Watanabe N, Hayashi N, Kikuchi G. Relation of the extra-sequence of the precursor form of chicken liver delta-aminolevulinate synthase to its quaternary structure and catalytic properties.
Arch Biochem Biophys 1984;
232:118-26. [PMID:
6742848 DOI:
10.1016/0003-9861(84)90527-7]
[Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Precursor and mature forms of delta-aminolevulinate (ALA) synthase were purified to near homogeneity from chicken liver mitochondria and cytosol, respectively, and their properties were compared. The enzyme purified from mitochondria had apparently the same subunit molecular weight (65,000) as that of the native mitochondrial enzyme. The enzyme purified from the cytosol fraction, however, showed a subunit molecular weight of about 71,000 which was somewhat smaller than that estimated for the native cytosolic enzyme (73,000). The enzyme purified from liver cytosol seems to have been partially degraded by some endogenous protease during the purification, but may have the major part of the signal sequence. On sucrose density gradient centrifugation, the purified mitochondrial and cytosolic ALA synthases showed an apparent molecular weight of about 140,000, indicating that both enzymes exist in a dimeric form. The ALA synthase synthesized in vitro was also shown to exist as a dimer. Apparently the extra-sequence does not interfere with the formation of dimeric form of the enzyme. The purified cytosolic ALA synthase had a specific activity comparable to that of the purified mitochondrial enzyme. Kinetic properties of the two enzymes, such as the pH optimum and the apparent Km values for glycine and succinyl-CoA, were quite similar. The extra-sequence does not appear to affect the catalytic properties of ALA synthase. The isoelectric point of the cytosolic ALA synthase was 7.5, whereas that of the mitochondrial enzyme was 7.1. This suggests that the extra-sequence in the cytosolic enzyme may be relatively rich in basic amino acids.
Collapse