Culligan K, Banville N, Dowling P, Ohlendieck K. Drastic reduction of calsequestrin-like proteins and impaired calcium binding in dystrophic mdx muscle.
J Appl Physiol (1985) 2002;
92:435-45. [PMID:
11796649 DOI:
10.1152/japplphysiol.00903.2001]
[Citation(s) in RCA: 80] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Although the reduction in dystrophin-associated glycoproteins is the primary pathophysiological consequence of the deficiency in dystrophin, little is known about the secondary abnormalities leading to x-linked muscular dystrophy. As abnormal Ca(2+) handling may be involved in myonecrosis, we investigated the fate of key Ca(2+) regulatory membrane proteins in dystrophic mdx skeletal muscle membranes. Whereas the expression of the ryanodine receptor, the dihydropyridine receptor, the Ca(2+)-ATPase, and calsequestrin was not affected, a drastic decline in calsequestrin-like proteins of 150-220 kDa was observed in dystrophic microsomes using one-dimensional immunoblotting, two-dimensional immunoblotting with isoelectric focusing, diagonal two-dimensional blotting technique, and immunoprecipitation. In analogy, overall Ca(2+) binding was reduced in the sarcoplasmic reticulum of dystrophic muscle. The reduction in Ca(2+) binding proteins might be directly involved in triggering impaired Ca(2+) sequestration within the lumen of the sarcoplasmic reticulum. Thus disturbed sarcolemmal Ca(2+) fluxes seem to influence overall Ca(2+) homeostasis, resulting in distinct changes in the expression profile of a subset of Ca(2+) handling proteins, which might be an important factor in the progressive functional decline of dystrophic muscle fibers.
Collapse