and stress adaptation. Of all the PG hydrolases, the role of PG carboxypeptidases is poorly understood, especially regarding their impacts on antibiotic resistance. We have revealed two distinct functions of PG carboxypeptidase DacA with respect to antibiotic resistance. The deletion of DacA led to sensitivity to most β-lactams, while it caused strong resistance to vancomycin. Our study provides novel insights into the roles of PG carboxypeptidases in the regulation of antibiotic resistance and a potential clue for the development of a drug to improve the clinical efficacy of β-lactam antibiotics.
Collapse
|
3
|
Pandey SD, Jain D, Kumar N, Adhikary A, Kumar N G, Ghosh AS. MSMEG_2432 of Mycobacterium smegmatis mc 2155 is a dual function enzyme that exhibits DD-carboxypeptidase and β-lactamase activities. MICROBIOLOGY-SGM 2020; 166:546-553. [PMID: 32301689 DOI: 10.1099/mic.0.000902] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Mycobacterial peptidoglycan (PG) is an unsolved puzzle due to its complex structure and involvement of multiple enzymes in the process of its remodelling. dd-Carboxypeptidases are low molecular mass penicillin-binding proteins (LMM-PBPs) that catalyzes the cleavage of terminal d-Ala of muramyl pentapeptide branches and thereby helps in the PG remodelling process. Here, we have assigned the function of a putative LMM-PBP, MSMEG_2432 of Mycobacterium smegmatis, by showing that it exhibits both dd-CPase and β-lactamase activities. Like conventional dd-CPase (PBP5 from E. coli), upon ectopic complementation in a deformed seven PBP deletion mutant of E. coli, MSMEG_2432 has manifested its ability to restore ~75 % of the cell population to their normal rod shape. Further, in vitrodd-CPase assay has confirmed its ability to release terminal d-Ala from the synthetic tripeptide and the peptidoglycan mimetic pentapeptide substrates ending with d-Ala-d-Ala. Also, elevated resistance against penicillins and cephalosporins upon ectopic expression of MSMEG_2432 suggests the presence of β-lactamase activity, which is further confirmed in vitro through nitrocefin hydrolysis assay. Moreover, it is found apparent that D169A substitution in MSMEG_2432 influences both of its in vivo and in vitrodd-CPase and β-lactamase activities. Thus, we infer that MSMEG_2432 is a dual function enzyme that possesses both dd-CPase and β-lactamase activities.
Collapse
Affiliation(s)
- Satya Deo Pandey
- University of Kansas Medical Center, USA.,Department of Biotechnology, Indian Institute of Technology, Kharagpur, West Bengal PIN-721302, India
| | - Diamond Jain
- Department of Biotechnology, Indian Institute of Technology, Kharagpur, West Bengal PIN-721302, India
| | - Neeraj Kumar
- Centre for DNA fingerprinting & Diagnostics, India.,Department of Biotechnology, Indian Institute of Technology, Kharagpur, West Bengal PIN-721302, India
| | - Anwesha Adhikary
- Department of Biotechnology, Indian Institute of Technology, Kharagpur, West Bengal PIN-721302, India
| | - Ganesh Kumar N
- Department of Biotechnology, Indian Institute of Technology, Kharagpur, West Bengal PIN-721302, India
| | - Anindya S Ghosh
- Department of Biotechnology, Indian Institute of Technology, Kharagpur, West Bengal PIN-721302, India
| |
Collapse
|
4
|
Ealand CS, Machowski EE, Kana BD. β-lactam resistance: The role of low molecular weight penicillin binding proteins, β-lactamases and ld-transpeptidases in bacteria associated with respiratory tract infections. IUBMB Life 2018; 70:855-868. [PMID: 29717815 DOI: 10.1002/iub.1761] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 04/04/2018] [Indexed: 02/02/2023]
Abstract
Disruption of peptidoglycan (PG) biosynthesis in the bacterial cell wall by β-lactam antibiotics has transformed therapeutic options for bacterial infections. These antibiotics target the transpeptidase domains in penicillin binding proteins (PBPs), which can be classified into high and low molecular weight (LMW) counterparts. While the essentiality of the former has been extensively demonstrated, the physiological roles of LMW PBPs remain poorly understood. Herein, we review the function of LMW PBPs, β-lactamases and ld-transpeptidases (Ldts) in pathogens associated with respiratory tract infections. More specifically, we explore their roles in mediating β-lactam resistance. Using a comparative genomics approach, we identified a high degree of genetic redundancy for LMW PBPs which retain the motifs, SxxN, SxN and KTG required for catalytic activity. Differences in domain architecture suggest distinct physiological roles, possibly related to bacterial cell cycle and/or adaptation to various environmental conditions. Many of the LMW PBPs play an important role in β-lactam resistance either through mutation or variation in abundance. In all of the bacterial genomes assessed, at least one β-lactamase homologue is present, suggesting that enzymatic degradation of β-lactams is a highly conserved resistance mechanism. Furthermore, the presence of Ldt homologues in the majority of species surveyed suggests that alternative PG crosslinking may further mediate β-lactam drug resistance. A deeper understanding of the interplay between these different mechanisms of β-lactam resistance will provide a framework for new therapeutics, which are urgently required given the rapid emergence of antimicrobial resistance. © 2018 IUBMB Life, 70(9):855-868, 2018.
Collapse
Affiliation(s)
- Christopher S Ealand
- DST/NRF Centre of Excellence for Biomedical TB Research, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand and the National Health Laboratory Service, Johannesburg, South Africa
| | - Edith E Machowski
- DST/NRF Centre of Excellence for Biomedical TB Research, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand and the National Health Laboratory Service, Johannesburg, South Africa
| | - Bavesh D Kana
- DST/NRF Centre of Excellence for Biomedical TB Research, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand and the National Health Laboratory Service, Johannesburg, South Africa.,MRC-CAPRISA HIV-TB Pathogenesis and Treatment Research Unit, Centre for the AIDS Programme of Research in South Africa, CAPRISA, Durban, South Africa
| |
Collapse
|
5
|
Kar D, Pandey SD, Mallick S, Dutta M, Ghosh AS. Substitution of Alanine at Position 184 with Glutamic Acid in Escherichia coli PBP5 Ω-Like Loop Introduces a Moderate Cephalosporinase Activity. Protein J 2018; 37:122-131. [DOI: 10.1007/s10930-018-9765-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
6
|
A single amino acid substitution in the Ω-like loop of E. coli PBP5 disrupts its ability to maintain cell shape and intrinsic beta-lactam resistance. Microbiology (Reading) 2015; 161:895-902. [DOI: 10.1099/mic.0.000052] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 02/03/2015] [Indexed: 11/18/2022] Open
|
7
|
Bansal A, Kar D, Murugan RA, Mallick S, Dutta M, Pandey SD, Chowdhury C, Ghosh AS. A putative low-molecular-mass penicillin-binding protein (PBP) of Mycobacterium smegmatis exhibits prominent physiological characteristics of DD-carboxypeptidase and beta-lactamase. MICROBIOLOGY-SGM 2015; 161:1081-1091. [PMID: 25750082 DOI: 10.1099/mic.0.000074] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 03/04/2015] [Indexed: 11/18/2022]
Abstract
DD-carboxypeptidases (DD-CPases) are low-molecular-mass (LMM) penicillin-binding proteins (PBPs) that are mainly involved in peptidoglycan remodelling, but little is known about the dd-CPases of mycobacteria. In this study, a putative DD-CPase of Mycobacterium smegmatis, MSMEG_2433 is characterized. The gene for the membrane-bound form of MSMEG_2433 was cloned and expressed in Escherichia coli in its active form, as revealed by its ability to bind to the Bocillin-FL (fluorescent penicillin). Interestingly, in vivo expression of MSMEG_2433 could restore the cell shape oddities of the septuple PBP mutant of E. coli, which was a prominent physiological characteristic of DD-CPases. Moreover, expression of MSMEG_2433 in trans elevated beta-lactam resistance in PBP deletion mutants (ΔdacAdacC) of E. coli, strengthening its physiology as a dd-CPase. To confirm the biochemical reason behind such physiological behaviours, a soluble form of MSMEG_2433 (sMSMEG_2433) was created, expressed and purified. In agreement with the observed physiological phenomena, sMSMEG_2433 exhibited DD-CPase activity against artificial and peptidoglycan-mimetic DD-CPase substrates. To our surprise, enzymic analyses of MSMEG_2433 revealed efficient deacylation for beta-lactam substrates at physiological pH, which is a unique characteristic of beta-lactamases. In addition to the MSMEG_2433 active site that favours dd-CPase activity, in silico analyses also predicted the presence of an omega-loop-like region in MSMEG_2433, which is an important determinant of its beta-lactamase activity. Based on the in vitro, in vivo and in silico studies, we conclude that MSMEG_2433 is a dual enzyme, possessing both DD-CPase and beta-lactamase activities.
Collapse
Affiliation(s)
- Ankita Bansal
- Department of Biotechnology, Indian Institute of Technology, Kharagpur, West Bengal PIN-721302, India
| | - Debasish Kar
- Department of Biotechnology, Indian Institute of Technology, Kharagpur, West Bengal PIN-721302, India
| | - Rajagopal A Murugan
- Department of Biotechnology, Indian Institute of Technology, Kharagpur, West Bengal PIN-721302, India
| | - Sathi Mallick
- Department of Biotechnology, Indian Institute of Technology, Kharagpur, West Bengal PIN-721302, India
| | - Mouparna Dutta
- Department of Biotechnology, Indian Institute of Technology, Kharagpur, West Bengal PIN-721302, India
| | - Satya Deo Pandey
- Department of Biotechnology, Indian Institute of Technology, Kharagpur, West Bengal PIN-721302, India
| | - Chiranjit Chowdhury
- Department of Biotechnology, Indian Institute of Technology, Kharagpur, West Bengal PIN-721302, India
| | - Anindya S Ghosh
- Department of Biotechnology, Indian Institute of Technology, Kharagpur, West Bengal PIN-721302, India
| |
Collapse
|
8
|
Chowdhury C, Kar D, Dutta M, Kumar A, Ghosh AS. Moderate deacylation efficiency of DacD explains its ability to partially restore beta-lactam resistance in Escherichia coli PBP5 mutant. FEMS Microbiol Lett 2012; 337:73-80. [PMID: 22978571 DOI: 10.1111/1574-6968.12009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Revised: 08/29/2012] [Accepted: 09/10/2012] [Indexed: 11/28/2022] Open
Abstract
Of the five dd-carboxypeptidases in Escherichia coli, only PBP5 demonstrates its physiological significance by maintaining cell shape and intrinsic beta-lactam resistance. DacD can partially compensate for the lost beta-lactam resistance in PBP5 mutant, although its biochemical reason is unclear. To understand the mechanism(s) underlying such behaviour, we constructed soluble DacD (sDacD) and compared its biophysical and biochemical properties with those of sPBP5, in vitro. Unlike sPBP6, sDacD can deacylate Bocillin significantly, which is very similar to sPBP5. sDacD shows weak dd-carboxypeptidase activity, although lower than that of sPBP5. Bioinformatics analyses reveal a similar architecture of sPBP5 and sDacD. Therefore, based on the obtained results we can infer that biochemically DacD and PBP5 are more closely related to each other than to PBP6, enabling DacD and PBP5 to play a nearly similar physiological function in terms of recovering the lost beta-lactam resistance.
Collapse
Affiliation(s)
- Chiranjit Chowdhury
- Department of Biotechnology, Indian Institute of Technology, Kharagpur, West Bengal, India
| | | | | | | | | |
Collapse
|
9
|
Siloto RM, Weselake RJ. Site saturation mutagenesis: Methods and applications in protein engineering. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2012. [DOI: 10.1016/j.bcab.2012.03.010] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
10
|
Bobba S, Gutheil WG. Multivariate geometrical analysis of catalytic residues in the penicillin-binding proteins. Int J Biochem Cell Biol 2011; 43:1490-9. [PMID: 21740978 DOI: 10.1016/j.biocel.2011.06.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Revised: 05/04/2011] [Accepted: 06/22/2011] [Indexed: 12/11/2022]
Abstract
Penicillin-binding proteins (PBPs) are bacterial enzymes involved in the final stages of cell wall biosynthesis, and are targets of the β-lactam antibiotics. They can be subdivided into essential high-molecular-mass (HMM) and non-essential low-molecular-mass (LMM) PBPs, and further divided into subclasses based on sequence homologies. PBPs can catalyze transpeptidase or hydrolase (carboxypeptidase and endopeptidase) reactions. The PBPs are of interest for their role in bacterial cell wall biosynthesis, and as mechanistically interesting enzymes which can catalyze alternative reaction pathways using the same catalytic machinery. A global catalytic residue comparison seemed likely to provide insight into structure-function correlations within the PBPs. More than 90 PBP structures were aligned, and a number (40) of active site geometrical parameters extracted. This dataset was analyzed using both univariate and multivariate statistical methods. Several interesting relationships were observed. (1) Distribution of the dihedral angle for the SXXK-motif Lys side chain (DA_1) was bimodal, and strongly correlated with HMM/transpeptidase vs LMM/hydrolase classification/activity (P<0.001). This structural feature may therefore be associated with the main functional difference between the HMM and LMM PBPs. (2) The distance between the SXXK-motif Lys-NZ atom and the Lys/His-nitrogen atom of the (K/H)T(S)G-motif was highly conserved, suggesting importance for PBP function, and a possibly conserved role in the catalytic mechanism of the PBPs. (3) Principal components-based cluster analysis revealed several distinct clusters, with the HMM Class A and B, LMM Class C, and LMM Class A K15 PBPs forming one "Main" cluster, and demonstrating a globally similar arrangement of catalytic residues within this group.
Collapse
Affiliation(s)
- Sudheer Bobba
- Division of Pharmaceutical Sciences, University of Missouri-Kansas City, Kansas City, MO 64108, United States
| | | |
Collapse
|
11
|
Chowdhury C, Ghosh AS. Differences in active-site microarchitecture explain the dissimilar behaviors of PBP5 and 6 in Escherichia coli. J Mol Graph Model 2011; 29:650-6. [DOI: 10.1016/j.jmgm.2010.11.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Revised: 11/10/2010] [Accepted: 11/15/2010] [Indexed: 11/29/2022]
|
12
|
Navratna V, Nadig S, Sood V, Prasad K, Arakere G, Gopal B. Molecular basis for the role of Staphylococcus aureus penicillin binding protein 4 in antimicrobial resistance. J Bacteriol 2010; 192:134-44. [PMID: 19854906 PMCID: PMC2798245 DOI: 10.1128/jb.00822-09] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2009] [Accepted: 10/02/2009] [Indexed: 11/20/2022] Open
Abstract
Penicillin binding proteins (PBPs) are membrane-associated proteins that catalyze the final step of murein biosynthesis. These proteins function as either transpeptidases or carboxypeptidases and in a few cases demonstrate transglycosylase activity. Both transpeptidase and carboxypeptidase activities of PBPs occur at the D-Ala-D-Ala terminus of a murein precursor containing a disaccharide pentapeptide comprising N-acetylglucosamine and N-acetyl-muramic acid-L-Ala-D-Glu-L-Lys-D-Ala-D-Ala. Beta-lactam antibiotics inhibit these enzymes by competing with the pentapeptide precursor for binding to the active site of the enzyme. Here we describe the crystal structure, biochemical characteristics, and expression profile of PBP4, a low-molecular-mass PBP from Staphylococcus aureus strain COL. The crystal structures of PBP4-antibiotic complexes reported here were determined by molecular replacement, using the atomic coordinates deposited by the New York Structural Genomics Consortium. While the pbp4 gene is not essential for the viability of S. aureus, the knockout phenotype of this gene is characterized by a marked reduction in cross-linked muropeptide and increased vancomycin resistance. Unlike other PBPs, we note that expression of PBP4 was not substantially altered under different experimental conditions, nor did it change across representative hospital- or community-associated strains of S. aureus that were examined. In vitro data on purified recombinant S. aureus PBP4 suggest that it is a beta-lactamase and is not trapped as an acyl intermediate with beta-lactam antibiotics. Put together, the expression analysis and biochemical features of PBP4 provide a framework for understanding the function of this protein in S. aureus and its role in antimicrobial resistance.
Collapse
Affiliation(s)
- Vikas Navratna
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India, Sir Dorabji Tata Center for Research in Tropical Diseases, Indian Institute of Science Campus, Bangalore 560 012, India
| | - Savitha Nadig
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India, Sir Dorabji Tata Center for Research in Tropical Diseases, Indian Institute of Science Campus, Bangalore 560 012, India
| | - Varun Sood
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India, Sir Dorabji Tata Center for Research in Tropical Diseases, Indian Institute of Science Campus, Bangalore 560 012, India
| | - K. Prasad
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India, Sir Dorabji Tata Center for Research in Tropical Diseases, Indian Institute of Science Campus, Bangalore 560 012, India
| | - Gayathri Arakere
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India, Sir Dorabji Tata Center for Research in Tropical Diseases, Indian Institute of Science Campus, Bangalore 560 012, India
| | - B. Gopal
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India, Sir Dorabji Tata Center for Research in Tropical Diseases, Indian Institute of Science Campus, Bangalore 560 012, India
| |
Collapse
|
13
|
Shi Q, Meroueh SO, Fisher JF, Mobashery S. Investigation of the mechanism of the cell wall DD-carboxypeptidase reaction of penicillin-binding protein 5 of Escherichia coli by quantum mechanics/molecular mechanics calculations. J Am Chem Soc 2008; 130:9293-303. [PMID: 18576637 PMCID: PMC6993461 DOI: 10.1021/ja801727k] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Penicillin-binding protein 5 (PBP 5) of Escherichia coli hydrolyzes the terminal D-Ala-D-Ala peptide bond of the stem peptides of the cell wall peptidoglycan. The mechanism of PBP 5 catalysis of amide bond hydrolysis is initial acylation of an active site serine by the peptide substrate, followed by hydrolytic deacylation of this acyl-enzyme intermediate to complete the turnover. The microscopic events of both the acylation and deacylation half-reactions have not been studied. This absence is addressed here by the use of explicit-solvent molecular dynamics simulations and ONIOM quantum mechanics/molecular mechanics (QM/MM) calculations. The potential-energy surface for the acylation reaction, based on MP2/6-31+G(d) calculations, reveals that Lys47 acts as the general base for proton abstraction from Ser44 in the serine acylation step. A discrete potential-energy minimum for the tetrahedral species is not found. The absence of such a minimum implies a conformational change in the transition state, concomitant with serine addition to the amide carbonyl, so as to enable the nitrogen atom of the scissile bond to accept the proton that is necessary for progression to the acyl-enzyme intermediate. Molecular dynamics simulations indicate that transiently protonated Lys47 is the proton donor in tetrahedral intermediate collapse to the acyl-enzyme species. Two pathways for this proton transfer are observed. One is the direct migration of a proton from Lys47. The second pathway is proton transfer via an intermediary water molecule. Although the energy barriers for the two pathways are similar, more conformers sample the latter pathway. The same water molecule that mediates the Lys47 proton transfer to the nitrogen of the departing D-Ala is well positioned, with respect to the Lys47 amine, to act as the hydrolytic water in the deacylation step. Deacylation occurs with the formation of a tetrahedral intermediate over a 24 kcal x mol(-1) barrier. This barrier is approximately 2 kcal x mol(-1) greater than the barrier (22 kcal x mol(-1)) for the formation of the tetrahedral species in acylation. The potential-energy surface for the collapse of the deacylation tetrahedral species gives a 24 kcal x mol(-1) higher energy species for the product, signifying that the complex would readily reorganize and pave the way for the expulsion of the product of the reaction from the active site and the regeneration of the catalyst. These computational data dovetail with the knowledge on the reaction from experimental approaches.
Collapse
Affiliation(s)
- Qicun Shi
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | | | | | | |
Collapse
|
14
|
Ghosh AS, Chowdhury C, Nelson DE. Physiological functions of D-alanine carboxypeptidases in Escherichia coli. Trends Microbiol 2008; 16:309-17. [PMID: 18539032 DOI: 10.1016/j.tim.2008.04.006] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2008] [Revised: 04/09/2008] [Accepted: 04/30/2008] [Indexed: 11/16/2022]
Abstract
Bacterial cell shape is, in part, mediated by the peptidoglycan (murein) sacculus. Penicillin-binding proteins (PBPs) catalyze the final stages of murein biogenesis and are the targets of beta-lactam antibiotics. Several low molecular mass PBPs including PBP4, PBP5, PBP6 and DacD seem to possess DD-carboxypeptidase (DD-CPase) activity, but these proteins are dispensable for survival in laboratory culture. The physiological functions of DD-CPases in vivo are unresolved and it is unclear why bacteria retain these seemingly non-essential and enzymatically redundant enzymes. However, PBP5 clearly contributes to maintenance of cell shape in some PBP mutant backgrounds. In this review, we focus on recent findings concerning the physiological functions of the DD-CPases in vivo, identify gaps in the current knowledge of these proteins and suggest some possible courses for future study that might help reconcile current models of bacterial cell morphology.
Collapse
Affiliation(s)
- Anindya S Ghosh
- Department of Biotechnology, Indian Institute of Technology, Kharagpur, District-West Midnapore, West Bengal, PIN-721302, India.
| | | | | |
Collapse
|
15
|
Nicholas RA, Krings S, Tomberg J, Nicola G, Davies C. Crystal Structure of Wild-type Penicillin-binding Protein 5 from Escherichia coli. J Biol Chem 2003; 278:52826-33. [PMID: 14555648 DOI: 10.1074/jbc.m310177200] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Penicillin-binding protein 5 (PBP 5) of Escherichia coli functions as a d-alanine carboxypeptidase (CPase), cleaving d-alanine from the C terminus of cell wall peptides. Like all PBPs, PBP 5 forms a covalent acyl-enzyme complex with beta-lactam antibiotics; however, PBP 5 is distinguished by its high rate of deacylation of the acylenzyme complex (t(1/2) approximately 10 min). A Gly105 --> Asp mutation in PBP 5 markedly impairs deacylation with only minor effects on acylation, and abolishes CPase activity. We have determined the three-dimensional structure of a soluble form of wild-type PBP 5 at 1.85-A resolution and have also refined the structure of the G105D mutant form of PBP 5 to 1.9-A resolution. Comparison of the two structures reveals that the major effect of the mutation is to disorder a loop comprising residues 74-90 that sits atop the SXN motif of the active site. Deletion of the 74-90 loop in wild-type PBP 5 markedly diminished the deacylation rate of penicillin G with a minimal impact on acylation, and abolished CPase activity. These effects were very similar to those observed in the G105D mutant, reinforcing the idea that this mutation causes disordering of the 74-90 loop. Mutation of two consecutive serines within this loop, which hydrogen bond to Ser110 and Asn112 in the SXN motif, had marked effects on CPase activity, but not beta-lactam antibiotic binding or hydrolysis. These data suggest a direct role for the SXN motif in deacylation of the acyl-enzyme complex and imply that the functioning of this motif is modulated by the 74-90 loop.
Collapse
Affiliation(s)
- Robert A Nicholas
- Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina 27599-7365, USA.
| | | | | | | | | |
Collapse
|
16
|
Ghosh AS, Young KD. Sequences near the active site in chimeric penicillin binding proteins 5 and 6 affect uniform morphology of Escherichia coli. J Bacteriol 2003; 185:2178-86. [PMID: 12644487 PMCID: PMC151496 DOI: 10.1128/jb.185.7.2178-2186.2003] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Penicillin binding protein (PBP) 5, a DD-carboxypeptidase that removes the terminal D-alanine from peptide side chains of peptidoglycan, plays an important role in creating and maintaining the uniform cell shape of Escherichia coli. PBP 6, a highly similar homologue, cannot substitute for PBP 5 in this respect. Previously, we localized the shape-maintaining characteristics of PBP 5 to the globular domain that contains the active site (domain I), where PBPs 5 and 6 share substantial identity. To identify the specific segment of domain I responsible for shape control, we created a set of hybrids and determined which ones complemented the aberrant morphology of a misshapen PBP mutant, E. coli CS703-1. Fusion proteins were constructed in which 47, 199 and 228 amino-terminal amino acids of one PBP were fused to the corresponding carboxy-terminal amino acids of the other. The morphological phenotype was reversed only by hybrid proteins containing PBP 5 residues 200 to 228, which are located next to the KTG motif of the active site. Because residues 220 to 228 were identical in these proteins, the morphological effect was determined by alterations in amino acids 200 to 219. To confirm the importance of this segment, we constructed mosaic proteins in which these 20 amino acids were grafted from PBP 5 into PBP 6 and vice versa. The PBP 6/5/6 mosaic complemented the aberrant morphology of CS703-1, whereas PBP 5/6/5 did not. Site-directed mutagenesis demonstrated that the Asp(218) and Lys(219) residues were important for shape maintenance by these mosaic PBPs, but the same mutations in wild-type PBP 5 did not eliminate its shape-promoting activity. Homologous enzymes from five other bacteria also complemented the phenotype of CS703-1. The overall conclusion is that creation of a bacterial cell of regular diameter and uniform contour apparently depends primarily on a slight alteration of the enzymatic activity or substrate accessibility at the active site of E. coli PBP 5.
Collapse
Affiliation(s)
- Anindya S Ghosh
- Department of Microbiology and Immunology, University of North Dakota School of Medicine, Grand Forks, North Dakota 58202-9037, USA
| | | |
Collapse
|
17
|
Deka RK, Machius M, Norgard MV, Tomchick DR. Crystal structure of the 47-kDa lipoprotein of Treponema pallidum reveals a novel penicillin-binding protein. J Biol Chem 2002; 277:41857-64. [PMID: 12196546 DOI: 10.1074/jbc.m207402200] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Syphilis is a complex sexually transmitted disease caused by the spirochetal bacterium Treponema pallidum. T. pallidum has remained exquisitely sensitive to penicillin, but the mode of action and lethal targets for beta-lactams are still unknown. We previously identified the T. pallidum 47-kDa lipoprotein (Tp47) as a penicillin-binding protein (PBP). Tp47 contains three hypothetical consensus motifs (SVTK, TEN, and KTG) that typically form the active center of other PBPs. Yet, in this study, mutations of key amino acids within these motifs failed to abolish the penicillin binding activity of Tp47. The crystal structure of Tp47 at a resolution of 1.95 A revealed a fold different from any other known PBP; Tp47 is predominantly beta-sheet, in contrast to the alpha/beta-fold common to other PBPs. It comprises four distinct domains: two complex beta-sheet-containing N-terminal domains and two C-terminal domains that adopt immunoglobulin-like folds. The three hypothetical PBP signature motifs do not come together to form a typical PBP active site. Furthermore, Tp47 is unusual in that it displays beta-lactamase activity (k(cat) for penicillin = 271 +/- 6 s(-1)), a feature that hindered attempts to identify the active site in Tp47 by co-crystallization and mass spectrometric techniques. Taken together, Tp47 does not fit the classical structural and mechanistic paradigms for PBPs, and thus Tp47 appears to represent a new class of PBP.
Collapse
Affiliation(s)
- Ranjit K Deka
- Departments of Microbiology and Biochemistry, University of Texas Southwestern Medical Center, Dallas 75390, USA
| | | | | | | |
Collapse
|
18
|
Davies C, White SW, Nicholas RA. Crystal structure of a deacylation-defective mutant of penicillin-binding protein 5 at 2.3-A resolution. J Biol Chem 2001; 276:616-23. [PMID: 10967102 DOI: 10.1074/jbc.m004471200] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Penicillin-binding protein 5 (PBP 5) of Escherichia coli functions as a d-alanine carboxypeptidase, cleaving the C-terminal d-alanine residue from cell wall peptides. Like all PBPs, PBP 5 forms a covalent acyl-enzyme complex with beta-lactam antibiotics; however, PBP 5 is distinguished by its high rate of deacylation of the acyl-enzyme complex (t(12) approximately 9 min). A Gly-105 --> Asp mutation in PBP 5 markedly impairs this beta-lactamase activity (deacylation), with only minor effects on acylation, and promotes accumulation of a covalent complex with peptide substrates. To gain further insight into the catalytic mechanism of PBP 5, we determined the three-dimensional structure of the G105D mutant form of soluble PBP 5 (termed sPBP 5') at 2.3 A resolution. The structure is composed of two domains, a penicillin binding domain with a striking similarity to Class A beta-lactamases (TEM-1-like) and a domain of unknown function. In addition, the penicillin-binding domain contains an active site loop spatially equivalent to the Omega loop of beta-lactamases. In beta-lactamases, the Omega loop contains two amino acids involved in catalyzing deacylation. This similarity may explain the high beta-lactamase activity of wild-type PBP 5. Because of the low rate of deacylation of the G105D mutant, visualization of peptide substrates bound to the active site may be possible.
Collapse
Affiliation(s)
- C Davies
- School of Biological Sciences, University of Sussex, Falmer, Brighton BN1 9QG, United Kingdom
| | | | | |
Collapse
|
19
|
Airaksinen A, Hovi T. Modified base compositions at degenerate positions of a mutagenic oligonucleotide enhance randomness in site-saturation mutagenesis. Nucleic Acids Res 1998; 26:576-81. [PMID: 9421518 PMCID: PMC147293 DOI: 10.1093/nar/26.2.576] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Site-saturation mutagenesis, using degenerate oligonucleotide primers, is a frequently used method in introducing various mutations in a selected target codon. Oligonucleotides that are synthesized using equimolar concentrations of nucleoside phosphoramidites (dA, dC, dG, dT) in the positions to be saturated, result in a mutant population that is biased towards the original nucleotides. We found that this bias could be eliminated by modifying the concentrations of nucleoside phosphoramidites during the oligonucleotide synthesis. We synthesized eight degenerate oligonucleotides to saturate eight different codons, and sequenced a total of 344 mutagenized codons. In six of these eight oligonucleotides, we reduced to varying extents the concentrations of those nucleotides in the target positions that would form base pairs with the template. From the data, we analyzed the effects of different base compositions in the oligonucleotides when mutagenizing different codons, the influence of the positions of mismatches, and the significance of different non-Watson-Crick base pairs. Based on these results, we suggest levels to which different phosphoramidites should be reduced when synthesizing oligonucleotides for site-saturation mutagenesis.
Collapse
Affiliation(s)
- A Airaksinen
- National Public Health Institute (KTL), Enterovirus Laboratory, Mannerheimintie 166, FIN-00300, Helsinki, Finland.
| | | |
Collapse
|
20
|
|
21
|
Nicholas R, Lamson D, Schultz D. Penicillin-binding protein 1B from Escherichia coli contains a membrane association site in addition to its transmembrane anchor. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)53367-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|